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Abstract

Statistical calibration of model parameters conditioned on observations is

performed in a Bayesian framework by evaluating the joint posterior prob-

ability density function (pdf) of the parameters. The posterior pdf is very

often inferred by sampling the parameters with Markov Chain Monte Carlo

(MCMC) algorithms. Recently, an alternative technique to calculate the so-

called Maximal Conditional Posterior Distribution (MCPD) appeared. This

technique infers the individual probability distribution of a given parame-

ter under the condition that the other parameters of the model are optimal.

Whereas the MCMC approach samples probable draws of the parameters,

the MCPD samples the most probable draws when one of the parameters is

set at various prescribed values. In this study, the results of a user-friendly

MCMC sampler called DREAM(ZS) and those of the MCPD sampler are

compared. The differences between the two approaches are highlighted before

running a comparison inferring two analytical distributions with collinearity

and multimodality. Then, the performances of both samplers are compared

on an artificial multistep outflow experiment from which the soil hydraulic
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parameters are inferred. The results show that parameter and predictive

uncertainties can be accurately assessed with both the MCMC and MCPD

approaches.

Keywords: Bayesian parameter estimation, parameter uncertainty,

predictive uncertainty, MCPD sampler, DREAM(ZS) MCMC, soil hydraulic

parameter identification
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1. Introduction

The validation of computer models is an essential task to increase their

credibility. One of the most important exercises in the validation frame-

work is to check whether the computer model adequately represents reality

(Bayarri et al., 2007). This is achieved by comparing model predictions to

observation data. This exercise generally leads to model calibration because

the model parameters are usually poorly known a priori (i.e. before col-

lecting data). Good practice in calibration of computer models consists of

searching for all parameter values that satisfactorily fit the data, thus de-

termining their plausible range of uncertainty. This can be achieved in a

Bayesian framework in which the prior knowledge about the model and the

observed data are merged to define the joint posterior probability distribu-

tion function (pdf) of the parameters. The issue is then to assess the joint

posterior pdf.

The inference of model parameter posterior pdf by means of Markov

chain Monte Carlo (MCMC) sampling techniques (Metropolis et al., 1953;

Hastings, 1970) has received much attention in the last two decades. MCMC

explores the region of plausible values in the parameter space and provides

successive parameter draws directly sampled from the target joint pdf. Some

selection criteria are used to ensure that the successive draws in the chain

improve. This means that, throughout the sampling process, probable draws

with respect to the target distribution are more likely drawn. Many develop-

ments and improvements have been proposed to accelerate MCMC conver-

gence.

Grenander and Miller (1994) developed the Langevin MCMC, which ac-

celerates the convergence of the chains by exploiting the Jacobian of the tar-

get distribution. This MCMC sampler may require that the computer model
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provide the local sensitivities to compute the Jacobian of the target distri-

bution. In practice, modelers generally estimate the gradient by finite dif-

ferences via a surrogate or coarse-scale model to alleviate the computational

burden (see for instance, Dostert et al., 2009; Angelikopoulos et al., 2015).

Haario et al. (2006) developed the Delayed Rejection Adaptive Metropolis

(DRAM), an algorithm that increases the rate of acceptance of MCMC draws

by exploiting the delayed rejection trick proposed in Tierney and Mira (1999)

and the adaptive Metropolis algorithm of Haario et al. (2001). ter Braak and Vrugt

(2008) developed the Differential Evolution-Markov Chain (DE-MC) algo-

rithm, which merges the differential evolution method of ter Braak (2006)

and the Shuffled Complex Evolution Metropolis (SCEM) method proposed

by Vrugt et al. (2003). DREAM improves the efficiency of MCMC by run-

ning multiple chains in parallel for a wider and quicker exploration of the

parameter space in addition to a self-adaptive randomized subspace sam-

pling (Vrugt et al., 2009). Recently, the algorithm of DREAM has been em-

bedded in UCODE_2014, dedicated to inverse modeling (Lu et al., 2014).

Laloy and Vrugt (2012) then developed DREAM(ZS), that ensures conver-

gence with fewer chains in parallel than DREAM.

Recently, Mara et al. (2015) proposed a new probabilistic approach to the

inverse problem whose main idea is to maximize the joint posterior pdf of

a parameter set with one selected parameter sampling successive prescribed

values. This provides the so-called Maximal Conditional Posterior Distribu-

tion (MCPD) of the selected parameter. The main advantage of the recent

MCPD technique is that parameter distributions can be inferred indepen-

dently. Therefore, the MCPDs can be simultaneously evaluated on multicore

computers (or on multiple computers). This drastically reduces the compu-

tational effort in terms of computational time units (CTU).
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The MCPD and MCMC samplers assess the same target distribution,

namely, the parameter joint posterior pdf. Nevertheless, the two samplers do

not provide the same results. In general, the MCPD of a single parameter

does not correspond to its marginal posterior distribution. In addition, the

MCPD sampler only provides a few sets of probable draws while MCMC

generates a large number of draws sampled in agreement with the target

distribution. Nevertheless and as advocated in this study, both samplers

are valuable Bayesian methods for statistical inverse problems. Hence, the

main objective of the present work is to compare the ability of MCPD and

DREAM(ZS) MCMC samplers to quantify model output and model param-

eter uncertainties.

