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Abstract
This article presents the modeling of a MEMS microphone with an original architecture formed of mechanical
structures moving in the plane of the substrate. On the contrary of most microphones generally constituted of
an oscillating membrane, some transducers developed by the CEA-LETI with M&NEMS technology use micro
beams moving in the plane of the silicon wafer under the effect of an acoustical wave. These micro-structures
are connected to the substrate by flexible micro-hinge and strain silicon nano-gauge producing a variation in
resistance by piezoresistive effect. After the description of the design and functioning of the microphone under
study, the vibroacoustic model of the fluid-structure coupling is presented. Considering the dimensions of the
MEMS transducer close to the thermal and viscous boundary layers thicknesses, this model has to include
diffusion phenomena. The model is discretized using the finite element method and the weak formulation is
implemented using COMSOL Multiphysics® software. The pressure sensitivity of the microphone is calculated
and compared with an analytical lumped model to asses the numerical model. Pressure and velocity fileds are
also computed. Solutions of simulations are interpreted by focusing on phenomena influencing the sensitivity
of this novel sensor design. In particular, the influence of the geometry and the role of the different part of the
transducer (back cavity, mechanical structures) are studied.
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1. Introduction

Acoustic transducers have been dominated for decades
by condenser microphones. Condenser microphones, in-
vented by E.C. Wente [1] in 1916 are improved by G.
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Sessler and J. West in 1962 [2] with the electret micro-
phone. Electret microphones are of simple design and have
good acoustic properties. Commercially available since
1968, electret microphones represent 80 to 90 % of the
worldwide microphone market until 2007. In recent years
the field of acoustic sensor technology, has known sig-
nificant innovations due to the silicon technology used
for MEMS (Micro Electro Mechanical Systems) and the
use of new electroactive materials. The first commercial
MEMS microphone was presented in 2002 by Knowles,
nearly 20 years after the report of the first working con-
denser microphone based on silicon micromachining by
G. Sessler and D. Hohm in 1983 [3].
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MEMS microphones use silicon that provides excep-
tional mechanical characteristics [4] along with good
electrical properties and mature fabrication technology
[5]. Regardless of the transduction principle (capacitive,
piezoresistive, piezoelectric, optical), all of the MEMS mi-
crophones reported in the state of the art literature are
based on a membrane deflecting out of the plane of the
base wafer. Numerous surface micromachined membranes
have been reported, among them those made of metalized
silicon nitride [6, 7], the combination of silicon nitride
and polysilicon [8], polysilicon [7], [9] and bulk microma-
chined membranes reported by Y. Iguchi [10]. Most of the
reported microphones and all of the commercially avail-
able MEMS use capacitive transduction [11].

Microphones miniaturization is of great interest for
several fields, such as medical applications (audio im-
plants), or consumer electronics (cell phones, computers)
and MEMS technology have significantly reduced their
size since the early the 2000s. However, as indicated in
[11], difficulties arise to maintain performances for con-
denser microphones with miniaturization. In particular, the
Signal to Noise Ration (SNR) tends to decrease with the
chip area.

In this field, a novel architecture of microphone with-
out membrane have been developed by CEA-LETI. This
microphone uses beams moving in the plane of the sub-
strate and inducing strain on piezoresistive Si nano-gauges
(M&NEMS technology). This concept seems promising
to increase the miniaturization without significant de-
crease in sensitivity. The M&NEMS concept using piezo-
resistive detection with Si nano-gauges has already been
demonstrated on inertial sensors such as gyroscopes [12],
and results obtained on these sensors confirm the minia-
turization potential of this new principle.

The conception and optimization of such planar
piezoresistive microphone requires a good understanding
of its acoustic and vibroacoustic behavior. Due to the small
dimensions of the microphone’s slits (1-100 µm), the de-
vice modeling should take into account: a) viscous and
thermal effects in the boundary layers, b) their coupling
to the beams vibroacoustic behavior.

Analytical solutions to the Kirchhoff equations in vis-
cothermal fluids [13] presenting a good agreement with
experimental results, but only for acoustic devices with
simpler shapes [14] or higher dimensions [15]. The micro-
system studied has a complex shape, small dimensions and
strong fluid-structure coupling. It is therefore necessary to
use numerical modeling that take into account all the phys-
ical phenomena occurring in the microphone.

Several numerical modelings that use boundary element
methods and finite element methods (BEM/FEM) have
been carried out [16, 17, 18, 19, 20, 21, 22, 23]. Those
models describe acoustic fields and/or vibroacoustic mem-
branes and plates behaviors that are coupled to viscous and
thermal diffusive fields in the boundary layers.

The aim of the present paper is to provide accurate
and adapted analytical and numerical (FEM) models able
to gather all these effects in a consistent manner. We

present here the full and detailed vibroacoustic model
with analytical comparisons, extending previous contribu-
tions [24, 25], where only parts of modelling process were
given.

The outline of the paper is the following. The prin-
ciple of the planar nano-gauge detection microphone is
presented in the next section. The vibroacoustical model
including viscothermal effects of the microphone is pre-
sented in section 3 and a simplified vibroacoustic model
for the mechanical structures is introduced. Section 4 is
devoted to the numerical implementation of the model
using the finite element method. Especially, we specify
the method used for the coupling between the acoustic
medium, mechanical structures and the back volume. Nu-
merical results are presented in section 5. The vibroacous-
tic model is first used to show the influence of viscother-
mal effects of the pressure gradient between the inlet and
the back cavity. Finally the sensitivity of the microphone is
estimated, and the influence of some geometric parameters
are studied. The results are compared with those obtained
using an analytical model.

