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The adapted augmented Lagrangian method: a new method
for the resolution of the mechanical frictional contact problem

Philippe Bussetta · Daniel Marceau · Jean-Philippe Ponthot

Abstract The aim of this work is to propose a new nume-
rical method for solving the mechanical frictional contact
problem in the general case of multi-bodies in a three
dimensional space. This method is called adapted aug-
mented Lagrangian method (AALM) and can be used in
a multi-physical context (like thermo-electro-mechanical
fields problems). This paper presents this new method and
its advantages over other classical methods such as penalty
method (PM), adapted penalty method (APM) and, aug-
mented Lagrangian method (ALM). In addition, the effi-
ciency and the reliability of the AALM are proved with
some academic problems and an industrial thermo-electro-
mechanical problem.
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1 Introduction

The mechanical contact is the problem of solid mechan-
ics that presents the most important nonlinearities. The
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good resolution of the frictional contact problem is dis-
rupted by the nonlinearity and the non differentiability of
the equations of contact (stick/unstick and the initiation of
sliding) [1]. This paper deals with solving the mechanical
contact problem, using the finite element method, in the
general case of thermo-electro-mechanical problem (in two
or three dimensions). Until now, no method can be used
to solve all contact problems. The solving method can be
divided in two parts: the formulation of the contact equa-
tions and the solving of these equations using the finite
element method. The methods most frequently used to
obtain equations system are the penalty method (PM) [2–6]
or augmented Lagrangian method (ALM) [7–10], or hybrid
methods [11–15]. But, alternative methods can be used, like
the mathematical programming [16,17]. These methods are
simple but sometimes very difficult to use in practice, because
of the choice of the value of penalty parameters (normal and
tangential). The more the value of the penalty coefficients is
low, the more the error on contact stress or the computational
time is important. Nevertheless, the more the value of the
penalty coefficient is large, the more the risks of numerical
oscillations and divergence of the algorithm are important.
To overcome this lack of performances, an adapted penalty
method (APM) was proposed by Chamoret [18] or [19]. But
this method deals only with normal penalty coefficient. The
value of the tangential penalty coefficient is still user chosen.
In addition, this method is not appropriate to elastoplastic
problems [20] (it is proved in the Sect. 4 by one example).

This paper presents a new method for the resolution of the
mechanical contact problem, called “adapted augmented La-
grangian method” (AALM). This new method is based on the
augmented Lagrangian method coupled with an adaptation
of both penalty coefficients (normal and tangential). This one
has the speed of the PM and the reliability of the ALM. In
opposition to classical methods (PM, ALM), the user does
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not choose the value of the penalty parameters. With this new
method, like with the classical methods (PM, ALM), the con-
tact equations can be solved thanks to a large a variety of tech-
niques: like a node-to-segment algorithm [4,18,19,21,22], a
segment-to-segment algorithm [23,24], the mortar element
method [6,25–27], the boundary element method [28–31], or
the X-FEM [3,7,32–35]. But, in this paper only a segment-
to-segment algorithm is used (see Sect. 3). The proposed
method is first tested on academic problems involving elas-
tic as well as elastoplastic behaviour. The adapted augmented
Lagrangian method is then used for an industrial problem
with mechanical frictional contact: the electrical preheating
of a cathode block used for aluminium production.

2 Equations to be solved

This paper deals with the problem of mechanical contact
between two solids in three dimensions in the quasi-static
regime. However, the methods used can easily be applied in
the case of multiple bodies and multiple interfaces of contact
or/and in the dynamic regime. The two solids are potentially
in contact with the boundary Γ 1

c (solid 1) and Γ 2
c (solid 2).

The equations that represent the mechanical equilibrium can
be written using the principle of virtual work such that:

W int (u, δu) + W ext (u, δu) + W c(u, δu) = 0. (1)

Where u and δu are respectively the real and the virtual dis-
placement field. Moreover, W int (u, δu) is the virtual work
associated to the internal forces andW ext (u, δu) is the virtual
work related to the external forces except the contact ones.
The virtual work connected to the contact is notedW c(u, δu).
This last one can be written as:

W c(u, δu) =
∫

Γ 1
c

δu · tc dΓ 1
c +

∫

Γ 2
c

δu · tc dΓ 2
c (2)

where tc is the surface traction on the contact boundary (Γ 1
c

or Γ 2
c ). This surface traction is called contact stress.

Using the law of reciprocal actions (Newton’s third law),
the virtual work of the contact forces (W c) can be written
as one integral over the contact surface Γ 1

c , called the slave
surface, as [1] or [36]:

W c(u, δu) =
∫

Γ 1
c

(
δξβ ttβ + δg tn

)
dΓ 1

c (3)

In this paper the Greek letters (α and β) can take the value 1
or 2. On the contact boundary Γ 1

c , the field of virtual relative
displacement between the two interfaces is split in the normal
direction, δg and on the tangential plane, δξβ (for more infor-
mation see [1] or [36]). In the same way, the contact stress is
projected on the normal direction (normal contact stress, tn)

and on the tangential plane (tangential contact stress, tt =
tt1 + tt2 ) [20]. The contact’s laws are the unilateral contact
(relations (4)) and the Coulomb’s friction law (relations (5)),
such that:

g ≤ 0 tn ≥ 0 gtn = 0 (4)