The paper is organized as follows: Section 2 summarizes the inversion in a

Bayesian framework and recalls the principles of the recent MCPD technique.

The general algorithms ruling the DREAM(ZS) MCMC and MCPD samplers

are introduced in Section 3. In Section 4, we discuss on the analogy and

the differences between MCPD and MCMC draws. Section 5, emphasizes

the comparison between MCMC and MCPD samplings: 1) for the inversion

of multimodal and correlated functions, and 2) for the evaluation of soil

hydraulic properties from a synthetic one-dimensional drainage experiment.

Finally, a summary with conclusions is presented in Section 6.

2. Inverse Problem

2.1. Bayesian inference

In probabilistic inverse modeling, the parameter set x = (x1, . . . , xd) of

a computer model is inferred from a set of observation data y using the

Bayesian inference, which defines the conditional joint posterior pdf as fol-
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lows:

p(x|y) ∝ p(y|x)p(x), (1)

where p(x) is the prior density that characterizes the investigator’s beliefs

about the parameters before collecting the new observations, and p(y|x) is

the likelihood function, which measures how well the model fits the data.

The parameter set that maximizes Eq. (1), namely:

xMAP = argmax
x

p(x|y), (2)

is called the Maximum A Posteriori (MAP) estimate of the parameters. It is

the most probable parameter set given the data and can be inferred via an

optimization technique. The marginal posterior pdf that characterizes the

uncertainty of a single parameter is defined by the following integral:

p(xi|y) =
∫

p(x|y)dx−i, ∀i = 1, . . . , d (3)

where x−i represents all the parameters except xi. Usually, the integral in

Eq. (3) is evaluated by a multidimensional quadrature method or by direct

summations in a large sample of p(xi|y) obtained, for instance, via an MCMC

technique.

2.2. Maximal conditional posterior distribution

Mara et al. (2015) define the maximal conditional posterior distribution

of xi as follows:

P(xi) = max
x
−i

(p(x−i|y, xi))× p(xi|y). (4)

An informal definition can be given by stating that a point estimate of the

MCPD is the maximal value reached by the joint pdf Eq. (1) for a given (pre-

scribed) value of one parameter (i.e. xi). This maximal value, in the context
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of model inversion, assumes that the set x−i maximizes Eq. (1), knowing that

xi is prescribed. By applying the axiom of conditional probabilities to Eq. (4),

it can be stated that max {p(x−i|y, xi)} × p(xi|y) = max
x
−i
{p(x−i, xi|y)}.

Therefore, the MAP estimate (when it exists) belongs to the MCPD of all

parameters.

In view of the MCPD definition, especially its interpretation in terms of

the xi draws for the other parameters at their optimal values, the MCPD

can provide information on the uncertainty attached to a single parameter.

Obtaining uncertainties for all parameters is simply achieved by calculating

the individual MCPD of all parameters.

3. Parameter uncertainty assessment

3.1. The DREAM(ZS) MCMC sampler

The MCMC samplers generate successive draws of parameter sets that

converge toward the posterior density p(x|y). Several methods are reported

in the literature (e.g. Grenander and Miller, 1994; Haario et al., 2006; Vrugt et al.,

2009; Laloy and Vrugt, 2012), but they all rely on the Metropolis-Hasting al-

gorithm, which proceeds according to the following schedule:

(i) Choose an initial estimate of the parameter set x0 and a proposal dis-

tribution q(a,b) that randomly derives the parameter set a from an

input b.

(ii) From the current set xk, generate a new candidate x∗ with the generator

q(x∗,xk).

(iii) Compute α = p(x∗|y)p(x∗ ← xk)/p(xk|y)p(xk ← x∗), where p(b← a)

is the transition probability from individual a to individual b associated
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with the generator q. Additionally, draw a random number u ∈ [0, 1]

from a uniform distribution.

(iv) If α ≥ u, set xk+1 = x∗, otherwise, set xk+1 = xk.

(v) Resume from (ii) until the chain {x0, . . . ,xk} converges or a prescribed

number of iterations kmax is reached.

The calculation of p(x∗|y) in (iii) requires that the forward model be run

for the set of parameters x∗. This is the most expensive computational step.

The crux step at the origin of the computation costs is the step (iv), which

may reject many candidates. The choice of the generator q( ) is a key feature

for the acceptance rate.

If the Markov chain is constructed correctly, the chain {x0, . . . ,xk} should

converge for its last elements toward the targeted posterior distribution p(x|y)
(Geyer, 1992; Robert and Casella, 2004). Unfortunately, the number of nec-

essary draws cannot be guessed in advance. In practice, one regularly eval-

uates the R̂-statistic of Gelman and Rubin (1992) and decides whether to

stop the sampling procedure. Usually, the first draws of the chains are over-

looked because they correspond to a so-called burn-in period within which

the Markov process wanders in the entire parameter space. Most of the

improvements brought to the MCMC samplers in the last decade aimed at

diminishing this burn-in period.