2. Principle of the planar nano-gauge de-
tection microphone

Figure 1-(a) gives an overview of the prototype mi-
crophone studied in this paper. This sensor, of small
size 1.5 x 1.5 x 0.6 mm3, is realized by a manufacturing
method in clean room. A network containing air for acous-
tic propagation is created, embedding sensitive mechanical
micro-structures with a nano-gauge and make the electri-
cal connections.

The cross section of the MEMS (Figure 1-(b) ) shows
the stack of layers and the network of air circulation made
in the micro-system. Vents are etched in the cover (Silicon
wafer) and in the SOI (Silicon On Insulator) wafer in order
to reach outside. The openings of vents, are the inputs and
outputs of the acoustic network. Inside the micro-system,
vents communicate by means of flat slots (couplers) where
the sensitive mechanical micro-structures are located.

The arrangement of micro-structures is shown in the
sectional view in the plane of the wafer (Figure 2). These
micro-structures are formed by four truss beams (Figure 2-
(a)) connected to the substrate by a flexible micro-hinge
(Figure 2-(b)) that allows their oscillation in the plane
(e1,e3) of the device. Above the hinge, the beams are con-
nected to the frame by a strain gauge of nanometric cross
section (Figure 2-(c)). The rotation of a beam generates
significant longitudinal stress in the gauge and produces a
variation in resistance by piezoresistive effect. The asso-
ciation of strain gauges in a Wheatstone bridge is used to
detect the variation of resistance due to a pressure differ-
ence ∆p on either side of the beams (see Figure 3).

The operating principle of the microphone can be rep-
resented by the block diagram (Figure 3), that shows the
behaviors and interactions of the various components of
the microphone:
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Figure 1. (a) Overview of the microphone MEMS, (b) sectional
view in the thickness
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Figure 2. Section in the plane of the couplers (a) arrangement of
sensitive structures, (b) micro-hinge of the beam, (c) nano-gauge

• the acoustic behavior of air in the micro-system allows
the transmission of the incident pressure fluctuations
and generates a torque (ΓA) on the beams,
• the mechanical behavior of the beams establishes the

link between the torque imposed by the acoustic pres-
sure and the rotation of the beams (θ),
• the electrical behavior of the piezo-resistive gauges, in-

serted in a Wheatstone bridge, links the measured volt-
ages (∆V ) with the axial stresses in the gauges.

Thus, predicting the sensitivity of the micro-system con-
sists in solving a coupled problem that is presented in de-
tails in the next section.

ΓA	  

Ω	  

ΓG	  
Air	   beams	   Wheatstone	  

bridge	  

transmission	   amplifica/on	   detec/on	  

Acous/c	  
pressure	  

fluctua/ons	  

p1	   q1	  

θ	  

measurement	  	  

Vb	  

ΔV	  

p2	   q2	  

Figure 3. Schematic representation of the measurement device.
p1 and p2 are the input and output pressure with ∆p = p1 − p2,
q1 and q2 represent the resulting input and output volume veloc-
ity, Ω(i) = θ̇(i) is the rotational arms speeds of each beam (i),
Γ
(i)
A are the torques applied on the beams due to ∆p the acoustic

pressure difference, Γ
(i)
G are the torques spring return due to the

gauges, Vb is the bias voltage and ∆V the voltage mesure at the
Wheatstone bridge.

3. Vibroacoustical model of the microphone

Heat diffusion by conductivity and momentum diffusion
by viscosity in the acoustic propagation medium are at the
origin of the formation of the boundary layers near the
walls of the domain. In these boundary layers, diffusion
phenomena have a significant influence on the propagation
of acoustic waves.
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Figure 4. Thickness of thermal and viscous boundary layers in
air (P0 = 1 bar T0 = 20 ◦C). Audible range (20Hz− 20kHz) is
indicated in dashed line - (from N. Joly [22])

Figure 4 reports the thickness and thermal characteris-
tics of viscous boundary layers in air as a function of fre-
quency f (equation (1) from [22]) where ω = 2πf is the
angular frequency of the acoustic wave:

δv(ω) =

√
2µ

ρ0ω
δτ (ω) =

√
2κ

ρ0cPω
. (1)

Under normal conditions of temperature and pressure
(1 bar, 20 ◦C), the density of air at rest ρ0 is close to
1.2 kg/m3, its specific heat capacity at constant pressure
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cP is close to 1 kJ/K/kg, the coefficient of shear viscosity
µ is close to 18 µPa · s and thermal conductivity κ close to
25 mW/K/m. For the audible frequency range (20Hz to
20kHz), the thicknesses of the boundary layers vary from
600 to 20 µm.

Located in the vicinities of the walls, the dissipative
effects are neglected in the acoustic conservative models
used to study the propagation of acoustic waves in free
field or in closed environments whose characteristic
dimensions highly exceed the boundary layer. These
models are based on an Helmholtz equation obtained by
considering adiabatic pressure and reversible processes.

Micro-systems boundary layers occupy the major part
of the fluid space. Hence, the study of acoustic behavior
supposes to develop appropriate models to take into
account the diffusion phenomena. For air, the thicknesses
of the thermal and viscous boundary layers are of the
same order of magnitude, these models necessarily take
into account both diffusion processes and are called
"thermoviscous".

3.1. Viscothermal acoustics in the MEMS micro-
phone

The general formulation used for modeling the acoustic
behavior in thermo-viscous propagation media is based on
the Full Linearized Navier-Stokes equations (FLNS). The
propagation of sound in a thermo-viscous fluid is based
on the local balance of momentum (2), energy (3) and
mass (4) linearized under the assumptions of small fluc-
tuations around the equilibrium state.

