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Abstract
We show that every connected Multiplicative Exponential Linear Logic (MELL) proof-structure
(with or without cuts) is uniquely determined by a well-chosen element of its Taylor expansion:
the one obtained by taking two copies of the content of each box. As a consequence, the relational
model is injective with respect to connected MELL proof-structures.

1 Introduction

Given a syntax S endowed with some rewrite rules, and given a denotational model D for
S (i.e. a semantics which gives to any term t of S an interpretation JtKD that is invariant
under the rewrite rules), we say that D is injective with respect to S if, for any two normal
terms t and t′ of S, JtKD = Jt′KD implies t = t′. In categorical terms, injectivity corresponds
to faithfulness of the interpretation functor from S to D. Injectivity is a natural and well
studied question for denotational models of λ-calculi and term rewriting systems (see [11, 19]).
In the framework of Linear Logic (LL, [12]) this question, addressed in [20], turned out to
be remarkably complex: contrary to what happens in the λ-calculus, there exist semantics
of LL proof-nets that are not injective, such as the coherent model which is injective only
with respect to some fragments of LL (see [20]). After the first partial positive results
obtained in [20], it took a long time to obtain some improvements: in [6], the injectivity
of the relational model is proven for MELL (the multiplicative-exponential fragment of LL,
sufficiently expressive to encode the λ-calculus) proof-structures that are connected, and
eventually in [4] the first complete positive result is achieved, since the author proves that
the relational model is injective for the all MELL proof-structures.

Ehrhard [7] introduced finiteness spaces, a denotational model of LL (and λ-calculus)
which interprets formulas by topological vector spaces and proofs by analytical functions: in
this model the operations of differentiation and the Taylor expansion make sense. Ehrhard and
Regnier [8, 9, 10] internalized these operations in the syntax and thus introduced differential
linear logic DiLL0 (which encodes the resource λ-calculus, see [9]), where the promotion
rule (the only one in LL which is responsible for introducing the !-modality and hence for
creating resources available at will, marked by boxes in LL proof-structures) is replaced by
three new “finitary” rules introducing !-modality which are perfectly symmetric to the rules
for the ?-modality: this allows a more subtle analysis of the resources consumption during
the cut-elimination process. At the syntactic level, the Taylor expansion decomposes a LL
proof-structure in a (generally infinite) formal sum of DiLL0 proof-structures, each of which
contains resources usable only a fixed number of times. Roughly speaking, each element of
the Taylor expansion TR of a LL proof-structure R is a DiLL0 proof-structure obtained from
R by replacing each box B in R with nB copies of its content (for any nB ∈ N), recursively.
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2 Computing connected proof(-structure)s from their Taylor expansion

In the light of the differential approach, it is clear (and well-known) that the proof-
structure of order 1 of the Taylor expansion of a λ-term (which is obtained by taking exactly
one copy of the argument of each application) is enough to entirely determine the λ-term:
if two λ-terms t1 and t2 have the same element of order 1 in their Taylor expansion, then
t1 = t2. One can formulate the results of [6] and [4] by saying that, given two proof-structures
R1 and R2, if there exists an appropriate DiLL0 proof-structure, whose order depends on R1
and R2, which occurs in the Taylor expansions of both R1 and R2, then R1 = R2. We prove,
in the present paper, for connected MELL, a result which is very much in the style of the
one just mentioned for the λ-calculus: if two proof-structures R1 and R2 (with or without
cuts) have the same elements of order 2 in their Taylor expansions (which is obtained by
taking two copies of the content of each box), then R1 = R2 (the element of order 2 of the
Taylor expansion of a connected MELL proof-structure is enough to entirely determine the
proof-structure). Since it is known (see [13]) that the elements of the Taylor expansion of
a λ-term/LL proof-structure is essentially an element of its interpretation in the relational
model, we immediately obtain another proof of the injectivity of the relational model for
connected MELL proof-structures.

It is widely acknowledged, in the LL community, that the subsystem of LL corresponding
to the λ-calculus enjoys all the possible good properties, while many of them are lost in the
general MELL fragment. Our result seems to suggest the following hierarchy:
1. full MELL, for which there does not seem to be a way to bound “a priori” the complexity of

the element of the Taylor expansion allowing to distinguish two different proof-structures;
2. connected MELL (containing the λ-calculus) for which the element of order 2 of the Taylor

expansion of a proof-structure is enough to entirely determine the proof-structure;
3. the λ-calculus, for which the element of order 1 of the Taylor expansion of a term is

enough to entirely determine the term.
Outline After laying out precise definitions of proof-structure (§2) and Taylor expansion (§3), in §4 we show
how a connected MELL proof-structure can be univocally computed by the point of order 2 of its Taylor
expansion. Finally, in §5 we infer from this the injectivity of the relational model for connected MELL.

I Notation. We set LMELL = {1,⊥,⊗,`, !, ?, ax, cut}. The set FMELL of MELL formulas is generated by
the grammar: A,B,C ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A , where X ranges over an infinite set
of propositional variables. The linear negation is involutive, i.e. A⊥⊥ = A, and defined via De Morgan
laws 1⊥ = ⊥, (A⊗B)⊥ = A⊥ `B⊥ and (!A)⊥ = ?A⊥.

Let A be a set: P(A) is the power set of A,
⋃
A is the union of A, A∗ is the set of finite sequences

over A. If A is ordered by ≤, for any a ∈ A we set ↓A a = {b ∈ A | b ≤ a}. The empty sequence is denoted
by ( ). If a = (a1, . . . , an) with n ∈ N, we set |a| = n and, if n > 0, a– = (a1, . . . , an−1); if moreover
b = (b1, . . . , bm), we set a·b = (a1, . . . , an, b1, . . . , bm). We write a v b if a·c = b for some finite sequence c.
Let f : A → B be a partial function: dom(f) and im(f) are the domain and image of f; the partial function
f : P(A)→P(B) is defined by f(A′) = {f(a) | a ∈ A′ ∩ dom(f)} for any A′ ⊆ A.

2 A non-inductive syntax for proof structures

It is well-known that for linear logic proof-nets there is no “canonical” representation:
every paper about them introduces its own syntax for proof-nets, and more generally for
proof-structures, depending on the purposes of the paper. (Following [12], a proof-net is
a proof-structure corresponding to a derivation in LL sequent calculus: proof-nets can be
characterized among proof-structures via “geometric” correctness criteria, e.g. [2, 20]). The
first aim of the syntax for proof-structures that we present here is to give a rigorous and
compact definition of the following notions: (1) equality between proof-structures; (2) Taylor
expansion of a proof-structure. The first point naturally leads us to adopt a low-level syntax
with generalized ?- and !-links, similarly to [6]. Surprisingly enough, this choice can be made
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Y Y ⊥ ?Z 1 ⊥ 1 X X⊥

ax

cut

?