In this study, we use the DREAM(ZS) software developed by Laloy and Vrugt

(2012). The algorithm relies on a multiple-chain method that computes dif-

ferent trajectories (sub-chains) in parallel to better explore the parameter

space when seeking the target posterior pdf. A new candidate for each chain

is drawn from an archive of past states (denoted Z) by using the differential

evolution algorithm and a snooker updater developed by ter Braak and Vrugt
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(2008). These two algorithms ensure that the new candidates have the de-

sired scale and orientation. Note that the sample of past states Z plays the

role of the generator q (see above) and is periodically archived and updated.

DREAM(ZS) also uses a self-adaptive randomized subspace sampling and ex-

plicitly discards aberrant trajectories in the parameter space. The initial

candidates can be sampled from any desired distributions. In particular, the

user can impose an initial proposal distribution q like we did in the first

two numerical exercises in § 5. The interested readers are referred to Vrugt

(2016) for more details about the use and implementation of DREAM and

DREAM(ZS).

3.2. The MCPD sampler

As compared to the MCMC sampler, the MCPD sampler is thoroughly

described because it is a very recent approach. The algorithm used to com-

pute the MCPDs is divided into three parts: in part 1 (step (i) below), all

the probable optima of p(x|y) are investigated. In part 2 (steps (ii-v) be-

low), the MCPD of the current parameter around each probable optimum is

roughly estimated. In part 3, the discretization of the MCPD is refined. It is

worth noting that in parts 2 & 3, because the conditional optimizations are

performed around a local optimum, it is assumed that there is only a single

optimum. The algorithm proceeds as follows:

(i) Find by optimization all probable optimal candidates (including the

MAP estimate) {xopt,1, . . . ,xopt,M}– that is, all local optima of p(x|y)
according to the following criterion: p(xopt,m|y)/p(xMAP|y) > 0.01.

with xMAP = max{p(xopt,m|y), m = 1, . . . ,M}. Set i = 1 for the

current parameter xi and define a maximum number of iterations for

the refinement of the MCPDs, e.g. Nit = 10.
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(ii) Set m = 1 for the current optimal candidate xopt,m,

(iii) Set the iteration number k = 1 and the initial discretization step ∆ =

0.10.

(iv) Set x±

i = xopt,m
i (1 ± k∆) and find x± = (x±

−i, x
±

i ) by solving Eq. (4).

This is achieved by maximizing p(x−i|y, x∗

i ) for x∗

i = x+
i and x∗

i = x−

i

successively.

(v) If p(x±|y)/p(xMAP|y) > 0.01, set k = k + 1 and go to iv); else, set

it = 1 and continue

(vi) Denote {xki,P(xki
i ) = p(xki |y), ki = 1, . . . , k}; the first draws sorted

as xki
i < xki+1

i . Refine the current MCPD sampling by finding xk+1 =

(xk+1
−i , xk+1

i ) such that xk+1
−i = argmax

x
−i

p(x−i|y, xk+1
i ) , with











xk+1
i =

xkm+1
i + xkm

i

2

km = argmax
ki

{

|P(xki+1
i )−P(xki

i )|
}

(5)

(vii) Set k = k + 1 and add
(

xk+1,P(xk+1
i )

)

to the subset {xki,P(xki
i ), ki =

1, . . . , k}. If it < Nit, set it = it + 1 and go to vi); otherwise, continue

(viii) Set m = m + 1 (change of local optimum). If m ≤ M go to iii);

otherwise continue

(ix) Set i = i+1 (next parameter) and if i ≤ d resume from (ii); otherwise,

stop.

Unlike MCMC, the MCPD relies on an optimization technique in steps (i),

(iv) and (vi). The computational effort of the algorithm resides in these

steps. In the numerical exercises below, the optimizations are performed
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with a gradient-based algorithm. Nevertheless, MCPD calculations are com-

patible with any optimization algorithm and could use, for instance, global

optimization techniques that do not rely on gradients. A gradient-based

method requires that an initial guess of the solution x0 be provided before-

hand. To find all local optima, we systematically perform Ninit = 20 opti-

mization procedures with different initial solutions randomly drawn within

the parameters’ prior (i.e. x0 ∼ p(x)).

It is worth noting that the convergence of gradient-based algorithms ac-

celerates if the Jacobian of the target pdf is also provided. The number

of initial optimizations Ninit is a matter of choice as well as the number of

refinement points Nit. They condition the total computational costs. Our

experience suggests that Nit = 10 is sufficient to obtain accurate results (see

also Mara et al., 2015).

The rough estimation of the current MCPD is performed in the second

part of the algorithm (from (ii) to (v)). In step (v), at the first iteration

(k = 1) for the current variable xi, if p(x±|y) ≈ p(xMAP|y), it can mean that

P(xi) is flat. It is then recommended that the size step be increased (e.g.

set ∆ = 1.5×∆). Conversely, if p(x±|y) ≈ 0, P(xi) can be very narrow and

one must decrease the current size step (e.g. set ∆ = ∆/1.5).

The strategy to refine the MCPD assessment given in Eq. (5) is illustrated

in Figure 1. After the second part of the algorithm, one obtains a rough

discretization of the MCPD (in circles). Then, according to Eq. (5), the next

prescribed value of xi (i.e. xk+1
i ) is determined. The latter is chosen where

the gap between two successive MCPD values is maximal. In addition to the

above schedule, one can mention that the algorithm is set up to sample the

values of the parameter xi in the vicinity of each probable local optimum.