These balance equations govern the velocity fluctua-
tions v, acoustic pressure p and fluctuation of temperature
τ of each particle (in the sense of continuum mechanics)
of the domain. They also depend on the thermodynamic
parameters describing the environmental conditions of the
propagation medium (static pressure P0, mean tempera-
ture T0, the density ρ0 of air at rest and CP the heat capac-
ity with constant pressure). The air in the microphone be-
ing assumed at rest (v0 = 0), the Full Linearized Navier-
Stokes (FLNS) equations are written:

ρ0
∂v

∂t
= f +∇ · ¯̄σ = f −∇p+∇ · ¯̄σv , (2)

ρ0cP
∂τ

∂t
− ∂p

∂t
= r −∇ ·q , (3)

∂ρ

∂t
+ ρ0∇ ·v = 0. (4)

where f is the exterior body force (per unit volume) and
r the heat source.

In the balance of momentum (2), the flux term concerns
the Cauchy stress tensor ¯̄σ = −p¯̄1 + ¯̄σv that takes into
account the stresses generated by the pressure fluctuation
and the viscous effects described by the stress tensor ¯̄σv .
In the thermodynamic balance (3), the incoming heat flux

q represents the heat flow established between the air par-
ticles by thermal conduction. In the mass balance (4), the
divergence of the velocity vector ∇ ·v is the rate of vol-
ume expansion.

The viscous and thermal diffusion occur respectively
through the divergence of the viscous stress tensor ¯̄σv and
incoming heat flux vector q. The air is a fluid assumed to
be Newtonian with µ and µ

′
the shear and secondary vis-

cosity coefficient respectively. The expression of the vis-
cous stress tensor is given by (5). The flow established
between the gas particles by heat conduction is given by
Fourier’s law (6) where κ denotes the thermal conductiv-
ity of air:

¯̄σv = µ
′
(∇ ·v)¯̄1+ µ

(
∇v +∇vT

)
, (5)

q = −κ∇τ. (6)

The density of air is dependent on a state variable re-
lated to the pressure and temperature by a balance rela-
tion. Assuming that the air behaves as an ideal gas, the av-
erage magnitudes verify the state relationship (7) where
r = R/Mair is the specific constant of air:

P0 − ρ0rT0 = 0. (7)

This balance relation is assumed to be satisfied for small
fluctuations around the initial equilibrium state. It is used
in the mass balance equation (4) to express the density
fluctuation in terms of temperature and pressure:

1

ρ0

∂ρ

∂t
=

1

P0

∂p

∂t
− 1

T0

∂τ

∂t
= −∇ ·v. (8)

3.2. Simplified vibroacoustic model for mechanical
structures

The FLNS formulation of the acoustic problem has
many unknowns (particle velocity, acoustic pressure and
temperature fluctuation). Using the finite element method
for the discretization of the FLNS model will thus lead
to a very large number of degrees of freedom (5 degrees
of freedom per node). Indeed, taking into account the ther-
moviscous effects requires a very fine mesh near the walls,
in the thermal and viscous boundary layers. Consequently,
modeling the acoustic field and the 3D mechanical struc-
tures would be too expensive for solving the full coupled
system. We therefore tried to reduce the size of the model
to reduce it to an equivalent 2D problem.

To simplify the real micro-system (Figure 1-a), the vents
are assimilated to thin slits over the entire length of the
device (Figure 5-a). The fluid acoustic field can then be
reduced to a 2D model represented by a section in the plan
(e1, e2) (see Figure 5-b).

Sensitive structures are beams fixed at one extremity by
a hinge (see Figure 2-b) where the gauges are located.
The kinematics of the beams being inconsistent with a
2D model, a simplified mechanical model was defined by
switching the rotation beams with translation beams, as-
suming a link between the center and the hinge with a
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e1

e2

e3

(a)

e1

e2 S2

S1

Swall

S(i)

(b)
Figure 5. Simplified fluid acoustic domain: (a) 3D simplification,
(b) equivalent 2D model.

massless arm (see Figure 6-a). The behavior of the me-
chanical system is similar to the real micro-system, and
compatible with the 2D acoustic model, the beams then
reduced to their cross section in translation in the plan
(e1, e2) along the e1 direction (see Figure 6-b).

micro beam
translation

arm 
massless

L

e1

e3

e2

θ (i) θ (i)

micro beam
rotation 

hinge
and 

gauge

(a)

e1e3

e2

micro beam
section

(b)
Figure 6. Simplified mechanical system: (a) modification of the
kinematic, (b) mechanical system in the 2D model.

Massless arms are equipped with a flexible hinge and
a gauge identical to those of the real micro-system. The
total torque stiffness represented by a torsion spring is de-
noted: C = Ch + dKgd, where Ch is the torque stiffness
of the hinge, d is the lever arm (distance between the hinge
and the gauge) and Kg is the longitudinal stiffness of the
gauge.
If J denotes the moment of inertia of each beam (i) of
length L evaluated at the rotational axis of the flexible
hinge and M their mass, the balance of moments on the

beams and on the massless arm can be expressed respec-
tively by:

Jθ̈(i) + Cθ(i) =
L

2
S∆p, (9)

(
L

2

)
M

(
L

2

)
θ̈(i) + Cθ(i) =

L

2
S∆p. (10)

where ∆p is the pressure difference between the two faces
of the beams. The equations of motion being similar for
both models, it is assumed that the mass of the transla-
tion model is M(L/2)2 ≡ J in order to have a simplified
model with the same mechanical resonance frequency.