Φ = ‖tt‖ − μtn ≤ 0 ζ ≥ 0 Φζ = 0 (5)

where ζ is the absolute rate of sliding, g is the distance
between the two boundaries and μ is the Coulomb’s fric-
tion coefficient. The relation between the rate of sliding and
the speed of sliding (vt) is given by:

vt − ζ
tt

‖tt‖
= 0. (6)

3 Solution techniques

This problem is solved using the finite element method. The
computation of the integral of the virtual work of the con-
tact forces over the contact surface Γ 1

c is done by numer-
ical integration. The contact stress is computed thanks to
a segment-to-segment algorithm [36]. In opposition to the
node-to-segment algorithm (see in [8,21,22,37]), the contact
condition is not verified for the nodes of the slave bound-
ary. The equations of contact are solved for every integration
point of each element on the contact surface Γ 1

c . In this algo-
rithm, each integration point is similar to a virtual node in
the node-to-segment algorithm. So, the contact stresses are
known through their values at integration points. The link
between one point of the slave surface (Γ 1

c ) and the master
surface (Γ 2

c ) is done by orthogonal projection on the closer
element of the boundary Γ 2

c (see Fig. 1).
The search of the link between a point of the slave surface

and an element of the master surface, can be divided into
three cases. In the first one, the point can only be projected
on one element of the slave boundary (see Fig. 1). In the sec-
ond case, the point of the slave surface can be projected on
two elements of the master surface. The matching element
of the master surface is the one corresponding to the smaller
gap (see Fig. 2). In the last case, the point of the slave surface

Fig. 1 Link between the contact surfaces Γ 1
c and Γ 2

c
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Fig. 2 Link between a point of the contact surface Γ 1
c and a element

of the contact surface Γ 2
c

Fig. 3 Link between a point of the contact surface Γ 1
c and a element

of the contact surface Γ 2
c

Fig. 4 Link between the contact surfaces Γ 1
c and Γ 2

c

can not be projected on any element of the master surface.
The tolerance on the boundary of the element can by-pass
this case (see Fig. 3). So, in all cases, the contact stress is
computed with the matching element of the master surface.

This projection is used for all integration points of each
element of the contact surface Γ 1

c to compute the virtual work
of the contact forces related to this element.

This computation is available for any number of inte-
gration points and any integration scheme (Gauss, Newton–
Cotes, etc.; see Fig. 1 in a two dimensional problem or Fig. 4
in a three dimensional problem). More details on the formu-
lation of the mechanical contact are available on [36] or on
[38].

Some works deal with the numerical integration scheme
of the virtual work of the contact forces. Investigations about
integration rules for the PM are presented in [39]. Another
study [40], deals with the comparison of the Gauss inte-
gration scheme and the Newton–Cotes integration scheme.
This research shows that the Gauss scheme is a possible
source for numerical oscillation of the contact stress, and
the use of the Newton–Cotes scheme improves the reliability
of the contact stress. On the other hand, a composite integra-
tion scheme is proposed in [41] and used in [42]. With this

g

t

nt
nt tt

n

Fig. 5 Contact stress versus the penetration and the tangential dis-
placement

scheme, each element of the slave boundary is divided into
sub-elements (intersection of this element with an element of
the master boundary). In [41,42], the numerical integration
can be performed on each sub-element using either the Gauss
integration scheme or the Newton–Cotes integration scheme.
However, in the present paper only the Newton–Cotes inte-
gration scheme has actually been employed on each element
of the contact surface Γ 1

c .

3.1 Penalty method (PM)

The PM is the most used method to solve this kind of prob-
lems. This method ensures a continuous relation between
the contact stress and the displacements. Therefore, two user
defined coefficients are inserted, the normal penalty coeffi-
cient (εn) and the tangential penalty coefficient (εt ).

The relations used to define the contact stress are given
by:

tn = εn < g >

vt − ζ
tt

‖tt‖
= 1

εt
Lvtt

(7)

with the Coulomb’s friction law (relations (5)). The operator
Lv means the Lie’s derivative and <> the positive part of the
operand (Macauley brackets). The value of the contact stress
in function of the penetration and the tangential displacement
is shown in the Fig. 5. The displacement field (u) is solved
using the Newton–Raphson solution technique in an implicit
context. So, this method introduces at the contact interface,
a residual penetration and a tangential displacement without
sliding (called reversible tangential displacement).

The choice of the penalty coefficients is of the utmost
importance in order to get an effective solution in an effi-
cient way. The more the value of these coefficients is small,
the less the solution has physical meaning because of the
penetration and the reversible tangential displacement at the
contact interface. On the other hand, a large value of these
coefficients may produce numerical oscillations and gener-
ally prevents the convergence of the algorithm.
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Fig. 6 Value of F versus the penetration

3.2 Adapted penalty method (APM)

To overcome the problem of the choice of the values of
penalty coefficients, one APM was proposed by Chamoret
[18] or [19]. This method introduces two new parameters: the
minimal and the maximal value of the gap (gmin and gmax ).
These new parameters have more physical meaning (they can
be connected to the roughness of the two surfaces), but, this
adaptation is only about the normal penalty coefficient, and
the initial value of εn is still user chosen.

The value of the normal penalty coefficient is updated as
a function of the value of the penetration between the two
solids and the gap tolerance such that:

εni+1 = F (|gi |, gmin, gmax )εni (8)

where the function F is defined by the relation (9) see also
Fig. 6.