In complex problems, it is not ensured that any optimization technique will
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retrieve all local optima. However, some previous tests showed that when a

local optimum has been missed, it is often retrieved in steps (iv) or (vi) when

sampling the MCPDs by optimizing the conditional pdf p(x−i|y, xi).

Insert Figure 1 about here

4. Computational issues

4.1. MCPD versus MCMC draws

By definition, the MCMC and MCPD samplers provide different results.

Nevertheless, both approaches assess the same target distribution, namely,

the parameter posterior pdf p(x|y). The MCMC sampler provides a large

set of candidates and their associated weights (xMCMC, p(xMCMC|y)) while

the MCPD sampler only provides a small set of draws (xMCPD, p(xMCPD|y)).
The MCMC draws xMCMC represent a stochastic sample of the parameter

values distributed with respect to p(x|y). The MCPD sample xMCPD is a set

of probabilistic draws of the parameter values.

Regarding the implementation of the two algorithms, the MCMC DREAM(ZS)

sampler is much easier to plug into a given computer model. DREAM(ZS)

does not need for modifications of the computer model but only requires that

the target distribution be defined. The efficiency of the MCPD sampler is

enhanced if the partial derivatives (of the model response w.r.t. the param-

eters) are also provided by the computer model. Otherwise, the use of the

finite-differences approach to estimate the partial derivatives deteriorates the

performance of the MCPD calculations. Typically, the number of model calls

is multiplied by the number of parameters. This is an important feature to

be aware of before using the MCPD approach for inverse problems. In the

following numerical exercises, the partial derivatives are systematically com-
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puted by the forward models. This slightly increases the computational time

of one model run.

The MCPD of a given parameter, say P(xi), does not always match its

posterior marginal pdf p(xi|y). This only happens when max (p(x−i|y, xi)) is

constant for all prescribed values of xi around the current optimum. In that

case, it can be shown that P(xi) ∝ p(xi|y) (see Mara et al., 2015). It is worth

specifying that this invariance of max (p(x−i|y, xi)) with respect to the value

of xi does not mean that p(x−i|y, xi) is independent of xi. Let us consider the

example of the following target density: p(x1, x2|µ0,Σ) = N (µ0,Σ), with N
the bi-Gaussian density, µ0 the vector of means and Σ a given non-diagonal

covariance matrix. It is obvious that p(x2|µ0,Σ, x1) depends on the value of

x1. However, max (p(x2|µ0,Σ, x1)) = 1/2π
√
detΣ for any value of x1. Thus,

for the considered target density, the posterior pdf of xi, i = 1, 2, matches

its maximal conditional posterior density defined as,

π(xi) =
P(xi)

∫ +∞

−∞
P(xi)dxi

. (6)

From the MCPD draws, the integral in Eq. (6) is computed with the Simp-

son quadrature rule. By defining the vector of normalized weights as, w∗ =

p(x∗|y)/
∫ +∞

−∞
P(xi)dxi, the maximal conditional posterior densities (xMCPD,wMCPD)

and the MCMC draws (xMCMC,wMCMC) can be plotted on the same graph.

4.2. Predictive uncertainty

To obtain the predictive posterior density of an observation data y∗ given

the dataset at hand y, the following integral must be calculated:

p(y∗|y) =
∫

p(y∗|y,x)p(x|y)dx (7)

p(y∗|y,x) measures how likely the model response value is y∗ given the set of

parameters x and the dataset y. This integral merges the likelihood function
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and the parameter joint posterior pdf. Evaluating Eq. (7) allows assigning

uncertainty bounds to the model predictions. Assume that the assessment

of the MCPDs provides n draws, then with the MCPD approach Eq. (7) is

approximated by:

p̂(y∗|y) =
∑n

k=1w
k
MCPDp(y

∗|y,xk
MCPD)

∑n
k=1w

k
MCPD

. (8)

with xk
MCPD the kth MCPD draw.

5. Numerical exercises

5.1. A 10-dimensional twisted Gaussian target distribution

For this first numerical exercise, we target the twisted Gaussian distribu-

tion proposed by Haario et al. (1999) given by,

p(x|µ0,Σ) ∝ N (µ0,Σ),

where N (µ0,Σ) is the ten-dimensional Gaussian distribution (i.e. x =

(x1, . . . , x10)) with mean µ0 = (0,−0.1x2
1 + 10, 0, . . . , 0) and covariance Σ =

diag(100, 1, . . . , 1).

This target distribution is very challenging for both MCPD and MCMC

samplers because of the nonlinear (banana-shaped) relationship between (x1, x2).

The target distribution has only one optimum; that is, xMAP = (0, 10, 0, . . . , 0).

Note that when P(x2) is assessed, the maximization of the conditional distri-

bution p(x−2|µ0,Σ, x2) can return three local optima: x1 ∈ {−
√
100− 10x2 − 0.5, 0,

√
100− 10x2 − 0.5}. Part 2 of the MCPD algorithm described above allows

retrieval of only one of them (depending on the initial guess) because it

is assumed, in this part, that the conditional distributions have only one

optimum. Hence, the MCPD sampler may fail at inferring P(x2) directly.