A uniform pressure distribution on the mechanical di-
aphragm leads to the same torque on the hinge for both
models. Reciprocally, movement of the mechanical struc-
ture produced an identical volume velocity in acoustic
model.

3.3. Integration of MEMS and back cavity

The microphone can work only if a pressure difference
exists between the micro-system acoustic ports for loading
the beam and thus the nano gauge. To avoid a short circuit
in acoustic network, input and output acoustic ports are
disconnected by the MEMS encapsulation’s. "Top port"
and "bottom port" configurations, shown in figure 7, are
possible.

In the bottom-port configuration (figure 7-a), the inci-
dent waves arrive to the microphone’s input through a sim-
ple hole in the Printed Circuit Board (PCB), the top slits
being loaded by the volume of the package, called back
cavity. In the top-port configuration (figure 7-b), incident
acoustic waves arrive to the microphone’s input through
the hole in the shell of the package, the bottom slits being
loaded acoustically by a small cavity in the PCB.

acoustic
wave

package

back cavity

PCB

microphone

(a) Bottom port

acoustic
wave

package

PCB

microphone

back cavity

(b) Top port

Figure 7. Encapsulation configurations of the MEMS

The top port configuration is not considered in this study
because the achievable back cavity into the PCB would be
too small. Indeed, we consider here the bottom port con-
figuration for which the back cavity is large compared to
the size of the micro-system.

The characteristic dimensions of the cavity are small
compared to the wavelengths considered, and large com-
pared to the thickness of the boundary layer. To avoid
costly and unnecessary finite elements discretization, the
behavior of the back cavity is represented by a simplified
model based on a lumped acoustic system [13]. The sound

5



Verdot, Redon et Al.: Microphone with planar nano-gauge detection

pressure pc is assumed uniform and heat transfers negli-
gible (q = 0) in the back cavity, the energy equation (3)
then becomes:

ρ0cP
∂τ

∂t
=
∂pc
∂t

. (11)

The equation of mass conservation can be written in the
back cavity:

1

γP0

∂pc
∂t

= −∇ ·v. (12)

Finally, the pressure being uniform in the cavity, by in-
tegration, the acoustic pressure in the cavity pc is governed
by the mass balance:

Cc
∂pc
∂t

= L

∫
S2

v ·n d` = Qc, (13)

where Cc = Vc/γP0 is the acoustic compliance of the
back cavity of volume Vc, and where Qc denotes the vol-
ume velocity entering into the cavity through the rear sur-
face S2 (see figure 5-b). This equation will allow the cou-
pling with the finite element model of the micro-system.

4. Numerical implementation

4.1. Variational formulation

Our models are based on a finite elements discretiza-
tion of the variational formulation associated to the FLNS
model (equations (2), (3), (4)). This variational formula-
tion is obtained by the weighted residual method and leads
to equation (14), which vanishes for the solution of the
problem (v, τ, p). It involves arbitrary weighting functions
(v∗, τ∗, p∗) defined over the entire domain and its bound-
aries:

L(v∗, τ∗, p∗,v, τ, p) = · · ·∫
D

[
v∗ ·

(
−ρ0

∂v

∂t

)
+ (∇ ·v∗)p− ¯̄∇v∗ : ¯̄σv

]
dV · · ·

+

∫
D

v∗ · f dV +

∫
∂D

v∗ · ¯̄σn dS

+

∫
D

[
τ∗

T0

(
−ρ0cP

∂τ

∂t
+
∂p

∂t

)
+
∇τ∗ ·q
T0

]
dV · · ·

+

∫
D

τ∗

T0
r dV +

∫
∂D

τ∗

T0
q · (−n) dS

+

∫
D

[
p∗
(
− 1

P0

∂p

∂t
+

1

T0

∂τ

∂t

)
− p∗(∇ ·v)

]
dV.

(14)

The variational formulation (14) expressed in the time do-
main can be described as follow:

(i) the first three integrals in the right-hand side are associ-
ated with mechanical balance,

(ii) the following three integrals are associated with thermal
balance,

(iii) the last integral correspond to the mass balance.
These variational formulation (14) is used to calculate the
time response to any excitation and investigate problems
in transient regime. The harmonic regime also used for nu-
merical results will be discussed in section 5.

4.2. Boundary conditions for acoustic cavity

Output and input air vents S1 and S2 (Figure 5-(b)) are
open boundaries, the acoustic velocity can evolve freely
under the effect of pressure fluctuations p1 and p2 imposed
by the external environment which may correspond to the
inlet or back cavity (Figure 7). The temperature is also free
to fluctuate assuming no heat transfer with the external en-
vironment. The boundary conditions of the input and out-
put of the micro-system are:

S1

{(
−p¯̄1 + ¯̄σv

)
n = −p1n

q · (−n) = 0,

S2

{(
−p¯̄1 + ¯̄σv

)
n = −p2n

q · (−n) = 0,
(15)

where n is the outgoing unit normal vector of the acoustic
field.

The walls of the substrate, denoted Swall, are assumed
fixed, rigid, and with constant temperature. The adhesion
condition to the wall imposes no acoustic velocity and
temperature fluctuation:

Swall

{
v1 = v2 = 0
τ = 0.