F (|gi |, gmin, gmax ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|gi |
gmax

if |gi | > gmax

|gi |
gmin

if |gi | < gmin

1 else

(9)

This method was used to solve mechanical contact prob-
lems without friction [18] or [19]. Actually, APM is not
adapted for elastoplastical problems because, the important
augmentation of the value of the normal penalty coefficient
produce numerical oscillation and generally prevent the con-
vergence of the algorithm [20].

3.3 Augmented Lagrangian method (ALM)

The ALM introduces additional parameters called Lagrange
multipliers (λ). These parameters are used to reduce the
impact of the penalty coefficients. Furthermore, the value
of tolerance on the gap (gmax ) and the reversible tangential
displacement (ξmax ) are introduced to reduce the error on the
contact stress.

The technique used to solve the mechanical problem is
almost the same than with the PM. But the relations that

define the contact stress are given by:

tn =< λn + εng >

vt − ζ
tt

‖tt‖
= 1

εt

(
Lvtt − Lvλt

) (10)

with the Coulomb’s friction law (relations (5)).
The Lagrange multipliers (λ) are split into two parts, a

normal part (λn) and a tangential part (λt). The initial value
of the Lagrange multipliers is the value of the contact stress
at the end of the lastest converged time step.

After the convergence of the Newton–Raphson solution
technique, if the value of the gap or the reversible tangen-
tial displacement is higher than the prescribed tolerance, the
value of the Lagrange multipliers is updated using the rela-
tions (11). This updating is called an augmentation. The equa-
tions are then solved with this new value of the Lagrange
multipliers (see the Algorithm 1).

λk+1
n = tk+1

n

λk+1
t = tk+1

t

(11)

Algorithm 1 Computation of Lagrange multipliers
Require: εn , gi and ξi .

1. The problem is solved by the Newton–Raphson algorithm
if for all integration points gi < gmax and ξi < ξmax then

The problem is solved
else

Augmentation of the Lagrange multipliers (with the relations (11))
Go back to 1

end if

The augmentation of the Lagrange multipliers allows the
use of smaller value of the penalty coefficient. Nevertheless,
the smaller the value of the penalty coefficients, the lower the
speed of convergence is and the computational time is thus
increased. Like for the PM, large values of the penalty coeffi-
cients prevent convergence of the algorithm. In addition, the
quality of the solution can be controlled by the tolerance on
the gap, the tolerance on the reversible tangential displace-
ment and the number of augmentation of the Lagrange multi-
pliers [20]. So, the larger value of the penalty coefficients, the
smaller the number of augmentation of the Lagrange multi-
pliers will be. But, in the same time, the error on the contact
stress increases. Because the incremental value of the contact
stress on the last augmentation of the Lagrange multipliers
is not negligible in comparison to the value of the Lagrange
multiplier (the value of the contact stress is not converged;
it is proved in the Sect. 4 by one example). So, the choice of
the value of the penalty coefficients remains the key part of
the success of both, the ALM as well as the PM.

4



3.4 Adapted augmented Lagrangian method (AALM)

The AALM is based on ALM enhanced with an adaptation
of the penalty parameters (normal and tangential). The res-
olution of the mechanical problem is the same as for the
ALM (based on the Newton–Raphson solution technique).
Like the ALM, the augmentation of the Lagrange multipli-
ers is done after the convergence of the Newton–Raphson
algorithm (see the Algorithm 1). However, the value of the
penalty coefficients is updated during the computation. A
specific adaptation is used with the penalty coefficients (nor-
mal and tangential).

The normal penalty coefficient is adapted at each iteration
and at each contact point. In the same way, the computation
of the contact stress is different from ALM, as described in
Algorithm 2.

Algorithm 2 Computation of normal contact stress
Require: εn , gi , gi−1, λn and contact status at the iteration i − 1.

if no contact at the iteration i − 1 then
Evaltn = 0
εn = initial value of εn

else
if gi × gi−1 < 0 then

if the sign of g changes two times in a row then
Evaltn = 0

else
Evaltn = εn gi−1

end if
end if
εn = adaptation of εn (see Algorithm 3)

end if
tn =< Evaltn + εn gi + λn >

The same relations that with the ALM are used to calcu-
late the value of normal contact stress when the contact takes
place. In the other cases, when the point is in contact at the
previous iteration, the value of the normal contact stress is a
function of contact history (see Algorithm 2).

This procedure is based on the following assumption: if the
sign of the gap changes (gi × gi−1 < 0), this means that the
last correction (gi−1×εn)was too large, or the new correction
(gi ×εn) has a different sign. In the general case, the value of
the normal stress lies between the value of Lagrange multi-
plier (λn) and the value of the last iteration (εngi−1+λn). So,
the last correction is added to the normal contact stress value
(Evaltn = gi−1εn) to reduce the numerical oscillations (see
Algorithm 2).

On the other hand, if the sign of the gap changes two
times in a row, no history correction is added (Evaltn = 0),
because the oscillation of the gap sign is touched off by a
too important value of the normal penalty coefficient. So the
decrease of the normal penalty coefficient stabilizes the gap
sign (see Algorithms 2 and 3).

In addition, the value of the normal penalty coefficient is
adapted according to the contact history (excepted when the
contact takes place, see Algorithms 2 and 3).