However, evaluating the MCPD of x1– that is, maximizing p(x−1|µ0,Σ, x1)–
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gives x2 = 10 − 0.1x2
1. Thus, one obtains the banana-shaped relationship

between the two variables and can infer P(x2) subsequently.

The results are depicted in Figure 2. They confirm that the MCPD

sampler fails to infer the true MCPD of x2 (broken red line) because the

conditional maximization around the MAP estimate provides x1 = 0, which

is a local optimum when x2 < 10. However, as expected, P(x2) can be

inferred from the conditional maximization of p(x−1|µ0,Σ, x1) (continuous

red line). This result supports the idea that when an optimum is missed, it

can be retrieved during the other optimization steps.

The pairwise analysis of the MCPD draws reveals the banana-shaped re-

lationship between x1 and x2 (row #2 column #1 in Figure 2). Two curves

are depicted for (x1, x2), the first corresponding to the optimal sought values

of the parameter x2 for the sampled (prescribed) values of x1, and the second

one corresponding to optimal values of x1 for sampled x2. The MCPD of the

other parameters (x3, . . . , x10) are found approximately Gaussian (MCPDs

beyond x3 are not reported in Figure 2). An analysis of their pairwise scatter-

plots does not reveal other correlation structures. In fact, like the scatterplot

of (x1, x3), one observes two orthogonal lines that represent the optimal values

of xi versus prescribed values of xj and optimal xj versus prescribed xi, re-

spectively. They indicate that prescribing xi and maximizing p(x−i|µ0,Σ, xi)

always provides xMAP
−i (and vice versa).

Insert Figure 2 about here

This numerical exercise with the MCPD algorithm required approxi-

mately 900 model calls to find the MAP estimate. We recall that, for this pur-

pose, the optimization program was repeated Ninit = 20 times with different

initial guesses. The conditional optimizations for inferring the MCPDs re-

quired around 1, 000 extra model calls. Distributing the independent searches
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of the MAP and then the independent calculations of the ten distinct MCPDs

over ten computers (or ten CPU cores) would yield an inexpensive total num-

ber of computational time units (CTU) of approximately 190.

We also assessed p(x|µ0,Σ) with DREAM(ZS). For a fair comparison

with the MCPD approach, we launched Nc = 10 chains simultaneously. With

DREAM(ZS), it is possible to impose an initial proposal distribution. The

choice of the proposal distribution can have a substantial impact on the

length of the burn-in period. Following the work of Vrugt et al. (2009), we

chose: q(a,b) = N (b, 5I10), with I10 representing the 10-dimensional identity

matrix. First, a total number of 10, 000 CTUs was chosen, which corresponds

to a total of 10×10, 000 model calls. As reported in Figure 3, the R̂-statistic

of x1, x2 and x3 show that the overall chains have converged after 20, 000

runs.

Figure 2 (diagonal plots) shows that the MCMC draws are located, as

expected, below the MCPD envelope. MCMC samples probable solutions,

when MCPD only seeks solutions that maximize the target distribution con-

ditioned onto one of the parameters (and the data). We note that the MCMC

draws of each parameter are spread over the uncertainty range delimited by

the MCPD draws. Both samples seem to satisfactorily represent the salient

feature of the target distribution. The comparison of the estimated densities

also indicates a good agreement between the two approaches, except for x2

(see Figure 2 row #2, column #2). As already mentioned, π(x2) matches

the marginal posterior pdf p(x2|µ0,Σ) if max (p(x−2|µ0,Σ, x2)) is constant.

However, it can be proven that

max (p(x−2|µ0,Σ, x2)) ∝ e−
1

2
(−x2

2
−0.1x2),

which depends on the value of x2. Consequently, the MCPD of x2 does

not match its marginal pdf. This explains the difference between the two
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densities in Figure 2 (row #1, column #2).

Insert Figure 3 about here

5.2. An 11-dimensional multimodal target density

In this exercise, we consider the following multimodal target density:

p(x|µ1,µ2,µ3,C) =
1

6
N (µ1, 5C) +

2

6
N (µ2, 5Id) +

3

6
N (µ3, 5Id) (9)

where N (µi, 5Id) is the multi-Gaussian density of mean vector µi and covari-

ance 5Id. Id, the d-dimensional identity matrix, indicates that the parameters

(x1, . . . , xd) are independent in the second and third Gaussian densities in

Eq. (9).

C is a correlation matrix with null off-diagonal elements except for C1,2 =

C2,1 = −0.5 and C1,3 = C3,1 = 0.8. These non-null terms impose, for the

first Gaussian density in Eq. (9), a negative correlation between x1 and x2

and a strong positive correlation between x1 and x3. The three modes of

each parameter are grouped in the vectors of means µ1 = (−5, . . . , 5), µ2 =

(1, . . . , 11) and µ3 = (11, . . . , 1).