`
Y ` Y ⊥

?

??Z
?

???Z

!p

!(Y ` Y ⊥)

11 ⊥ ax

!p

!1

?

?X
?

?!1
(a) A pps Φ.

p :1 ⊥

1 ⊥

!p

q : !1
?

?!1

?

?⊥
!p

!?⊥
(b) Two pps, Ψ1 (on the left) and
Ψ2 (on the right).

⊥ 1

1

⊥

1

1

?

?⊥
?

??⊥

!p

!1

!p

!1

(c) A pps X.

⊥ 1 X X⊥

⊥ 1

?

?⊥
!p

!?⊥

?

?1
!p

!?1

ax

!p

!X
!p

!!X

?p

?X⊥

!p

!?X⊥
(d) Two pps, Ξ1 (on the left) and Ξ2 (on
the right).

Figure 1 Some examples of pps that are not DiLL-ps. See Def. 1 and 10.

compatible with the second point by giving a completely non-inductive definition of proof-
structures, which is in keeping with the intuition that a proof-structure is a directed graph,
plus further information about the borders of boxes. We have also taken care of minimizing
the information required to identify a proof-structure, especially the borders of its boxes.

We use terminology of interactions nets [14, 9], even if properly speaking our objects are
not interaction nets. So, for instance, our cells corresponds to links in [20]. Our syntax is
inspired by [16, 17, 18, 21, 5, 6]. Our main technical novelties with respect to them are that:

there are no wires (the same port may be auxiliary for some cell and principal for another
cell), so axioms and cuts are cells, and our ports corresponds to edges in [20];
boxes do not have an explicit constructor or cell, hence boxes and depth of a proof-structure
are recovered in a non-inductive way.
As in [16, 17, 18] and unlike [5, 6], our syntactic objects are typed by MELL formulas:

we have opted for a typed version only to keep out immediately the possibility of “vicious
cycles” (see Fact 4). All the results in this paper can be adapted also to the untyped case.

Pre-proof-structures and isomorphisms We define here our basic syntactical object: pre-
proof-structure (pps for short). All other syntactical objects, in particular proof-structures
corresponding to the fragments or extensions of LL that we will consider (DiLL-, MELL- and
DiLL0-proof structures), are some special cases of pps. Essentially, a pps Φ is a directed
labelled graph GΦ called ground-structure (gs for short), plus a partial function boxΦ defined
on certain edges (or nodes). The gs of Φ represents a “linearised” proof-structure, i.e. Φ
without the border of its boxes; the partial function boxΦ marks the borders of the boxes of Φ.
Examples of pps are in Fig. 1. Unlike [18, 6], our syntactical objects are not necessarily
cut-free (nor with atomic axioms). Cut-elimination is not defined since it is not used here.

I Definition 1 (Pre-proof-structure, ports, cells, ground-structure, fatness). A pre-proof-struc-
ture (pps for short) is a 9-tuple Φ = (PΦ, CΦ, tcΦ,Ppri

Φ ,Paux
Φ ,Pleft

Φ , tpΦ, Cbox
Φ , boxΦ) such that:

PΦ and CΦ are finite sets, their elements are resp. the ports and the cells (or links) of Φ;
tcΦ is a function from CΦ to LMELL; for every l ∈ CΦ, tcΦ(l) is the label, or type, of l; for
every t, t′ ∈ LMELL, we write l : t when tcΦ(l) = t, and we set CtΦ = {l ∈ CΦ | l : t} (whose
elements are the t-cells, or t-links, of Φ) and Ct,t

′

Φ = CtΦ ∪ Ct
′

Φ ;
Ppri
Φ is a function from CΦ to P(PΦ) such that im(Ppri

Φ ) covers PΦ (that is,
⋃

im(Ppri
Φ ) = PΦ),

and moreover, for all l, l′ ∈ CΦ,
if l 6= l′ then Ppri

Φ (l) ∩ Ppri
Φ (l′) = ∅,

if tcΦ(l) ∈ {1,⊥,⊗,`, !, ?} then card(Ppri
Φ (l)) = 1,

if tcΦ(l) = ax (resp. tcΦ(l) = cut) then card(Ppri
Φ (l)) = 2, (resp. card(Ppri

Φ (l)) = 0);
for any l ∈ CΦ, the elements of Ppri

Φ (l) are the principal ports, or conclusions, of l in Φ;
Paux
Φ is a function from CΦ to P(PΦ) such that, for all l, l′ ∈ CΦ,
if l 6= l′ then Paux

Φ (l) ∩ Paux
Φ (l′) = ∅,

if tcΦ(l)∈{1,⊥, ax} then card(Paux
Φ (l))=0; if tcΦ(l)∈{⊗,`, cut} then card(Paux

Φ (l))=2;
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for any l ∈ CΦ, the elements of Paux
Φ (l) are the auxiliary ports, or premises, of l in Φ;

Pleft
Φ : C⊗,`Φ → PΦ is a function such that Pleft

Φ (l) ∈ Paux
Φ (l) for any l ∈ C⊗,`Φ ;

tpΦ : PΦ → FMELL is a function (we write p : A and we say that A is the type of p, when
tpΦ(p) = A) such that, for any l ∈ CΦ, one has

if tcΦ(l) = ax (resp. tcΦ(l) = cut) and Ppri
Φ (l) = {p1, p2} (resp. Paux

Φ (l) = {p1, p2}), then
tpΦ(p1) = A and tpΦ(p2) = A⊥, for some A∈FMELL,
if tcΦ(l) = A ∈ {1,⊥} and Ppri

Φ (l) = {p}, then tpΦ(p) = A,
if tcΦ(l) = � ∈ {⊗,`}, Ppri

Φ (l) = {p}, Paux
Φ (l) = {p1, p2} and Pleft

Φ (l) = p1, then
tpΦ(p) = tpΦ(p1)� tpΦ(p2),
if tcΦ(l) = ♦ ∈ {!, ?}, Ppri

Φ (l) = {p} and Paux
Φ (l) = {p1, . . . , pn} (n∈N), then tpΦ(p)=♦A

and tpΦ(pi)=A for all 1≤ i≤n, for some A∈FMELL;
Cbox
Φ ⊆ {l ∈ C!