(16)

Taking into account the boundary conditions in the vari-
ational formulation (14) for the simplified 2D problem
( dV becomes dS, and dS becomes d`), leads to the
variational formulation for the acoustic problem Lac:

Lac(v
∗, τ∗, p∗,v, τ, p) = · · ·

L

∫
D

[
v∗ ·

(
−ρ0

∂v

∂t

)
+ (∇ ·v∗)p− ¯̄∇v∗ : ¯̄σv

]
dS

+ L

∫
D

[
τ∗

T0

(
−ρ0cP

∂τ

∂t
+
∂p

∂t

)
− κ∇τ

∗ ·∇τ
T0

]
dS

+ L

∫
D

[
p∗
(
− 1

P0

∂p

∂t
+

1

T0

∂τ

∂t

)
− p∗(∇ ·v)

]
dS

+ L

∫
S1

v∗ · {−p1n} d`+ L

∫
S2

v∗ · {−p2n} d`,

(17)

where L is the thickness of the micro-system, according to
e3 (see Figure 5-a).

4.3. Acoustic model coupling with the beams

The fluid-structure coupling is achieved by the method
of Lagrangian multipliers, imposing the continuity of ve-
locity between the air and the beams to the fluid-structure
interface S(i).
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The balance equations of mechanical structures (9) are
written in a state system form, retaining rotational arms
speeds Ω(i) = θ̇(i) as independent state variables. The
structures are free, because the coupling with the acous-
tic model is not yet realized:

[
J 0
0 C

] [
Ω̇(i)

θ̇(i)

]
=

[
0 −C
C 0

] [
Ω(i)

θ(i)

]
. (18)

As for the substrate, the continuity of the velocity and
the isothermal condition must be verified on the walls of
the mobile beams S(i). According to the simplified model
described in section 3.2, the boundary conditions for a
beam S(i), moving in translation in the plane (e1,e3) and
linked at L/2 with a massless arm (see Figure 6-(a)), are
given by:

S(i)

 v1 = (L/2)Ω(i)

v2 = 0
τ = 0.

(19)

The fluid-structure coupling is introduced in the model
with the adhesion condition, which reflects the continuity
of the velocity of the beam and the air velocity:

L

2
Ω(i) − v1 = 0. (20)

These conditions are introduced into the variational for-
mulation by adding a new unknown, the Lagrangian λ, on
the mobile beams S(i). The variational formulation corre-
sponding to the vibroacoustic problem for the MEMS is
then written:

Lmems(v
∗, τ∗, p∗,Ω(i)∗, θ(i)

∗
, λ∗,v, τ, p,Ω(i), θ(i), λ) =

Lac(v
∗, τ∗, p∗,v, τ, p) · · ·

+

4∑
i=1

Ω(i)∗
(
−J ·

∂Ω(i)

∂t
− Cθ(i)

)
· · ·

+

4∑
i=1

θ(i)
∗
(
−C ∂θ

(i)

∂t
+ CΩ(i)

)
· · ·

+

4∑
i=1

L

∫
S(i)

λ∗
{
L

2
Ω(i) − v1

}
d` · · ·

+

4∑
i=1

Ω(i)∗L

2

(
L

∫
S(i)

λ d`

)
· · ·

+

4∑
i=1

L

∫
S(i)

v∗(−λ) d`. (21)

The expression (21) of the vibroacoustic problem in the
MEMS includes:

(i) the functional Lac established for the acoustic prob-
lem (17) corresponding to the loading pressure on the
acoustic input air vents (S2),

(ii) the second and third terms in the right-hand side of (21)
corresponding to the residues formed from the mechan-
ical problem (18),

(iii) the fourth corresponding to the residues formed from
adhesion conditions (20),

(iv) the last two terms corresponding respectively to
the torques applied on the mechanical structures

Γ
(i)
A =

L

2

(
L
∫
S(i) λ d`

)
, and the reaction forces

which balance the stresses exerted by the air to the walls
−λ = e1 ·

(
−p¯̄1+ ¯̄σv

)
n.

4.4. Acoustic model coupling with the back cavity

The back cavity has an important role in the function-
ing of the micro-system, it behaves like an acoustic load to
be taken into account in the model. This acoustic load de-
pends on the evolution of the acoustic pressure in the back
cavity, whose behavior is described by the equation (13).
The volume velocity of air entering in the back cavity (Qc)
is evaluated from the normal acoustic velocity (v ·n) in
the finite element model. Equation (13) can thus be imple-
mented to provide pressure fluctuation in the back cavity:

Qc = Cc
∂pc
∂t

= L

∫
S1

v ·n d`. (22)

The pressure fluctuation in the back cavity is now a global
variable of the model that can be applied as a load on the
acoustic port of the SOI by the boundary condition (15)
prescribing p2 = pc.

4.5. Finite Element Model implementation

The variational formulations associated with the sim-
plified acoustic model (17) or to the entire vibroacoustic
model (21) are implemented in COMSOL MULTIPHYSICS
3.4 ® using PDE Modes module with weak form formu-
lation. This specific model , including thermoviscous ef-
fects, does not exist in this version.

In accordance with the simplified 2D model described
above, the geometry and mesh of the acoustic field are
made. The element size, as specified in Figure 8, is set
at 4 µm on the walls of the substrate in order to obtain
enough elements in the boundary layers (at least 3 in the
boundary layers, whose thickness is 15 µm at 20 kHz). A
very fine mesh is used in the couplers where the viscous
and thermal effects are dominant. The order of the poly-
nomial interpolation functions respects the Inf-Sup condi-
tion mentioned by Kampinga [23]: quadratic for velocity
and temperature fields and linear to the pressure field.