Algorithm 3 Adaptation of normal penalty coefficient
Require: εn , gi and gi−1.

if gi × gi−1 < 0 then
if gi−1 > gmax then

εn = |(εn gi−1)/gi × (|gi | + gmax )/(gi − gi−1)|
else

εn = |εn gi−1/(10gi )|
end if

else if gi > gmax then
if |gi − gi−1| > max(gi /10; gi−1/10; 5gmax ) then

εn = 2εn
else if |gi | = |gi−1| ± 1% < 10gmax then

εn = εn(
√

(|gi |/gmax − 1) + 1)2

else if |gi | > |gi−1| + 1% then
εn = 2εn(gi−1/gi )

else
εn = εn((

√
(|gi |/gmax − 1) + 1))

end if
else

εn = εn
end if

The adaptation of the normal penalty is separated in three
cases: either the sign of the gap changes (gi × gi−1 < 0),
or the absolute value of the gap is more important than the
prescribed limit (|gi | > gmax ), or the absolute value of the
gap is less than the maximal limit (|gi | < gmax ).

For the last case, the normal penalty coefficient remains
unchanged.

For the first case, when gi × gi−1 is negative, the normal
penalty coefficient is adapted so that the absolute value of
the gap decreases without changing the sign of the gap.

For the second case, when |gi | is greater than gmax , the
adaptation of εn will increase the absolute value of the penalty
contribution of the normal stress without changing the sign
of the gap. In the context of optimizing the computational
time, several cases are considered.

• In the case that the difference with the gap of the last
iteration is too large, the normal penalty coefficient is
multiplied by two to limit the increase of the absolute
value of the penalty contribution (and thus reduce the
numerical oscillations; see the Fig. 7).

• In the case that the gap is quasi-constant, the normal
penalty coefficient is adapted twice (the multiplier of the
coefficient is squared) to increase the rate of convergence
(see the Fig. 8).

• In the case that the absolute value of the gap increases,
the adaptation of εn multiplies by two the penalty con-
tribution in the normal stress (see the Fig. 9).
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Fig. 7 Example of the evolution of the gap between two iterations
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Fig. 8 Example of the evolution of the gap between two iterations
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Fig. 9 Example of the evolution of the gap between two iterations

• In the other cases, the multiplier function of the normal
penalty coefficient has a growing rate less important than
the function used with the APM used by Chamoret (see
Sect. 3.2, expressions (8) and (9)), which reduces the
numerical oscillations.

This adaptation let the algorithm converge with an wide
range of the initial value of the normal penalty coefficient.

The value of the tangential penalty coefficient is based
on an empirical study that shows that the overvaluation
of the tangential stress has a bad influence on the reso-
lution of the problem [20]. When the contact takes place,
the value of the tangential penalty coefficient leads to a
tangential stress equal to the half of the stress value cor-
responding to sliding threshold. After that, the value of
the tangential penalty coefficient is adapted during the

Lagrange multipliers augmentation (see Algorithm 4). The
case of the reversal sliding way means that the tangential
penalty coefficient was too important so the new value is
equal to the half of the old one.

Algorithm 4 Evaluation of the value of the tangential penalty
coefficient
Require: εt , GlRe = Absolute value of reversible sliding.

if (no contact at the iteration i − 1) or (first iteration after Lagrangian
augmentation and GlRe < Tol) then

εt = μtn/(2 GlRe )

else if reversal sliding way then
εt = εt/2

end if

The condition of unchanged penalty coefficients is added
to the convergence of the Newton–Raphson solution tech-
nique. Like the ALM, the augmentation of the Lagrange
multipliers is performed after the convergence of the Newton–
Raphson solution technique. At the time of the Lagrange mul-
tipliers augmentation, the tolerance on the gap in the function
of normal penalty adaptation is divided by ten to increase the
convergence rate.

Thereby, the user can prescribe the maximal value of the
gap in the solution. So, the algorithm is determined by two
of these three parameters: the number of Lagrange multi-
pliers augmentation, the gap tolerance for the solution or the
gap tolerance for the first Lagrange multipliers augmentation
(the tolerance on the gap in the function of normal penalty
adaptation before the first augmentation of the Lagrange
multipliers).

4 Numerical examples

In this section, numerical examples are presented to dem-
onstrate the efficiency of the proposed adapted augmented
Lagrangian method (AALM) and the advantages over the
most frequently used methods (PM and ALM). At first,
some academic problems are presented. The two first aca-
demic examples have already been presented in [43] (the
Hertz problem and an elastoplastic problem). In addition,
one academic frictional contact problem is shown in this
section. Then, an original industrial problem, a thermo-
electro-mechanical problem with frictional contact is treated.
In all problems, the linear elements are used and the compu-
tation of the integral over the contact surface is done with two
Newton–Cotes integration points in each direction (two inte-
gration points for the line and four for the quadrangle). With
this integration scheme, the integration points correspond to
the nodes of the finite element mesh.
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Fig. 10 The Hertz contact problem

4.1 Academic problems

In these academic problems, all dimensions are in millimetre
and the penalty coefficients are in MPa/mm. The numerical
parameters that have been retained are equal to :

– for the APM

– the maximal value of the gap for the penalty adapta-
tion (gmax ): 10−3 mm

– the minimal value of the gap for the penalty adaptation
(gmin): 10−5 mm

– for the ALM

– the tolerance on the gap (gmax ): 10−3 mm
– the tolerance on the reversible tangential displacement

(ξmax ): 10−3 mm

– for the AALM

– the maximal value of the gap for the penalty adapta-
tion (gmax ): 10−3 mm

– the tolerance on the gap: 10−3 mm
– the tolerance on the reversible tangential displacement

(ξmax ): 10−3 mm

4.1.1 Hertz problem

The Hertz problem is frequently used to check the mechani-
cal contact algorithm. It is a classical problem of mechanical
contact between two parallel, infinitely long cylinders com-
pressed one against the other using concentrated forces (see
Fig. 10).