Φ | card(Paux
Φ (l)) = 1}, the elements of Cbox

Φ are the box-cells of Φ; for any
l ∈ Cbox

Φ , its (unique) premise is denoted by pridΦ(l) and called the principal door or
pri-door of the box of l (in R); we set Doors!

Φ =
⋃

Paux
Φ (Cbox

Φ );1

boxΦ is a partial function from
⋃

Paux
Φ (C?,cut

Φ )∪Doors!
Φ to Cbox

Φ such that boxΦ(pridΦ(l)) = l

for all l ∈ Cbox
Φ .2

We set: Paux
Φ =

⋃
im(Paux

Φ ), whose elements are the auxiliary ports of Φ; P free
Φ = PΦrPaux

Φ ,
whose elements are the free ports of Φ; and Cfree

Φ = {l ∈ CΦ | Ppri
Φ (l) ⊆ P free

Φ }, whose elements
are the free, or terminal, cells of Φ.3

For any pps Φ, the ground-structure (gs for short) of Φ is the 7-tuple GΦ = (PΦ, CΦ, tcΦ,
Ppri
Φ ,Paux

Φ ,Pleft
Φ , tpΦ).

A pps Φ is fat (resp. strongly fat) if card(Paux
Φ (l))≥1 (resp. card(Paux

Φ (l))≥2) for all l ∈ C!
Φ.

Let us make some comments on Def. 1. Let Φ be a pps.

The function Pleft
Φ fixes an order on the two premises of any ⊗- and `-cell of Φ; the

premises of the other types of cells are unordered, as well as the conclusions of the ax-cells.
The conditions

⋃
im(Ppri

Φ ) = PΦ and “for all l, l′ ∈ CΦ, if l 6= l′ then Ppri
Φ (l)∩Ppri

Φ (l′) = ∅ =
Paux
Φ (l)∩Paux

Φ (l′)” mean that every port is conclusion of exactly one cell and premise of at
most one cell; the elements of P free

Φ are the ports of Φ that are not premises of any cell.
No condition is required for card(Paux

Φ (l)) when l ∈ C!,?
Φ : l can have n ∈ N premises since

we use generalized ?- and !-cells for (co-)contraction, (co-)weakening and (co-)dereliction.
The gs GΦ of Φ is obtained from Φ by forgetting boxΦ and Cbox

Φ . In a way, GΦ encodes
the “geometric structure” of Φ (see below).

For any pps Φ, the fact that boxΦ is defined on Doors!
Φ simplifies the definition of the

function boxext
Φ (Def. 8), an extension of boxΦ that will be useful in the sequel. Any box-cell l

of Φ is the starting point to compute the box associated with l: the ports in box−1
Φ (l) represent

the border of this box. In general, not all !-cells of Φ with exactly one premise are box-cells.

I Notation. For any pps Φ we set DoorsΦ = dom(boxΦ) and Doors?
Φ = DoorsΦ∩

⋃
Paux
Φ (C?

Φ),
Doorscut

Φ = DoorsΦ∩
⋃

Paux
Φ (Ccut

Φ ) and Cbord
Φ = Cbox

Φ ∪{l ∈ C?
Φ | ∃ p ∈ Doors?

Φ∩Paux
Φ (l)}. From

now on, • /∈ CΦ (in particular, • /∈ Cbox
Φ ) for any pps Φ.

1 Hence, Doors!
Φ = {pridΦ(l) | l ∈ Cbox

Φ }, the set of premises of all box-cells of Φ.
2 So, boxΦ is defined on Doors!

Φ and maps the (unique) premise of a box-cell l into l itself.
3 Thus, a cell l of a pps Φ is in Cfree

Φ iff either l is a ax-cell and both its conclusions are in P free
Φ , or l is a

cut-cell, or l is neither an ax- nor a cut-cell and its unique conclusion is in P free
Φ .
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(a)
P(PΦ)
ϕP ��

CΦPaux
Φ

oo
Ppri
Φ

//

ϕC
��

P(PΦ)
ϕP��

P(PΨ ) CΨ
Paux
Ψoo

Ppri
Ψ //P(PΨ )

CΦ tcΦ
//

ϕC ��

LMELL

CΨ
tcΨ

;; PΦ tpΦ
//

ϕP ��

FMELL

PΨ
tpΨ

:: C⊗,`Φ Pleft
Φ

//

ϕC ��

PΦ
ϕP
��

C⊗,`Ψ

Pleft
Ψ // PΨ

(b)
DoorsΦ

ϕP
��

boxΦ
// Cbox
Φ

ϕC ��
DoorsΨ

boxΨ // Cbox
Ψ

Figure 2 Commutative diagrams for isomorphism of gs (Fig. 2a) and of pps (Fig. 2b). See Def. 5.

With any pps Φ are naturally associated a directed labelled graph G(Φ) whose nodes are
the cells of Φ, labelled by their type; and whose oriented edges are the ports of Φ, labelled
by their type; a premise (resp. conclusion) of a cell l is incoming in (resp. outgoing from) l.

Note that in the definition of G(Φ), Cbox
Φ and boxΦ play no role, hence the gs GΦ of Φ

can naturally be seen as a labelled directed graph with a natural top-down orientation.
In the graphical representation of a pps Φ, a dotted arrow is depicted from a premise q

of a ?-cell or cut-cell to the premise of a box-cell l as soon as q ∈ box−1
Φ (l). The label of a

box-cell is marked as !p. The names or types of ports and cells can be omitted.

I Definition 2 ((Pre-)order on the ports of a pre-proof-structure). Let Φ be a gs. The binary
relation <1

Φ on PΦ is defined by: p <1
Φ q if there exists l ∈ CΦ such that p ∈ Ppri

Φ (l) and
q ∈ Paux

Φ (l). The preorder relation ≤Φ on PΦ is the reflexive-transitive closure of <1
Φ. When

p ≤Φ q we say that q is above p. We write p <Φ q if p ≤Φ q and p 6= q.

In a pps Φ, the binary relation ≤Φ has a geometric meaning (note that Cbox
Φ and boxΦ, as

well as tcΦ, Pleft
Φ and tpΦ, play no role in Def. 2): for any p, q ∈ PΦ, if p ≤Φ q then in the direc-

ted graph G(Φ) there is a directed path from q to p that does not cross any ax-cell or cut-cell.

I Remark 3 (Predecessor of a port). Let Φ be a pps. For all p ∈ Paux
Φ r Paux

Φ (Ccut
Φ ), there

is a unique q ∈ PΦ (denoted by predΦ(p), the predecessor of p) such that q <1
Φ p; moreover

predΦ(p) 6= p. Indeed, by hypothesis p is a premise of some cell of Φ, but the only cells with
more than one conclusion are the ax-cells, which have no premises; so, p is a premise of a cell
of Φ having just one conclusion q; also, tpG(q) is a proper subformula of tpΦ(p), thus p 6= q.