Table I contains the values of the physical parameters
of the acoustic model. The behavior of the air at rest in
normal conditions of temperature (20◦C) and pressure (1
bar) is similar to that of a diatomic ideal gas.
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Boundary	  layer	  
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300	  µm	  
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Figure 8. Mesh used for the discretization: (a) Mesh of the acous-
tic domain, (b) Detail of the mesh in a coupler

Physical parameters of the air at rest

Static pressure P0 = 101325 Pa
Temperature T0 = 293.15 K (20◦C)
Molar mass of air Mmol = 28.96 g/mol
Specific constant air r = 287.1 J/K/kg
Density ρ0 = 1.2 kg/m3

Heat capacity (P cte) cP = 1004.9 J/K/kg
Heat capacity (V cte) cV = 717.7 J/K/kg
Heat capacity ratio γ = 1.4

Diffusion coefficients

Heat Conductivity κ = 25 mW/K/m

Shear Viscosity µ = 18.10−6 Pa · s
Bulk Viscosity η = 0.60µ
Second viscosity µB = η − 2µ/3

Table I. Acoustic model parameters

5. Numerical results

A basic question is to identify the influence of viscother-
mal effects on the microphone performance. The detection
principle is based on the solicitation of the piezoresistive
gauges resulting from the movement of the beams. Then, it
is clear that the operation of the microphone is conditioned
by the existence of a pressure difference between the inlet
and the back cavity to ensure the vibration of the beams.

Vibroacoustic microphone models established previ-
ously are now used to show the influence of viscother-
mal effects on the pressure difference in the MEMS and
to determine the microphone sensitivity based on design
parameters of the MEMS.

The finite elements discretization of the temporal vari-
ational formulation (21) allows us to calculate the time
response of the coupled vibroacoustic problem in order
to study the transient regime. For the sensitivity study,
the harmonic formulation is required: it is easily obtained
from (21) by replacing the time derivative by jω. Both ap-
proaches are used in the next sections.

5.1. Evolution of the pressure in the back cavity

Figure 9 presents the transient evolution of the pressure
in the back cavity in response to a unit step input pres-
sure of 1 Pa on the microphone input at boundary S1. It
shows that the characteristic time τ needed for the estab-
lishment of the pressure equilibrium in the back cavity is
about 50 ms. This time depends of the viscous resistance
of the micro-system and the back cavity volume which
modify the equivalent acoustic compliance.
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Figure 9. Evolution of the pressure in the back cavity of the mi-
crophone in response to a unit step pressure input of 1 Pa.

This characteristic time τ has an important role in the
working of the microphone, it should not be too short to
ensure the existence of a pressure difference between the
input and the output of the MEMS.

After examining the transient evolution of the acoustic
pressure in the cavity, we now focus on the time evolution
of the pressure in the cavity in response to an harmonic
pressure fluctuation of 1 Pa of magnitude, imposed on the
microphone input for different frequencies.

Figure 10-(b) corresponds to an excitation at f = f1 =
22.48 Hz. This cut-off frequency corresponds to the char-
acteristic time shown in the previous figure τ = 1/f1. At
this frequency, the pressure fluctuation in the back cav-
ity and the pressure difference generated between the two
acoustic ports have similar amplitudes (1/

√
2) with ±45◦

phase difference with the imposed pressure (see red and
blue curves).

The time responses to two other imposed fluctuations
of frequency f = 2 Hz and f = 200 Hz are presented
in figures (a) and (c) respectively. When a slow pressure
fluctuation is imposed (500 ms of period) the pressure in
the back cavity follows the input excitation (see blue and
black curves in figure (a)). At this frequency (f = 2 Hz)
the pressures are balanced: the difference in pressure gen-
erated between the two acoustic ports has a small ampli-
tude with about 90◦phase difference.
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When a rapid fluctuation is imposed (5 ms of period,
corresponding to f = 200 Hz), there is no time for pres-
sure balance and the difference in generated pressure is
close to the acoustic pressure fluctuation imposed at the
input (same amplitude and in phase, see figure-(c)).
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(b) f = 22.48 Hz
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(c) f = 200 Hz

Figure 10. Time response to an imposed harmonic pressure fluc-
tuation p1(t) = 1[Pa]sin(2πft) (dashed black curves) for
three different frequencies. Pressure fluctuation in the back cav-
ity (blue curve) and pressure difference between the acoustic
ports (red curve).

In order to observe the evolution of the pressure differ-
ence on the audible frequency range, the amplitude and
phase of the responses (Bode plots) obtained from cal-
culations in harmonic regime are presented in figure 11
where p̃c is the complex pressure in the back cavity and
p̃1 is the complex input pressure. The cut-off frequency
f1 is indicated with the first vertical dashed line. Above
this frequency, the Bode plot for the difference in pres-
sure (p̃1 − p̃c) exhibits an exceptionally flat response. The
amplitude of the pressure fluctuation in the back cavity de-
creases significantly and the pressure difference obtained
follows the imposed pressure.

Figure 12 presents the pressure field and the velocity
profile (real parts) in the coupler in harmonic regime at
1 kHz and 13 kHz. It shows how the viscous effects pro-
duce the pressure difference on both sides of the beams.
The velocity profiles obtained confirm that the model used
is operational for the fluid-structure coupling.

Two different behaviors are revealed:
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Figure 11. Frequency responses (Bode plots) in permanent har-
monic regime p̃c/p̃1 (blue curve) and (p̃1 − p̃c)/p̃1 (red curve).

(a) f = 1 kHz

(b) f = 13 kHz

Figure 12. Pressure field (in color) and velocity profiles (arrows)
in the coupler for a square section beam. Response to a unit har-
monic pressure at 1 kHz and 13 kHz imposed on S1 (Figure 5-b).