The Hertz contact problem without friction between two
identical cylinders is solved. The analytical solution can be
found in [44]. This problem is solved in two dimensions with
the assumption of plane strain state.

The radius of the cylinders is 0.25 m. The value of the
Young’s modulus and the Poisson’s ratio of the two cylinders
are respectively 200 GPa and 0.3. In addition, this problem
is frictionless. Considering the symmetry and the hypothesis
of the small deformations, the simulation is done with only
two quarters of cylinder (Fig. 11).

Fig. 11 Modelling of the Hertzian problem

Fig. 12 Mesh with a zoom on the cylindrical contact zone (mesh 6)

This problem could be solved with only one quarter of
cylinder and one rigid plan, but with this configuration, the
computation of the contact is too easy (only one solid in
contact is deformable and nodes are simply projected into
an infinite plane). So, in the aim of testing the reliability of
the AALM and its robustness, this simplification is not used
(the two solids in contact are deformable; see [20]). This
problem is solved in two equal steps, the final value of δ is
0.11854 mm (corresponding to the analytical solution with a
maximum value of the normal contact stress of 1,000 GPa).

The two quarters of cylinder are identically meshed with
triangular elements (see Fig. 12). Three meshes are used
(noted mesh n where n means the number of elements in
the contact zone, n = 2, 4 or 6).

Table 1 shows that the PM is faster but the value of normal
penalty coefficient has a strong influence on the final solu-
tion (see Fig. 13a). A too small value of this coefficient (105)

results a bad evaluation of the contact stress (20% error, see
Fig. 13a). With this value of the penalty coefficient, the maxi-
mal value of the gap is about 8×10−3 mm. On the other hand,
a too large value of this coefficient (107) can cause numerical
oscillations and the divergence of the algorithm (e.g. mesh
2, see Table 1). In addition, the approximation of the contact
stress is not better (with mesh 4, see Fig. 13a, εn = 107) and
the maximal value of the gap is about 10−4 mm.
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Table 1 Number of iterations to reach final stage

ε0
n = initial value of εn

“osc cnt” means oscillations preventing numerical convergence

With the APM the computational time is more important
than with the PM (see Table 1). The dependency between the
computational time and the normal penalty coefficient is not
clear. In addition, the value of the normal stress is not closer
to the analytical solution than with the PM (see Fig. 13a, b),
but the error is independent of the value of the normal penalty
coefficient (2 ≤ ε0

n ≤ 2 × 104).
With the ALM the computational time is equivalent to the

PM but it increases quickly with the decreases of the normal
penalty coefficient (see Table 1). Moreover, when the nor-
mal penalty coefficient increases, the quality of the solution
decreases (see Fig. 13c, εn = 106). This fact is explained by
the hardening of the interface. Because, the more the normal
penalty coefficient is important, the more a little difference
on the gap has a great influence on the normal contact stress
(εng). So to keep the error on the normal contact stress, the
more the normal penalty coefficient is important, the more
the tolerance on the gap is small.

For this example, the AALM needs a little more of iter-
ation than the PM (see Table 1), but with the AALM the
initial value of the penalty coefficient (2 ≤ ε0

n ≤ 2 × 104)

does not have any influence on the solution accuracy while
the influence of the computational time is quite limited (see
Fig. 13d). The convergence of the contact normal stress (with
the AALM and ε0

n = 2 × 102) as a function of the size of the
elements is proved in Fig. 14.

Figure 15 shows that the value of the convergence rate
is the same with the classical methods (PM, ALM) and the
AALM.

(a) Penalty Method

(b) Adapted Penalty Method

(c) Augmented Lagrangian Method

(d) Adapted Augmented Lagrangian Method

Fig. 13 Contact normal stress on Hertz problem (mesh 4)

So, this example shows that with the PM and the ALM,
the choice of the normal penalty coefficient is of the
utmost importance in order to get a reliable solution. On
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Fig. 14 Contact normal stress on Hertz problem with adapted aug-
mented Lagrangian method (ε0

n = 2 × 102)
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Fig. 15 Error in percent of the integral of contact normal force versus
the number of elements in the contact zone, with PM (εn = 106), APM
(ε0

n = 2 × 102), ALM (εn = 104) and AALM (ε0
n = 2 × 102)

the other hand, thanks to the penalty adaptation, the APM
and the AALM are able to solve this problem with a lim-
ited influence of the initial value of the normal penalty
coefficient.

4.1.2 Elastoplastic problem

In this problem, the same two dimensional geometry, ini-
tial conditions, boundary conditions and, meshes as in the
Hertzian problem are used. But, it is a problem of mechani-
cal contact between two infinitely thin cylinders compressed
one against the other using concentrated forces (see Fig. 10).
So, the hypothesis of plane stress state is done. In addition,
the triangular element is not the best way to compute an
elastoplastic problem, but, the aim of this example is to test
the contact computational methods when the solids exhibit el-
astoplastic behaviour. The mechanical properties of the mate-
rial are the following:

– yield stress: σe = 472 MPa

Y

Z

Fig. 16 von Mises stress distribution (MPa, mesh 6, AALM with
ε0

n = 2 × 104)

– isotropic hardening law: σ0 (MPa) = σe + K ε̄ p

with K = 640 MPa
and ε̄ p is the equivalent plastic strain.