I Fact 4 (Tree-like order on ports). Let Φ be a pps: ≤Φ is a tree-like order relation on PΦ. Proof at p. 16

According to Fact 4, a pps Φ cannot have “vicious cycles” like for example a cell l such
that Ppri

Φ (l) ∩ Paux
Φ (l) 6= ∅ (i.e. a port is both a premise and a conclusion of l).

The names of ports and cells of a pps (ports and cells being nothing but their names) will
be important to define the labelled Taylor expansion (Def. 13), a more informative variant of
the usual Taylor expansion (Def. 17). Nevertheless, a precise answer to the question “When
two pps can be considered equal?” leads naturally to the notion of isomorphism between
pps (Def. 5), inspired by the notion of isomorphism between graphs: intuitively, two pps are
isomorphic if they are identical up to the names of their ports and cells.

I Definition 5 (Isomorphism on ground-structures and pre-proof-structures). Let Φ, Ψ be pps.
An isomorphism from GΦ to GΨ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that the diagrams in Fig. 2a commute. We write then ϕ : GΦ ' GΨ .
An isomorphism from Φ to Ψ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that ϕ : GΦ ' GΨ , im(ϕC�Cbox
Φ

) = Cbox
Ψ , im(ϕP�DoorsΦ) = DoorsΨ and the

diagram in Fig. 2b commutes. We write then ϕ : Φ ' Ψ .
If there is an isomorphism from Φ to Ψ , we say: Φ and Ψ are isomorphic and we write Φ ' Ψ .

The relation ' is an equivalence on the set of pps. Equivalence classes for ' share the
same graphical representation up to the order of the premises of their !- and ?-cells: any such
a representation can be seen as a canonical representative of an equivalence class.
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I Remark 6. Let Φ and Ψ be some pps with ϕ = (ϕP , ϕC) : GΦ ' GΨ . We have:
1. card(Paux

Φ (l)) = card(Paux
Ψ (ϕC(l))) for every l ∈ CΦ, in particular Φ is fat (resp. strongly

fat) iff Ψ is fat (resp. strongly fat); moreover, P free
Ψ = ϕP(P free

Φ ) and Cfree
Ψ = ϕC(Cfree

Φ );
2. for every p, q ∈ PΦ, p ≤Φ q implies ϕP(p) ≤Ψ ϕP(q) (ϕP is non-decreasing).

DiLL-, DiLL0- and MELL-proof-structures A pps Φ is a very “light” structure and in order
to associate with any l ∈ Cbox

Φ the sub-pps of Φ usually called the box of l, some conditions
need to be satisfied: for example, boxes have to be ordered by a tree-like order (nesting), cut-
and ax-cells cannot cross the border of a box, etc. We introduce here some restrictions to
pps in order to define proof-structures corresponding to some fragments or extension of LL:
MELL, DiLL and DiLL0. Full differential linear logic (DiLL) is an extension of MELL (with the
same language as MELL) provided with both promotion rule (i.e. boxes) and co-structural
rules (the duals of the structural rules handling ?-modality) for the !-modality: DiLL0 and
MELL are particular subsystems of DiLL, respectively corresponding to the promotion-free
(i.e. without boxes) fragment of DiLL and the fragment of DiLL without co-structural rules.
Our interest for DiLL is just to have an unitary syntax subsuming MELL and DiLL0: for this
reason, unlike [17, 21], our DiLL-ps are not allowed to contain a set of DiLL-ps inside a box.

I Definition 7 (DiLL0-proof-structure). A DiLL0-proof structure (DiLL0-ps or diffnet for short)
is a pps Φ with Cbox

Φ = ∅. The set of DiLL0-ps is denoted by PSDiLL0 , and ρ, σ, . . . range over it.

So, a DiLL0-ps ρ is a pps without box-cells: in this case, boxρ is the empty function. Thus,
any DiLL0-ps ρ can be identified with its gs Gρ.

To define the conditions that a pps has to fulfill to be a DiLL-ps, we first extend the partial
function boxΦ to a function boxext

PΦ that associates with every port p of Φ the “deepest” box-cell
(if any) whose box contains p; it returns a dummy element • if p is not contained in any box.

I Definition 8 (Extension of boxΦ). Let Φ be a pps. The extension of boxΦ is a function
boxext

Φ : PΦ → Cbox
Φ ∪ {•} defined as follows: for any p ∈ PΦ,

boxext
PΦ(p) =

{
boxΦ(max≤Φ(↓PΦ p ∩ DoorsΦ)) if ↓PΦ p ∩ DoorsΦ 6= ∅
• otherwise.

For any pps Φ, the function boxext
PΦ is well-defined since, for all p ∈ PΦ, the set ↓PΦ p ∩

DoorsΦ is finite and totally ordered by ≤Φ, according to Fact 4: therefore the greatest
element of ↓PΦ p ∩ DoorsΦ exists as soon as ↓PΦ p ∩ DoorsΦ 6= ∅.

In a pps Φ, computing boxext
Φ from boxΦ is simple. Given a port p of Φ, consider the

maximal downwards path starting from p in the directed graph G(GΦ): the first time the
path bumps into a port q ∈ DoorsΦ (if any), we set boxext

PΦ(p) = boxΦ(q); if the path does not
bump into any q ∈ DoorsΦ, then boxext

PΦ(p) = •.

I Definition 9 (Preorder on box-cells of a pre-proof-structure). Let Φ be a pps. The binary
relation ≤Cbox

Φ
on Cbox

Φ is defined by: l ≤Cbox
Φ
l′ (say l′ is above l) iff there are p, p′ ∈ DoorsΦ

such that p ≤Φ p′, boxΦ(p) = l and boxΦ(p′) = l′. We write l <Cbox
Φ
l′ if l ≤Cbox

Φ
l′ and l 6= l′.

The binary relation ≤Cbox
Φ
∪{•} on Cbox

Φ ∪ {•} is defined by: l ≤Cbox
Φ
∪{•} l

′ if either l ≤Cbox
Φ
l′

or l = •. We write l <Cbox
Φ
∪{•} l

′ when l ≤Cbox
Φ
∪{•} l

′ and l 6= l′.

In any pps Φ, ≤Cbox
Φ

is a preorder on Cbox
Φ , since ≤Φ is a preorder on PΦ. The preorder

≤Cbox
Φ
∪{•} is the extension of ≤Cbox

Φ
obtained by adding • as least element.