In Mara et al. (2015), the MCPD sampler was faced with a similar tar-

get density with d = 25. It was shown that the MCPD did not match

the marginal pdf because the different Gaussian densities in Eq. (9) over-

lapped. Here, we consider a mildly dimensional case by setting d = 11. With

DREAM(ZS), eleven chains in parallel were run simultaneously to infer the

target density in a maximal prescribed number of 10, 000 CTUs.

Figure 4 reports on the draws from the MCPD and MCMC samplers for

parameters x1, x2 and x3. Both samplers were able to retrieve the three

modes. As noted in the previous exercise, the MCMC draws are spread

beneath the MCPD envelope (diagonal plots of Figure 4). Figure 5 shows
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that the three modes were located after about 3, 000 runs, a relatively long

burn-in period. With the eleven chains, DREAM(ZS) identified two modes

of three at the beginning of the search (for x1 these two modes are (−5, 11)
see Figure 5), then it took about 3, 000 CTUs to find the last mode (x1 = 1).

This burn-in period could have been reduced by increasing the number of

chains or by imposing the three modes as initial candidates.

The correlation structure between (x1, x2) and (x1, x3) for the mode as-

sociated with µ1 is confirmed by the MCPD draws. The off-diagonal plot in

row #2 and column #1 of Figure 4 shows that the MCPD draws close to

µ1 are located upon two non-orthogonal lines. We remind that these lines

are the optimal values of xi for the prescribed values of xj and optimal xj

for the prescribed xi. The negative slopes for the pair (x1, x2) indicates the

negative correlation between the parameters. Conversely, the pair (x1, x3)

shows positive correlation (row #3, column #1 in Figure 4). Despite the

fact that MCMC and MCPD provide different results (here, MCPD does not

match the marginal pdf), the MCPD sampler is able to assess the posterior

uncertainty range of the parameters which is an important feature of model

inversion.

Finally, it is worth mentioning that the MCPD sampler took about 140

runs to find the three modes and about 1, 600 additional model calls to

evaluate all MCPDs in a sequential calculation. With 11 parallel sessions (for

11 parameters), the CTU would have been approximately 156 runs, which is

few compared with the 3, 000 CTU required by the burn-in period of MCMC

(see above). This result is conducive to perform a preliminarily search for all

local optima (as for the MCPD) before running DREAM(ZS). This should

alleviate the computational burden of the MCMC sampler by reducing the

burn-in period.
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Insert Figure 4 about here

Insert Figure 5 about here

5.3. Identification of soil hydraulic parameters

5.3.1. Synthetic drainage experiment

Characterizing the hydraulic properties of soils is crucial to predict ground-

water resources in aquifers and forecast the future of contaminants in the soil.

Multistep outflow drainage experiments are usually conducted to estimate

these parameters (van Dam et al., 1994; Eching et al., 1994; Vrugt and Bouten,

2002; Durner and Iden, 2011). In these experiments, a flow cell filled with

a saturated soil is drained by imposing multistep negative pressure heads

at the lower boundary of the column. The experimental device is generally

equipped with a tensiometer that measures the pressure head during the ex-

periment. The outflow volume of water is monitored automatically with an

electronic balance. Inverse modeling consists in identifying the soil hydraulic

properties from these measurements.

The flow through the porous medium is governed by the nonlinear one-

dimensional Richard’s equation:

∂ω

∂t
=

∂

∂z

[

K(h)

(

∂h

∂z
− 1

)]

, (10)

where t (min) is time, z (cm) is the vertical coordinate (positive downward),

and K (cm.min−1) is the unsaturated hydraulic conductivity. The water

content ω (cm3.cm−3) and the pressure head h cm are the state variables.

In the present work, K(h) is modeled by the Mualem-van Genuchten (MvG)

retention curve (Mualem, 1976; van Genuchten, 1980),

K(Se) = ks × Sλ
e

(

1−
(

1− S1/m
e

)m
)2

, (11)
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where ks (cm.min−1) is the saturated hydraulic conductivity, and Se (−) is

the effective saturation defined as follows:

Se =
ω − ωr

ωs − ωr
=











1

(1 + |αh|n)m h < 0

1 h ≥ 0
(12)

where m = 1−1/n. The soil hydraulic parameters are the saturated hydraulic

conductivity ks (cm.min−1), the saturated water content ωs (cm3.cm−3), the

residual water content ωr (cm3.cm−3) and the MvG fitting coefficients α

(cm−1), n (−) and λ (−).

Eqs. (10-12) are solved with a standard Galerkin finite element method

in conjunction with the Newton linearization method associated with the pri-

mary variable switching method (Diersch and Perrochet, 1999; Hayek et al.,

2008). An implicit time scheme is used. The calculation of the partial deriva-

tives matrix ∂h/∂x is computed analytically by solving the sensitivity equa-

tions of the discretized direct problem. The program also computes the

partial derivatives of the average water content with respect to the unknown

parameters at each time step (i.e. ∂ω̄/∂x). The latter allows for the fast

convergence of the optimization procedure used in the MCPDs assessment.

We model a laboratory multistep outflow drainage experiment of a column

of length L = 6 cm and diameter D = 8.5 cm. Synthetic data are obtained

by running the flow model for a given input parameter set and noising the

model responses with independent Gaussian random noises. The responses

of interest that are used in the inverse modeling are the pressure head h at 3

cm below the top of the column (the corresponding noisy data is denoted yh)

and the average soil water content ω̄ (data denoted yω̄) obtained from the

cumulative outflow using the initial water content. The data are depicted in

Figure 6.