Like the Hertz problem, this problem is solved in two equal
steps and the final value of δ is the same (0.11854 mm).

The stresses are concentred at the contact interface (see
Fig. 16). So, the displacements of the contact boundaries and
the variation of the gap between two iterations are larger.
Consequently, the contact computation is more challenging.

Just as for the Hertz problem, with the PM, the value
of the normal penalty coefficient is very important. But the
optimal value of the normal penalty coefficient used in the
Hertz problem is not appropriate in this problem (106 see
Table 2). With this value, this problem cannot be solved
with mesh 6 because numerical oscillations of contact status
appear.

This example shows the limit of the APM, this method is
not adapted to solve this problem in two steps (see Table 2 and
Fig. 17b), because the problem cannot be solved with APM
for ε0

n equal to 2×104 and for ε0
n equal to 2×102 the solution

is obtained only with meshes 2 and 4. So, the suitable range
of the initial value for the normal penalty coefficient cannot
be determined. This underachievement is induced by the very
important increase of the value of the normal penalty coeffi-
cient and the perturbation caused by the change of mechan-
ical contact status (contact/no contact).

Like in the Hertz problem, with the ALM the value of the
normal penalty coefficient is very important. Like with the
PM, the optimal value of the normal penalty coefficient (104)

with the ALM, is not the same as the optimal value of the
Hertz problem (105). In addition, the solution is very reliable
but the computational time is important.

Also, with AALM, the solution accuracy is independent of
the initial value of normal penalty coefficient (see Fig. 17d).
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Table 2 Number of iterations to reach final stage

ε0
n = initial value of εn

“osc cnt” means oscillations preventing numerical convergence

In addition, the influence of this initial value on the calcu-
lation time is weak (2 ≤ ε0

n ≤ 2 × 104, see Table 2). The
convergence of the contact normal stress (with the AALM
and ε0

n = 2 × 102) as a function of the size of the elements
is shown in Fig. 18.

Finally, as observed for the Hertz problem, this exam-
ple shows that with the PM and the ALM the choice of the
normal penalty coefficient is of the utmost importance. In
addition, this example gives an evidence of the limitations of
the APM. The adaptation of the normal penalty coefficient
for this method is not able to solve this kind of elastoplastic
problem. So, using a better penalty adaptation, the AALM is
the only method that can solve this problem quickly for any
mesh (mesh 2, 4 and 6) and any initial value of the normal
penalty coefficient (2 ≤ ε0

n ≤ 2 × 104).

4.1.3 Frictional contact problem

This academic problem treats of a infinitely long nylon cor-
ner moving on a steel slide with mechanical frictional contact
(see Fig. 19).

This example is solved in two dimensions with the
assumption of plane strain state. Considering the symmetry,
only the half of the problem is solved. The mesh of the slide
is composed of 5 × 20 elements and the mesh of the corner
is made of 20 × 20 elements (see Fig. 20). The dimensions
and the boundary conditions are defined on the Fig. 20. The
downward displacement on the top of the corner surface is
imposed to 4.9 mm. This problem is solved in 49 equal steps

(a) Penalty Method

(b) Adapted Penalty Method

(c) Augmented Lagrangian Method

(d) Adapted Augmented Lagrangian Method

Fig. 17 Contact normal stress (mesh 4; elastoplastic problem)
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Fig. 18 Contact normal stress with adapted augmented Lagrangian
method (ε0

n = 2 × 102)

Fig. 19 Cut of the Nylon corner (grey) moving on a steel slide

(see equilibrium state at the last time step: Figs. 21, 22, 23).
If the downward displacement is more important the corner
goes out the slide.

The mechanical properties are:

– Nylon corner

– Young’s modulus: 2.1 GPa
– Poisson’s ratio: 0.35

– Steel slide

– Young’s modulus: 210 GPa
– Poisson’s ratio: 0.30

In addition, the Coulomb’s friction coefficient is set equal to
0.15.

Table 3 shows that the fastest method is the PM. On the
other hand, with the PM the value of the penalty coeffi-
cients is very important. A too small value of the normal
penalty coefficient (103 or 104) results in a bad quality of
the solution (see Figs. 21 and 22). With these value of the
normal penalty coefficient, the difference between the solu-
tion and the reference solution (εn = 105 see Fig. 23) is
about 4 or 35%. In addition, a too large value of this coef-
ficient (106) introduces numerical oscillation of the contact
status that prevents the convergence of the algorithm. Like
the value of the normal penalty coefficient, the value of the

Fig. 20 Nylon corner (A) moving along a steel slide (B) and boundary
conditions

tangential penalty coefficient is very important. With a too
small or a too large value of the tangential penalty coef-
ficient, this method cannot solve this problem (εt = 10
or 104 with εn = 105). Nevertheless, with the appropriate
value of the penalty coefficients (εn = 105 and εt = 102

or 103) the quality of the solution is good (see Fig. 23). In
addition, the value of the normal penalty coefficient used in
this problem is too small to be used in the previous prob-
lems.