In Figure 1d, Ξ1 is a pps such that ≤Cbox
Ξ1

is not an order on Cbox
Ξ1

; Ξ2 is a pps such that
≤Cbox

Ξ2
is an order but not a tree-like order on Cbox

Ξ2
. A condition that a pps Φ must fulfill to be
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X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥

?

?⊥

!p

!1
!p

!!1

!

!(X `X⊥)

X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥ !

!1

!

!

!!1

! ?

?⊥

!

!(X `X⊥)

(a) A DiLL-ps S which is neither a MELL-ps nor a DiLL0-ps.

1

1

!p

!1

1

1

!

!1

!

(b) A MELL-ps R1 which is not a
DiLL0-ps.

1

1

!

!1
(c)A DiLL0-ps R2 which
is not a MELL-ps.

Figure 3 Some examples of DiLL-ps. In R1 (Fig. 3b) Cbox
R1 = {l} and boxR1 is the empty function. In

R2 (Fig. 3c) Cbox
R2 = ∅, so boxR2 is the empty function. Both S (Fig. 3a) and R1 (Fig. 3b) are in two dif-

ferent presentations: the “arrow-like” one (on the left) and the “inductive-like” one (on the right).

a DiLL-ps is just that ≤Cbox
Φ

is a tree-like order (or equivalently, ≤Cbox
Φ
∪{•} is a rooted tree-like

order whose root is •): this amounts to the nesting of boxes (see [13] or Appendix B).

I Definition 10 (DiLL-proof-structure and MELL-proof-structure). A DiLL-proof-structure
(DiLL-ps for short) is a pps Φ such that:
1. ≤Cbox

Φ
is a tree-like order on Cbox

Φ ;
2. boxext

PΦ(p)=boxext
PΦ(q) for all l∈Cax

Φ with Ppri
Φ (l)={p, q} and all l∈Ccut

Φ with Paux
Φ (l)={p, q};

3. for all p ∈ Doors!
Φ ∪ Doors?

Φ, one has boxΦ(p) 6= boxext
PΦ(predΦ(p));

4. for all l ∈ Cbox
Φ ∪{•} and p ∈Doors!

Φ, if l <Cbox
Φ
∪{•} boxΦ(p) then l ≤Cbox

Φ
∪{•} boxext

PΦ(predΦ(p)).

A MELL-proof-structure (MELL-ps for short) is a DiLL-ps Φ such that Cbox
Φ = C!

Φ. The set
of DiLL-ps (resp. MELL-ps) is denoted by PSDiLL (resp. PSMELL) and R,S, . . . range over it.

In Def. 10, condition 2 means that a cut-cell (resp. ax-cell) cannot cross the border of a
box, i.e. its premises (resp. conclusions) belong to the same boxes; the pps Φ in Fig. 1a does
not fulfill condition 2. Condition 3 in Def. 10 entails that two ports on the border of the same
box cannot be above each other (in the sense of ≤Φ); the pps Ψ1 and Ψ2 in Fig. 1b do not
fulfill condition 3. Condition 4 in Def. 10 implies that the border of a box cannot have more
than one !-cell; the pps X in Fig. 1c does not fulfill condition 4. See [13] for more details.

In [13] (or equivalently Appendix B) we show that the information encoded in a DiLL-ps
R is enough to associate a box Rl with any box-cell l of R. So, as usual for LL, Rl can be
graphically depicted (instead of using dotted arrows to pick out box−1

R (l)) by a rectangular
frame containing all ports in inboxR(l). Some examples of DiLL-ps are in Fig. 3.

I Definition 11 (Content of the box, depth). Let R be a DiLL-ps.
For any l ∈ Cbox

R , the content of the box of l is inboxR(l) = {q ∈ PR | l ≤Cbox
R

boxext
PR(q)}.

The function boxext
CR : CR → Cbox

R is defined by: for every l ∈ CR r Ccut
R (resp. l ∈ Ccut

R ), we
set boxext

CR(l) = boxext
PR(p) where p ∈ Ppri

R (l) (resp. p ∈ Paux
R (l)).4

For every p ∈ PR and l ∈ CR, the depths of p and l in R are defined as follows:
depthR(p) = card(↓Cbox

R
(boxext

PR(p))) and depthR(l) = card(↓Cbox
R

(boxext
CR(l))).

We set P0
R = {p ∈ PR | depthR(p) = 0}, C0

R = {l ∈ CR | depthR(l) = 0} and Cbox0
R =

Cbox
R ∩ C0

R. The depth of R is depth(R) = sup{depthR(p) ∈ N | p ∈ PR}.

Given a DiLL-ps R, for any box-cell l in R, inboxR(l) represents the set of ports contained
in the box of l. According to Definition 11, the meaning of boxext

PR is clear: for any port p of
R, ↓Cbox

R
(boxext

PR(p)) = {l ∈ Cbox
R | p ∈ inboxR(l)} is the set of boxes in R containing p, and if

boxext
PR(p) = • then p has depth 0 (no box in R contains p), otherwise boxext

PR(p) is the deepest

4 For every l ∈ CR, boxext
CR(l) is well-defined by condition 2 in Def. 10. Note that, for any l ∈ Cbox

R , boxext
CR(l)

is the immediate predecessor of l in the tree-like order ≤Cbox
R
∪{•}.
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box-cell in R whose box contains p; the depth of p in R is the number of nested boxes in R
containing p. According to Def. 11, for any box-cell l, depthR(pridR(l)) = depthR(l) + 1.

3 Computing the Taylor expansion of a DiLL-proof-structure

The Taylor expansion of a MELL-ps, or more generally a DiLL-ps, R is a (usually infinite) set
of DiLL0-ps: roughly speaking, each element of the Taylor expansion of R is obtained from
R by replacing each box B in R with n copies of its content (for any n ∈ N), recursively on
the depth of R. Note that n depends not only on B but also on what “copy” of the contents
of all boxes containing B we are considering. Usually, the Taylor expansion of MELL-ps
[16, 18] is defined globally and inductively: with every MELL-ps R is directly associated its
Taylor expansion (the whole set!) by induction on the depth of R. We adopt an alternative
approach, which is pointwise and non-inductive: visually, it is exemplified by Fig. 4.