In the present application, the two data series (yh,yω̄) have been cor-
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rupted (see above) for each observation with an additive independent and

normally distributed error with variances (σ2
h)

ex = 4 (cm2) and (σ2
ω̄)

ex =

9.10−6 (dimensionless) respectively. Under the assumption of independent

and uniform priors, the parameter joint posterior is written as:

p(x, σh, σω̄|yh,yω̄) ∝
1

(σhσω̄)N
exp

{

−1
2

(

SSh(x)

σ2
h

+
SSω̄(x)

σ2
ω̄

)}

, (13)

where SSh and SSω̄ are the sum of square errors of the pressure head and av-

erage water content, respectively. The random vector x = (ks, ωr, ωs, α, n, λ)

contains the soil hydraulic parameters. For the MCPD approach, maximiz-

ing the joint posterior pdf amounts to minimize the following weighted sum

of squares WSS(x) =

(

SSh(x)

(σMAP

h )
2 + SSω̄(x)

(σMAP
ω̄ )

2

)

, with
(

σMAP
h

)2
= SSh(x

MAP)
N

,

(

σMAP
ω̄

)2
= SSω̄(xMAP)

N
and N = 481.

The MAP estimate of the hydraulic parameters and error variances is

based on the following algorithm:

1. Set σMAP
h = σ∗

h = 1, σMAP
ω̄ = σ∗

ω̄ = 1.

2. Find the current MAP estimate xMAP by minimizing the weighted sum

of squares, xMAP = argmin
x

WSS(x)

3. Update the error variances,
(

σMAP
h

)2
= SSh(x

MAP)
N

and
(

σMAP
ω̄

)2
=

SSω̄(xMAP)
N

.

4. If σMAP
h ≈ σ∗

h and σMAP
ω̄ ≈ σ∗

ω̄, then stop. Otherwise set σ∗

h = σMAP
h

and σ∗

ω̄ = σMAP
ω̄ and resume from 2.

Step 2 is performed with the Levenberg-Marquardt algorithm (Levenberg,

1944; Marquardt, 1963) which requires an initial solution (starting point).

With the MCPD approach, the search of the MAP estimate is performed

Ninit = 20 times with different initial solutions.

With both the MCMC and MCPD samplers, eight unknowns were sought,

the six hydraulic parameters x = (ks, ωr, ωs, α, n, λ) as well as the two error
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variances σ2
h (cm2), σ2

ω̄ (−). To speed up the MCPD evaluation, we took

advantage that their estimations were independent. The eight MCPDs of in-

terest were determined simultaneously on a multicore computer. The model

was also inverted with DREAM(ZS) for which eight chains were run simulta-

neously for a total maximum number of 64, 000 model calls (8, 000 per chain).

To accelerate the convergence of the chains, the prior uncertainty range as-

signed to each parameter was set to the posterior plausible range obtained

after the MCPD assessment (see Table 1).

Insert Figure 6 about here

5.3.2. Results and discussion

The maximal conditional posterior densities are gathered in Figure 7 as

well as the parameter pairwise correlations. The bell-shaped posterior densi-

ties mean that the optimal parameter set is well identified. We note that the

parameters are highly correlated, which indicates that only a small volume of

the input space contains the plausible parameter sets (see also Table 1). The

posterior uncertainty range of the saturated water content ωs is particularly

narrow (i.e. well-identified).

The saturated hydraulic conductivity ks is positively correlated with ωs,

α , λ and negatively correlated with ωr and n. The correlation between ks

and ωr indicates that when fixing ks and maximizing the conditional pdf,

the estimate of ωr is localized upon a curve (see Figure 7, row #2, column

#1). This curve is slightly different when fixing ωr and investigating the

conditional estimate of ks. Conversely, the correlation between ks and α

is so strong that the two curves coincide (row #1, column #4). We can

conclude that ks and α are virtually fully correlated. The sets of variables

(ωr, n, λ) and (ωs, α) are also fully correlated.
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The MCMC draws are depicted in the diagonal plots (Figure 7). We

see that the draws are encompassed within the MCPD curves. The MCMC

algorithm has virtually converged toward the true distribution after sampling

8× 8, 000 draws. An initial attempt with 8× 4, 000 draws was unsuccessful.

However, it can be noticed that the MCMC sampler hardly draws values of

n > 1.3. Because of the correlations mentioned above, this also impacts the

sampling of ωr and λ. As a consequence, Figure 7 reveals slight discrepancies

between the densities of these parameters estimated with the MCPD sampler

and the MCMC sampler. These results are also confirmed in Table 1, which

reports the posterior uncertainty ranges. Note that the MAP estimates of

the two samplers are similar and very close to the true solution xex that was

used to generate the data.

The MCPD sampling required about 7, 500 model calls; however, because

of the parallel computation, the CTU was only approximately 2, 000, which

corresponded to the estimate of ωs’s MCPD. The assessment of the remaining

MCPDs required far less computational efforts.