Figures 21, 22 and 23 show the distribution of the von
Mises stress at the last time step with the PM in function of
the values of the penalty coefficients. The von Mises stress
distribution is a good indication of the value of the contact
stress. The value of the von Mises stress decreases with the
value of the penalty coefficients (i.e. the value of the contact
stress). The solution presented on the Fig. 23 (εn = 105 and
εt = 102) is considered like the reference solution with the
PM.
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Fig. 21 von Mises stress distribution (MPa, PM with εn = 103 and
εt = 1)

Fig. 22 von Mises stress distribution (MPa, PM with εn = 104 and
εt = 10)

Fig. 23 von Mises stress distribution (MPa, PM with εn = 105 and
εt = 102)

Like in the previous problems, with the ALM, the value of
the penalty coefficient is very important. The computational
time increases when the value of the normal penalty coef-
ficient decreases (see Table 3). Moreover, a too small value
of the tangential penalty coefficient (εt = 1) causes numeri-
cal oscillations preventing the convergence of the algorithm.
Furthermore, when the ALM can find an equilibrated solu-
tion, the accuracy of the solution is equal to the one of the
reference solution with the PM (see Fig. 23).

To solve this problem with the AALM, just an initial value
of the normal penalty coefficient is required. This method
can solve this problem with a large value of the initial nor-
mal penalty coefficient (1 ≤ ε0

n ≤ 102). In addition, the
accuracy of the solution is equal to the one of the reference
solution with the PM (see Fig. 23) or the one of the solution
with the ALM. Table 3 shows that the AALM requires more
iterations that the other ones (PM and ALM).

At last, this example shows that with the PM and the ALM
the choice of the value of the tangential penalty coefficient
has the same importance that the one of the normal penalty
coefficient. Besides, to solve a frictional contact problem
with the AALM, only the initial value of the normal penalty
coefficient is needed. However, this kind of problem can be
calculated with the AALM with a large range of the initial
value of the normal penalty coefficient (1 ≤ ε0

n ≤ 102).
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Table 3 Number of iterations to reach the final stage

ε0
n = initial value of εn

“osc cnt” means oscillations preventing numerical convergence

To put in a nutshell, these academic problems show that the
most frequently used methods (PM, ALM, and APM) are not
adapted to solve a large variety of problems without chang-
ing the value of the penalties coefficient (the normal and the
tangential one). With these classical methods, the best value
of the penalty coefficient depends of the problem. Nonethe-
less, these academic problems are solved in very simple way
with the proposed method (AALM) (the choice of the initial
value of εn is not sensitive: 1 ≤ ε0

n ≤ 102).

4.2 Industrial application

Generally, aluminium is obtained in electrolytic cells. The
reduction of the aluminium oxides is a high temperature pro-
cess using electrical current. To avoid damages in the com-
ponents of the cell produced by thermal shocks as well as to
ensure an adequate level of containment of the cathode panel
before the addition of electrolyte and molten metal, the elec-
trolytic cell is initially preheated at a temperature around

Fig. 24 Schematic view of one quarter of an electrolytic cell [45]

950oC. During this stage, it is also important to avoid exces-
sive stress in the cathode blocks causing premature cracks,
lost of stiffness and then, molten metal infiltration during
the production phase. During the process, the voltage drops
occurring in the cell outside the area of electrolysis corre-
spond to a net loss of several million dollars per year.

Considering these concerns, aluminium producers strive
to improve their position regarding energy consumption and
production costs. To do so, mathematical modelling offers
a good way to study the behaviour of the electrolytic cell
during its life. Considering the phenomenon occurring in
the cell, the solution of this problem corresponds to a fully
coupled thermo-electro-mechanical model including mate-
rial non linearities and multi-physical behaviour at inter-
faces allowing accurate evaluation of the stress distribution in
the cathode blocks and surrounding components. Therefore,
the proper evaluation of mechanical contact conditions at the
interface is a key issue in this process because it is directly
associated to the thermo-electrical contact resistance. Sev-
eral numerical models have been proposed to simulate the
behaviour of the electrolytic cell (see e.g. [45] or [46]). One
schematic view is presented in the Fig. 24.

In this specific example, the thermo-electro-mechanical
behaviour of the cathode block is studied during a 16 h pre-
heating phase of the cell followed by the electrolyte addition
(2 h). As shown in Figs. 24 and 25, the cathode block is com-
posed of a solid carbon block sealed to a steel collector bar
using cast iron. The linear increase of temperature on the top
of the cathode block is such as described in Fig. 26.

Considering the symmetry of the problem, only one half
of the cathode block is considered. The mesh has been taken
from the work of Goulet (see [47]), and is presented in Fig. 27
(The bigger length of the cathode block is about 2 m). All
the material and contact properties as well as the electrical,
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Fig. 25 Steel collector bar sealed in the bottom of the solid carbon
block with cast iron (storage position) [47]

Fig. 26 Temperature increasing curve on the top of the cathode panel

Fig. 27 Mesh of the carbon block (blue) including the steel collector
bar (red) and the cast iron (dark blue) [47]

thermal and mechanical boundary conditions are presented
in [47].

All dimensions are in metre and the penalty coeffi-
cients are in Pa/m. The steel and the cast iron have
thermo-elastic behaviour. The carbon has a quasi-brittle
thermo-elastoplastic behaviour, as proposed by D’Amours
[48] (for more information on the values of the carbon prop-
erties see [49,50]).