We introduce here Taylor-functions: a Taylor-function of a DiLL-ps R ascribes recursively
a number of copies for each box of R. Any element of the Taylor expansion of R can be
built from (at least) one element of the proto-Taylor expansion T proto

R of R, T proto
R being the

set of Taylor-functions of R. We build in this way a more informative version of the Taylor
expansion of R, the labelled Taylor-expansion TR of R: one of the advantages of our pointwise
and non-inductive approach is that it is easy to define the correspondence between ports and
cells of any element ρ of the Taylor expansion of R and ports and cells of R (an operation
intuitively clear but very awkward to define with the global and inductive approach), and to
differentiate the various copies in ρ of the content of a same box in R. For this purpose, any
port (or cell) of any DiLL0-ps in the labelled Taylor expansion of R is of the shape (p, a),
where p is the corresponding port (or cell) of R and the finite sequence a has to be intended
as a list of indexes saying in which copy of the content of each box (p, a) is. These indexes
are a syntactic counterpart of the ones used in the definition of k-experiment of PLPS in [6,
Def. 35]. The information encoded in any element of the labelled Taylor expansion will be
useful to prove some fundamental lemmas in §4. The usual Taylor expansion of a DiLL-ps R
(whose elements do not contain this information, Def. 17) is then the quotient of TR modulo
isomorphism, i.e. modulo renaming of ports and cells of any DiLL0-ps in TR.

I Definition 12 (Taylor-function of a DiLL-proof-structure). Let R be a DiLL-ps.
A Taylor-function of R is a function f : Cbox

R ∪ {•} →Pfin(N∗) such that:
1. (depth compatibility) f(•) = {( )} and, for any l ∈ Cbox

R and a ∈ f(l), |a| = depthR(pridR(l));
2. (vertical downclosure) for all l, l′ ∈ Cbox

R such that l ≤Cbox
R
l′, with k = depthR(pridR(l)) and

k′= depthR(pridR(l′)) (so k ≤ k′), if (n1, . . . , nk, . . . , nk′) ∈ f(l′) then (n1, . . . , nk) ∈ f(l).
The proto-Taylor expansion of R is the set T proto

R of Taylor-functions of R.

Note that the notion of Taylor-function of a DiLL-ps R relies only on the tree-like order
on Cbox

R , hence we could define the Taylor-function of any tree. By the vertical downclosure
condition, any Taylor-function of a DiLL-ps R can be naturally presented as a tree-like order
which is an “level-by-level expansion” of the tree-like order on Cbox

R : see Fig. 4a-4c.
Our approach in defining the elements of the Taylor expansion of a DiLL-ps R separates the

analysis of the number of copies to take for each (copy of) box of R (this information is given
by any Taylor-function of R and is the most important one) from the operation of copying the
content of each box (given by the function τR defined below). Indeed, with any Taylor-function
of R one can easily associate an element of the (labelled) Taylor expansion of R (Def. 13).

I Definition 13 (Labelled Taylor expansion). Let R be a DiLL-ps.
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The function τR : T proto
R → PSDiLL0 associates with any f ∈ T proto

R a DiLL0-ps τR(f) defined
by: Cbox

τR(f) = ∅, boxτR(f) is the empty function, and

PτR(f) = {(p, a) | p ∈ PR and a ∈ f(boxext
PR(p))}

CτR(f) = {(l, a) | l ∈ CR and a ∈ f(boxext
CR(l))}

tcτR(f)((l, a)) = tcR(l) for every (l, a) ∈ CτR(f)

Ppri
τR(f)((l, a)) = {(p, a) | p ∈ Ppri

R (l)} for every (l, a) ∈ CτR(f)

Paux
τR(f)((l, a)) = {(p, b) | p∈Paux

R (l), a v b ∈ f(boxext
PR(p))} for any (l, a)∈CτR(f)

Pleft
τR(f)((l, a)) = (Pleft

R (l), a) for every (l, a) ∈ C⊗,`τR(f)

tpτR(f)((p, a)) = tpR(p) for every (p, a) ∈ PτR(f)

The labelled Taylor expansion of R is the set of DiLL0-ps TR = im(τR).

The proof that τR(f) is a DiLL0-ps for any DiLL-ps R and any Taylor-function f of R, is
left to the reader. The set TR (as well as T proto

R ) is infinite iff depth(R) > 0.
Note that when l ∈ Cbord

R , the condition a v b when defining Paux
τR(f)((l, a)) in Def. 13 plays

a crucial role: for instance, given the MELL-ps R as in Fig. 4a and the Taylor-function f of
R as in Fig. 4c, the premises of the !-cell (l1, (1)) of τR(f) (whose conclusion is (r1, (1)) in
Fig. 4d) are (p1, (1, 1)), (p1, (1, 2)), (p1, (1, 3)), and not (p1, (2, 1)), since (1) 6v (2, 1).

I Remark 14 (Canonicity). Given a DiLL-ps R and f ∈ T proto
R , we say that f is canonical if

(horizontal downclosure) for every l ∈ Cbox
R , if (n1, . . . , nm) ∈ f(l) then n1, . . . , nm ∈ N+

and (n1, . . . , nm−1, k) ∈ f(l) for any 1 ≤ k ≤ nm.
A ρ ∈ TR is canonical if ρ = τR(f) for some canonical f ∈ T proto

R . In any canonical DiLL0-ps
of TR the various copies of the content of a box are numbered sequentially. It can easily be
shown that for any ρ ∈ TR, there is a canonical σ ∈ TR such that ρ ' σ.

The next example shows how to compute an element ρ of the labelled Taylor expansion of a
DiLL-ps R starting from R and a Taylor-function of R. It shows also the information encoded
in ρ with respect to R: the correspondence between ports (and cells) of ρ and ports (and cells)
of R, and the differentiation of the various copies in ρ of the content of a same box in R.

I Example 15. Let R be the MELL-ps as in Fig. 4a (the tree-like order on Cbox
R is in Fig. 4b)

and f be the Taylor-function of R as in Fig. 4c. The DiLL0-ps τR(f) ∈ TR obtained from f by
applying Def. 13 is in Fig. 4d. Note that the ports (p2, (1, 2)) and (p2, (2, 1)) are two ports
of τR(f) corresponding to the port p2 of R: more precisely, (p2, (1, 2)) (resp. (p2, (2, 1))) is in
the second (resp. first) copy of the content of the box of l1 which is in the first (resp. second)
copy of the content of o. Analogously for the other ports and cells of τR(f).

I Definition 16 (Forgetful functions). Let R ∈ PSDiLL and ρ ∈ TR. The forgetful functions
forgetρ,RP : Pρ → PR and forgetρ,RC : Cρ → CR are defined by: forgetρ,RP ((p, a)) = p and
forgetρ,RC ((l, b)) = l for all (p, a) ∈ Pρ and (l, b) ∈ Cρ.