(a) At 1 kHz, the velocity of the beam is low and the
air goes around the mechanical structures to establish
a flow towards the back cavity. The velocity profile
in the interstice gaps is governed by the pressure dif-
ference that exists between the acoustic ports of the
microphone. This flow profile is parabolic, close to a
Poiseuille flow.

(b) At 13 kHz, in the vicinity of the resonant frequency of
the mechanical structures the velocity profile in the cou-
pler is governed by the velocity of the structures. In the
interstice gaps the flow profile is linear, close to a Cou-
ette flow. The movement of thestructures establishes a
wall flow towards the back cavity resulting in a peak in
the transfer amplitude p̃cav/p̃in (see figure 11).
Hence for simulated thicknesses of gaps (around the mi-

crometer) and above the cut-off frequency f1, the viscous
effects in the coupler generate a differential in pressure
proportional to the input pressure fluctuation.
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5.2. Pressure sensitivity

The previous sections introduced the elements of the
considered microphone: the acoustic system of the MEMS
dice, the chip-scale package, the mechanical structure and
the electrical system constituted by the four piezoresistive
nano-gauges arranged into a full Wheatstone bridge archi-
tecture.

According to the transduction chain presented on figure
3, these elements have to be assembled in order to estimate
the microphone transfer function and sensitivity.

5.2.1. Approximate form of sensitivity

The Vibroacoustic system of the MEMS dice has been
studied with the FEM model in the previous section tak-
ing into account the influence of the back-volume. Re-
call that the mechanical system (the micro-beams) is cou-
pled to the acoustic system with the pressure gradient ∆p
generated across the micro-beams. The movement of the
micro-beams introduces a flow rate in the acoustic system.
Finally, the mechanical system is coupled to the electrical
system (Wheatstone bridge) by the longitudinal stress σg
generated inside the nano-gauges.

To estimate the sensitivity of the microphone, it is nec-
essary to estimate each transfer transduction chain (see fig-
ure 3), starting with the electrical transfer:
• The relative variation of nano-gauge resistance ∆R/R

is proportional to the longitudinal stress σg applied to
the nano-gauge due to the displacement of the beam:

∆R/R = πpzrσg, (23)

where πpzr is the piezoresistive coefficient.
Accurate measurements of ∆R/R can be carried out
with a Wheatstone bridge where output voltage is pro-
portional to the variation resistance:

∆V = Vb

(
∆R

R

)
= Vbπpzrσg, (24)

and the electrical transfer function becomes:

TE =
∆V

σg
= Vbπpzr. (25)

• The mechanical transmissibility of the microphone is
expressed by the value of longitudinal stress in a nano-
gauge σg generated by the rotation of the beam under a
pressure gradient ∆p. The quasi-static value of longitu-
dinal stress is given by:

σg =
Kgu

Sg
=
Kgθd

Sg
. (26)

where Kg denotes the longitudinal stiffness of a nano-
gauge with Sg section, u = θd is the displacement
resulting of a rotation θ of the beam, d being the
distance between the hinge and the nano-gauge.

The rotation θ of the beam can also be deduced from
the balance of the moments of the beam as a function
of the pressure gradient:

θ =
L

2

S∗d∆p

Ch + dKgd
, (27)

where S∗d denotes the lateral surface of the beam Sd that
is modified due to the viscous effects, C = Ch + dKgd
the total torque stiffness, L/2 is the center of the beam.

In order to introduce the inertial effects we consider
fluctuation of pressure at angular frequency ω and me-
chanical resonance of a beam at ω0, mechanical transfer
function TM (ω) = σg/∆p can be written:

TM =

[
S∗d
Sg

] [
L/2

d

]
dKgd

Ch + dKgd

[
1

1− (ω/ω0)
2

]
.

(28)

Notice that structural damping and viscous damping
are neglected here. However, viscous damping will
be taken into account in the vibroacoustic coupled
problem for the estimation of pressure differential ∆p.

• The total sensitivity of a microphone is the combina-
tion of its acoustical, mechanical and electrical transfer
functions. For the purpose of sensitivity analysis a gen-
eral equation that describes the sensitivity can then be
written from equations (25), (26), and (28) as follow:

S(ω) =
∆V

p1
= TE ·TM ·TA

S(ω) =
∆V

σg
·
σg
∆p

·
∆p

p1
= S0

 1

1−
(
ω
ω0

)2
[∆p

p1

]
,

(29)

where:

S0 = [πpzrVb]

[
S∗d
Sg

] [
L/2

d

]
dKgd

Ch + dKgd
, (30)

is the component that does not depend on the frequency.

Notice that the transfer function of the vibroacoustic
problem [σg/p1] can be estimated in different ways
depending on the model used. In the following, we
present results obtained from the finite element model
previously detailed and analytical results from a
lumped model [24], [26].

The expression of the sensitivity indicates that the mea-
sured voltage fluctuation at the output of the bridge (29)
is proportional to the difference in pressure for a pul-
sation lower than the resonant angular frequency of the
mechanical structures. It also highlights the amplification
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provided by the mechanical architecture. The first amplifi-
cation mechanism comes from the ratio between the modi-
fied lateral surface of a beam S∗d and section of a nanowire
Sg while the second comes from the ratio of the lever arm
(L/2d).