Finally, the predictive uncertainty has been assessed with the stochastic

MCMC sample of size 16, 000 and the 185 probabilistic MCPD draws. The

95% credible intervals are depicted in Figure 6. There is a good agreement

between the two approaches. The uncertainty ranges are very narrow be-

cause many data were used for the statistical calibration (approximately one

thousand).

Insert Figure 7 about here

6. Conclusions

In this work, a comparison of two sampling techniques for statistical in-

version of computer models was carried out. The first technique is the well-
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Parameter ks ωr ωs α n λ

Unit [cm/min] [cm3/cm3] [cm3/cm3] [cm−1] [-] [-]

Ωpost
MCPD [0.02,0.12] [0.05,0.18] [0.42,0.435] [0.008,0.011] [1.20,1.35] [-0.2,0.8]

Ωpost
MCMC [0.03,0.08] [0.08,0.14] [0.42,0.435] [0.008,0.011] [1.22,1.29] [0.08,0.58]

x
ex 0.0700 0.0900 0.4300 0.0100 1.2300 0.5000

x
MAP
MCPD 0.0419 0.1264 0.4267 0.0090 1.2762 0.1917

x
MAP
MCMC 0.0470 0.1176 0.4274 0.0092 1.2644 0.2683

Table 1: Parameters of the unsaturated flow model with their posterior uncertainty ranges

for both MCPD and MCMC solutions. The best parameters of the MCPD and MCMC

solutions are also reported. x
ex is the set of parameters used to define the synthetic

reference data of the soil drainage experiment.

known Markov Chain Monte Carlo (MCMC) sampler and the second one

is a recent approach called the Maximal Conditional Posterior Distribution

(MCPD) sampler.

MCMC samples stochastic draws that converge toward the desired target

distribution. DREAM(ZS), the MCMC sampler used in the present work,

is a user-friendly flexible software for statistical inverse problems. It can

be easily employed to infer any target distributions and does not require

to modify the computer model under assessment. Several chains can be

launched simultaneously to reduce the computational burden inherent to

MCMC samplers but they do not evolve independently.

MCPD only samples probabilistic draws such that, for a given parameter

set at a prescribed value, the other parameters maximize the conditional

target distribution. Although the MCPD of a given parameter does not

always match its posterior probability density function (which is inferred with

MCMC), the MCPD sampler is a valuable tool for statistical inverse problems

if the target distribution has a finite number of modes. For such problems, the
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effectiveness of MCPD sampler enhances if the Jacobian matrix is accurately

and efficiently computed which may require to modify the computer model.

In this study, the comparison between the two samplers was first carried

out for two analytical distributions with collinearity and multimodality. Then

they were employed to assess the posterior pdf of soil hydraulic parameters

from an artificial multistep outflow experiment. For the studied problems,

a good agreement is observed between the results of the two approaches.

The MCPD approach was found to be less computationally demanding than

DREAM(ZS) mainly because the MCPD assessment of parameters can be

performed independently and simultaneously.

Finally, it has to be mentioned that MCMC provides stochastic draws

that change if the calculations are repeated. MCPD provides probabilistic

draws that remain unchanged if one restarts the calculations for the same

problem without changing the settings of the algorithm. This can be a prob-

lem if, posterior to the calibration, one wants to perform the uncertainty

and sensitivity analysis of a model response that has not been used for the

calibration. The authors are currently developing an algorithm to generate

stochastic samples from MCPD draws.
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Figure 1: Refinement of the MCPD in the third part of the algorithm. The circle plots

represent the MCPD assessment of xi after the second part of the calculations. The crosses

indicate the next draws selected in the third part of the algorithm.
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Figure 2: Assessment of the probability densities of the parameters in the twisted-Gaussian

function. The continuous and broken red lines represent the MCPD draws while the

black dots and broken lines represent the MCMC draws. The diagonal plots represent

the estimated posterior densities. The off-diagonal plots depict the pairwise correlations.

Note the banana-shaped relationship between (x1, x2) (row #2, column #1).
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Figure 3: Evolution of the Gelman-Rubin R̂-statistics for the convergence diagnostic of

the first three parameters. The convergence criterion is achieved if the chains reach the

threshold in broken-line (R̂ ≤ 1.2).
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Figure 4: Assessment of the probability density of the parameters in the multimodal

function. For explanations, see the label in Figure 2 and the body text.
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Figure 5: Evolution of the MCMC draws of x1 in the first five chains (over eleven parallel

chains). The first 3, 000 draws are located around x1 = −5 and x1 = 11. Then, the sampler

localizes the last local optimum x1 = 1 and samples around the three local optima.
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Figure 6: The data used for soil hydraulic parameter identification. The narrow predictive

uncertainty ranges assessed with the MCPD and MCMC samples respectively indicate

that the model is satisfactorily calibrated.
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Figure 7: Densities of the soil hydraulic parameters estimated with the MCPD approach (continuous red curves) and with DREAM(ZS)

(scatterplots+estimated densities in broken lines) are depicted on the diagonal plots. The off-diagonal curves represent the pairwise

correlations between the soil hydraulic parameters. We note the strong correlations amongst the parameters, notably between (ωr, n, λ)

and (ωs, α) respectively.
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