By forgetting the indexes associated with the ports and cells of ρ ∈ TR, the functions
forgetρ,RP and forgetρ,RC make explicit the correspondence (neither injective nor surjective)
between ports and cells of ρ and ports and cells of R, implicitly given in Def. 13.

It is easy to show that, even if the function τR for any DiLL-ps R is injective, there may
exist two different Taylor-functions of R whose images via τR are different but isomorphic:
the labelled Taylor expansion of a DiLL-ps may contain several elements which are isomorphic
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p1:⊥ p2:⊥ q1:1 q2:⊥ q3:1 q4:⊥

r3 :⊥ s4 :⊥

ax ⊥

⊥ ⊥

⊥ ⊥ 1

cut

!

r2 : !1

!
!

r1 : !⊥

!

!

s2 : !!1

! ?

s3 :?⊥

?

s1 :?!⊥

(a) A MELL-ps R, where o (resp. l1;l2) is the box-
cell whose conclusion is of type !!1 (resp. !⊥; !1).

o

l1 l2

(b) The tree-like order on Cbox
R .

o

(1, 1) (1, 2) (1, 3)

l1 l2

(1)

l1

(2, 1) (2, 1)

l2

(2, 2)

(2)

(3, 1)

l1 l2

(3)

(c) The tree-like presentation of a Taylor-function f of R defined by: f(o) =
{(1), (2), (3)}, f(l1) = {(1, 1), (1, 2), (1, 3), (2, 1)} and f(l2) = {(2, 1), (2, 2), (3, 1)}.

(p1,(1,1)) (p1,(1,2)) (p1,(1,3)) (p1,(2,1)) (p2,(1,1)) (p2,(1,3)) (q1,(2,1)) (q2,(2,1)) (q3,(2,1)) (q1,(2,2)) (q2,(2,2)) (q3,(2,2)) (q1,(3,1)) (q2,(3,1)) (q3,(3,1))

(p2,(1,2)) (p2,(2,1)) (q4,(2,1)) (q4,(2,2)) (q4,(3,1))

(r1, (3))

(r3, (1)) (r3, (2)) (r3, (3)) (r2, (1))
(s4, ( ))

ax ax ax

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥

⊥ ⊥ ⊥ ⊥

!

!

⊥

⊥

⊥

⊥

1 1 1

cut cut cut

!

(r2, (2))

!

(r2, (3))

!

(r1, (1))

!

(r1, (2))

!

(s2, ( ))

?

(s3, ( ))

?

s1 :?!⊥

(d) A DiLL0-ps τR(f) ∈ TR (types of the ports are omitted).

Figure 4 From a MELL-ps R (Figure 4a) to an element of the labelled Taylor expansion of R
(Figure 4d), via a Taylor-function of R (Figure 4c). See also Example 15.

and differ from each other only by the name of their ports and cells. Moreover, the Taylor
expansion is not closed by isomorphism: from ρ ∈ TR for some DiLL-ps R and σ ' ρ, it
does not follow that σ ∈ TR (and there might even exist a DiLL-ps S 6' R with σ ∈ TS).
This means that, although ρ and σ are isomorphic as DiLL0-ps, all the information about R
available in ρ thanks to the names of its ports and cells is lost in σ.

The definition of Taylor expansion of a MELL-ps coming from [10] and used in [16, Def. 9]
and [18, Def. 5] forgets all the information encoded in our labelled Taylor expansion.

I Definition 17 (Taylor expansion of a DiLL-proof-structure). Let R be a DiLL-ps. The Taylor
expansion of R is T 'R =

{
{τ ∈ PSDiLL0 | τ ' ρ} | ρ ∈ TR

}
.

Let R be a DiLL-ps: the binary relation ≈R on PSDiLL0 defined by “τ ≈R τ ′ iff there
is ρ ∈ TR such that τ ' ρ ' τ ′” is a partial equivalence relation, and, for any ρ ∈ TR,
{τ ∈ PSDiLL0 | τ ' ρ} is a partial equivalence class on PSDiLL0 modulo ≈R. Morally, T 'R is
the quotient of TR modulo isomorphism, i.e. modulo renaming of ports and cells of each
element of TR: any element of T 'R can be seen as an element of TR where all the information
encoded in the names of its ports and cells is forgotten. Clearly, if R ' S then T 'R = T 'S .

Let us stress the differences between TR and T 'R of a DiLL-ps R. Given a (co-)contraction
cell l of ρ ∈ TR (i.e. l ∈ C!,?

ρ and card(Paux
ρ (l)) ≥ 2), it is possible to distinguish if l is a “real”

(co-)contraction (i.e. the corresponding !- or ?-cell l′ of R has at least 2 premises) or not (and
then l′ is in the border of some box and has only one premise which is in Doors!

R ∪Doors?
R):

only in the first case there are two premises (p, a) and (q, b) of l with p 6= q. We can make
this distinction via the information encoded in the names of ports and cells of ρ ∈ TR, but in
general we are not able to do that in (any representative of) an element of T 'R .
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p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(a) R ∈ PSMELL.

p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(b) S ∈ PSMELL.

l o

(1) (2) (1) (2)

(c) f ∈ T proto
R ∩T proto

S defined
by: f(l) = {(1), (2)} = f(o).

(p, (1)) (p, (2)) (q, (1)) (q, (2)) (r, (1)) (r, (2))
⊥ ⊥ ⊥ ⊥ 1 1

!

(s, ( ))

?

(t, ( ))

!

(u, ( ))
(d) τ ∈ TR ∩ TS .

Figure 5 Two non-isomorphic MELL-ps R (Fig. 5a) and S (Fig. 5b), where Cbox
R = {l, o} = Cbox

S .
The DiLL0-ps τ ∈ TR ∩ TS (Fig. 5d) is generated by the Taylor-function f of R and S (Fig. 5c).

Nevertheless, the information encoded in the labelled Taylor expansion of a DiLL-ps has
some limitations: in general, a DiLL-ps R is not completely characterized by any ρ ∈ TR
(even if ρ is R-fat or strongly R-fat, see Def. 18 below), i.e. the fact that ρ ∈ TR ∩ TS for
some DiLL-ps R and S does not imply R ' S. For instance, the DiLL0-ps τ in Fig. 5d is an
element of both TR and TS , where R and S are as in Fig. 5a and 5b, respectively.

Elements of special interest of the labelled Taylor expansion of a DiLL proof-structure

I Definition 18 (R-fatness, k-diffnet of a DiLL-ps). Let R ∈ PSDiLL, ρ ∈ TR and k ∈ N.
ρ is R-fat (resp. strongly R-fat) if, for every (l, b) ∈ C!