5.2.2. Numerical results

Figure 13 shows the microphone sensitivity curve for
a configuration whose geometry is detailed in figure 8. It
shows the amplitude and phase transfer between the har-
monic pressure imposed at the inlet and the voltage at
the output of the strain gauge bridge. The sensitivity level
of the sensor is substantially proportional to the incident
pressure fluctuation. Its bandwidth is limited by the cutoff
frequency f1 conditioned by the viscous resistance of the
micro-system, and the resonance frequency of the mechan-
ical structures. Sensitivity at 1 kHz is 5.6 mV/Pa. The
numerical and analytical lumped models [24], [26] give
similar responses for the whole bandwidth. In these mod-
els the mechanical behavior of the beam is governed with
the same analytical approach, however the acoustic models
differ and is more precise in case of FEM. This difference
is visible at the resonant frequency. It is mainly caused by
a different way of estimating viscous resistance.
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Figure 13. Pressure sensitivity ∆V/p1 (gap under the beams
1 µm, gap over the beams 2 µm (see Figure 14) and back vol-
ume of 13 mm3).

5.2.3. Influence of the thickness of the gap

The thickness of the slit between the beams and the sil-
icon layer of the SOI wafer is set to 1 µm by the thickness
of the initial oxide layer. However, the thickness of the slit
between the beams and the cover can be adjusted between
1 µm and 2 µm during manufacturing (see figure 14).
Indeed, the two oxide layers on the cover being removed
for the release of the beam, one can reduce the thickness
to a value close to 1 µm by protecting one of the oxide
layers with a metal deposit.

Figure 15 shows the influence of the thickness of the
interstitial gap between the beams and the cover on the

1µm
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10µm

10µm

(cover)

(SOI)

(a)
1µm

1µm

gap

10µm

10µm

(cover)

(SOI)

(b)

Figure 14. Geometries used to study the influence of the gap.

microphone sensitivity. The increase of the gap, which re-
duces the viscous resistance of the microphone, involves
an increase of the cutoff frequency f1 and a small loss
damping of mechanical resonance. The viscous resistance
of interstitial slots being preponderant, this slight variation
of the gap has little influence on the microphone sensitivity
in the passband.
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Figure 15. Variation of pressure sensitivity with the gap values
1 µm and 2 µm.

5.2.4. Influence of the back volume.

The package defines the volume of the back cavity and
the size of the microphone. The miniaturization of the mi-
crophone means reducing the volume of the back cavity
and therefore its acoustic flexibility. Figure 16 illustrates
the influence of the rear volume on sensitivity, maintaining
a gap of 2 µm. The cutoff frequency increases as the rear
volume decreases. It reaches the critical value of 100 Hz
for a volume of 3 mm3 (The back volume of 13 mm3 is
the volume of the package that will be used to test the first
prototypes).
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Figure 16. Variation of the pressure sensitivity with the back vol-
ume (13 mm3, 8 mm3 and 3 mm3)

5.2.5. Influence of the geometry of the beam section
2D modeling developed during our work considers a

homogeneous and uniform beam section along the entire
length of the micro-system. The viscous resistance of the
couplers do not take into account the fact that the section
of the truss changes with the cutting plane. To observe the
influence of the geometry of the beams on the microphone
sensitivity, we build a model in which the geometry of the
beams corresponds to the section of a truss.
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Figure 17. Geometry models used to study the influence of the
section geometry. (a) solid section (b) truss section

Figure 19 compares the sensitivities obtained with a
solid section and a hollow section (see Figure 17). The
hollow section can be compared to the combination of
three short slots arranged in series: for the hollow section,
the reduction of the length of the interstitial slots induces
a reduction of the viscous resistance in the coupler and a
slight increase of the cut of frequency.

The change in section has little influence on the beam
and the overall behavior is the same. Air located in the
hollow section is driven by the beams with almost identical
velocity.

(a) f=1 kHz

(b) f=13 kHz

Figure 18. Pressure field (in color) and velocity profiles (arrows)
in the coupler for a mobile beam of hollow section. Response to
a unit harmonic pressure at 1 kHz and 13 kHz imposed on S1

(Figure 5-b).
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Figure 19. Sensitivity of the pressure obtained for a beam with a
solid section (blue curve) and a truss section (red curve)

6. Conclusion

A new architecture of MEMS microphone based on
micro-beams moving in the plane of the device and nano-
gauges detection was introduced. To design the MEMS
microphone and assess its performances, a vibroacoustic
model based on the Full Linearized Navier-Stokes equa-
tions (FLNS) was developed and discretized by the finite
element method. The model allows a simulation of the
acoustic behavior in a simplified equivalent planar micro-
system. It simulates the acoustic behavior of the air cou-
pled to micro-beams by imposing continuity of speeds on
substructures interfaces as an auxiliary condition. The for-
mulations used allow to solve problems in the time domain
for the transitional regime and in the frequency domain
for the determination of transfer functions of the micro-
system.
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The results presented have shown the influence of the
viscous effects on the acoustic behavior of the micro-
system at low frequencies:
• when the micro-system is encapsulated, the viscous re-

sistance of the micro-system and the back cavity de-
termine the cutoff frequency. Above this frequency the
pressure difference is sufficient for the operation of the
micro-system,

• the shear viscosity which occurs at the flat slots (cou-
plers) helps to maintain the pressure difference on both
sides of the micro-structures. It ensures the separation
between the front part subjected to pressure fluctuation
and the rear part connected to the back cavity.

Sensitivity curves obtained by numerical simulation of
the simplified micro-system are similar to those obtained
from the analytical lumped model, demonstrating the ef-
ficiency of the models used. Influence of the geometrical
parameters on the sensitivity was also studied. The volume
of the back cavity appears as the most important parameter
in the response curve.

Microfabrication process necessary to build such micro-
phone architecture is carried out at CEA-LETI. The de-
veloped models in this article have provided a better un-
derstanding of the physical mechanisms involved and the
important parameters of this new sensor.The experimen-
tal characterization of first prototypes will be necessary to
validate the models presented in this article.
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