(a) Elastic foundation

(b) Carbon to cast iron (1 and 2)(other orientation,
with steel collector bar and cast iron: blue)

Fig. 28 Mesh of the contact interfaces [47]

– Steel

– Young’s modulus: 200 GPa
– Poisson’s ratio: 0.29

– Cast iron

– Young’s modulus: 60 GPa
– Poisson’s ratio: 0.29

– Carbon

– Young’s modulus: 10 GPa
– Poisson’s ratio: 0.2
– yield stress in compression: 32 MPa
– yield stress in tension: 4 MPa

Regarding the contact interfaces, this problem includes
six elastic foundations (multi-point constraints) that ensure
the continuity of the displacements between the components
under investigation and the surrounding materials as shown
in Fig. 28a. The last one, located between the carbon and the
cast iron (as shown in Fig. 28b), is a frictional contact inter-
face. This is motivated by the fact that thermal expansion
coefficient of these two materials are so different that sliding
resulting from the thermal strains will occur. This interface
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Fig. 29 Cumulated number of iterations required in function of the
time step

is the only link between the carbon block and the collector
bar ensuring the exit of the electrical current. Since the heat
generation by Joule effect is related to the current intensity,
it is therefore important to ensure a proper assessment of
contact stresses at this interface to allow a proper computa-
tion of the thermal strains. Regarding the electrical problem,
a zero voltage is applied on the top of the cathode block
and a representative current intensity is applied on the exit
surface of the collector bar. Convection is applied on each
face of the cathode block. The preheating is initiated by a
convection flux on the top of the cathode bloc using large
convection coefficient. The self weight is considered as well
as the weight of the anode, electrolyte and molten metal using
uniform pressure on the top of the cathode block.

The solution is obtained in 18 time steps of 1 h each using
the PM and the AALM for the solution of the contact prob-
lem. The comparison is performed only at the carbon/cast
iron interface (Fig. 28b) considering a constant stiffness (PM)
for all the other elastic foundations (Fig. 28a). For the PM,
the normal and tangential penalty numbers are set to 1010 and
108 respectively. For the AALM, the initial normal penalty
number is set to 108, the maximal value of the gap for the
penalty adaptation and the tolerance on the gap are set to
10−3 m. In addition, the tolerance on the reversible tangen-
tial displacement is equal to 10−3 m.

As shown in Fig. 29, the AALM is faster than the clas-
sical PM for both mechanical (M) and the thermo-electrical
(TE) sub-problems. In particular, the PM is unable to solve
the problem for the last 2 h corresponding to the electrolytic
bath addition. The AALM allows a gain of computational
time (number of iterations) of about 50% for the problem. The
AALM allows to control the gap and to obtain a good solu-
tion for a large value of the contact stress. Consequently, with
the AALM, the solution of this mechanical problem is better.
That explains the faster convergence of this kind of problem
with the AALM. Even if one resolution of the mechanical
sub-problem needs more iterations, the total number of iter-
ation to solve the coupled problem is smaller.

Fig. 30 Maximum gap value at carbon/cast iron interface for each time
step (adapted augmented Lagrangian method)

Fig. 31 Total normal contact force at carbon/cast iron interface

Considering the maximum gap values at the carbon/cast
iron interface, Fig. 30 shows that the AALM allows very
small gaps much lower than the prescribed value. The largest
values appear at the end of the preheating phase, during the
bath addition. At this time, the computational effort is more
important due to the rapid change of the thermal strains at the
top surface of the cathode block allowing important changes
in the contact conditions at the interface.

Also, Fig. 31 shows that the PM is unable to adequately
predict the normal contact stress and more specifically
approaching the bath addition where the normal contact force
reaches very large value from 12 h at interface 1 (see Fig. 28).
The AALM presents a smoother increase of the normal con-
tact stress during the heat-up. This can also be observed in
Fig. 32 where the normal contact stress distribution is shown
at the interfaces 1 and 2. The prediction obtained with the PM
(see Fig. 32a) implies a significant reduction in the section
where the electric current can pass from the carbon to the
collector bar. From a numerical point of view, this erroneous
contact stress distribution creates an increase of the current
density and therefore, a fictitious local heat-up generated by
Joule’s effect. This thermal shock allows significant increase
of the stress in the carbon block and therefore, possible crack
initiation due to excessive thermal gradient. Figure 32b shows
that the AALM provides a more efficient numerical tool to
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(a) Penalty Method

(b) Adapted Augmented Lagrangian Method

Pa

Fig. 32 Normal contact stress distribution at carbon/cast iron interface
(t = 10 h)

predict the response of complex thermo-electro-mechanical
problems.

5 Conclusion

This paper presents a new method for the solution of the
mechanical contact problem with friction, the adapted aug-
mented Lagrangian method. It is shown that this method
has the advantages of the most frequently used methods
(i.e. penalty method and augmented Lagrangian method). It
allows the gap control, has the robustness of the augmented
Lagrangian method and the efficiency of the penalty method.
Also, the value of the convergence rate is the same that with
the classical methods (PM and ALM). In addition, the user
does not choose the value of any penalty coefficient. The
academic examples as well as the industrial problem solved
show that this method enables to get more easily a better
evaluation of the contact stresses. In opposition to the more

used methods (PM and ALM), the user does not modify any
parameter when the geometry or the mechanicals proper-
ties of the problem change. The adapted augmented Lagran-
gian method has been used in the multi-physical context like
industrial thermo-electro-mechanical problem [20]. More-
over, this method can be used to consider the deformation of
the ruggedness of the contact surface.
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