ρ such that l ∈ Cbox
R , one has

card(Paux
ρ ((l, b))) ≥ 1 (resp. card(Paux

ρ ((l, b))) ≥ 2);
ρ is a k-diffnet of R if card(Paux

ρ ((l, b))) = k for any (l, b)∈C!
ρ such that l∈Cbox

R .

Given a DiLL-ps R and ρ ∈ TR: ρ is R-fat (resp. strongly R-fat) when ρ is obtained by
taking at least one (resp. two) copies of the content of any box in R; ρ is a k-diffnet of R
when ρ is obtained by taking exactly k copies of the content of any box in R. Any k-diffnet
of R with k ≥ 1 (resp. k ≥ 2) is R-fat (resp. strongly R-fat). Given k ∈ N, all k-diffnets of R
are isomorphic, and there is a unique canonical k-diffnet of R. Following [6, Def. 16], it can
be shown that the LPS of R is univocally determined by any R-fat ρ ∈ TR.

I Fact 19 (Isomorphism of gs). Let R,S∈PSDiLL and ρ (resp. σ) be a 1-diffnet of R (resp. S). Proof at p. 18

1. The functions forgetρ,RP and forgetρ,RC are bijective, and (forgetρ,RP , forgetρ,RC ) : Gρ ' GR.
2. Suppose ϕ1 : ρ ' σ. Let ϕP : PR → PS and ϕC : CR → CS be functions defined by (for all

p∈PR, l∈CR and a, b∈N∗ with (p, a)∈Pρ and (l, b)∈Cρ): ϕP(p) = forgetσ,SP (ϕ1P((p, a)))
and ϕC(l) = forgetσ,SC (ϕ1C((l, b))). Then, ϕP and ϕC are bijective and (ϕP , ϕC) : GR ' GS.

The fact that ρ ∈ TR for some DiLL-ps R and σ ' ρ do not imply that σ ∈ TR (and there
may exist a DiLL-ps S 6' R such that σ ∈ TS), so all the information about R available in ρ
thanks to the names of its ports and cells is lost in σ, though ρ and σ “morally” represent
the same object: in general looking at σ one is not able to recognize where the border of the
boxes in R are. Fact 19.2 only says that if R,S are DiLL-ps and ρ (resp. σ) is the 1-diffnet
of R (resp. S) with ϕ1 : ρ ' σ, then ϕ1 induces an isomorphism ϕ from the gs GR of R to
the gs GS of S, but in general ϕ does not make diagram in Fig. 2b (Def. 5) commute. This
is not surprising, since a 1-diffnet of a DiLL-ps R is essentially the gs of R (Fact 19.1), i.e. R
having forgotten the border of boxes in R.

4 Connected case: computing a MELL-ps from its Taylor expansion

We show here our main result (Thm. 26): a connected (in the sense of Def. 22) MELL-ps R
is completely characterized by any γ ∈ T 'R strongly fat (according to Def. 1, (strong) fatness
is not defined for a set of pps, but this notion can be extended to a set of isomorphic pps
thanks to Remark 6.1). The idea is that, by means of the “geometry” of γ (the same in all
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elements of γ, since they are isomorphic), we can recover the information about R encoded
in the names of ports and cells of some suitable ρ ∈ TR ∩ γ: in particular, we can identify
the “real” contraction cells from the “fake” ones. A key-tool for this approach is the notion
of ?-accessibility (Def. 20): it allows to separate the different copies of the content of a box,
so it plays at a syntactic level the same role played by bridges in [6, Def. 73]. Intuitively, q is
a ?-accessible port from p if there is a path in G(Φ) seen as undirected graph (see page 5)
starting upward (since p0 6= pn in rules (iii)-(iv) of Def. 20) from p and ending in q, paying
attention that, when crossing downward a cell l with type ? (here “upward” and “downward”
are in the sense of the order relation ≤Φ of Def. 2), we require that all the premises of l are
reachable by a path starting upward from p.

I Definition 20 (?-path, ?-accessibility). Let Φ be a pps. A ?-path on Φ (from p0 to pn) is a
finite sequence (p0, . . . , pn) of ports of Φ defined by induction as follows:
(i) (p) is a ?-path for any p ∈ PΦ;
(ii) if ~p = (p0, . . . , pn) is a ?-path where pn ∈ Ppri

Φ (l) for some l ∈ CΦ, then ~p·q is a ?-path, for
any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn};

(iii) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux
Φ (l)r{p0} for some l ∈ CΦ such that tcΦ(l) 6= ?,

then ~p·q is a ?-path, for any q ∈ (Ppri
Φ (l) ∪ Paux

Φ (l)) r {pn};
(iv) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux

Φ (l)r{p0} for some l ∈ C?
Φ, if for any r ∈ Paux

Φ (l)
there is a ?-path from p0 to r, then ~p·q is a ?-path, for any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn}.

For every p ∈ PΦ, the set of the ?-accessible ports from p in Φ is defined as acces?
Φ(p) :=

{q ∈ PΦ | there is a ?-path in Φ from p to q}.

According to Def. 20, given a pps Φ and p ∈ PΦ, the set of ?-accessible ports from p in Φ
is upward-closed (rule (ii)): if q ∈ acces?

Φ(p) and q ≤R q′ then q′ ∈ acces?
Φ(p);

is “often” downward-closed (rules (iii)-(iv)): if q ∈ acces?
Φ(p) and q′ /∈ acces?

Φ(p) with q ∈
Paux
Φ (l) and q′∈ Ppri

Φ (l) for some l ∈ CΦ, then p ∈ Paux
Φ (l), or l ∈ C?

Φ and Paux
Φ (l) 6⊆ acces?

Φ(l);
crosses ax-cells and cut-cells (rules (ii)-(iii)): if l ∈ Cax

Φ then either Ppri
Φ (l) ⊆ acces?

Φ(p) or
Ppri
Φ (l)∩acces?

Φ(p) = ∅; if l ∈ Ccut
Φ then either Paux

Φ (l) ⊆ acces?
Φ(p) or Paux

Φ (l)∩acces?
Φ(p) = ∅.

The set Cbox
Φ and the partial function boxΦ play no role in Def. 20: in other words, ?-paths

and ?-accessibility can be equivalently defined in the gs GΦ of Φ.

I Remark 21. Recalling Remark 6.2, one can easily see that, if Φ and Ψ are pps such that
ϕ : GΦ ' GΨ , then for every p ∈ PΦ one has: ϕP(acces?

Φ(p)) = acces?
Ψ (ϕP(p)).

We now define the geometric key-notion of box-connectedness: a DiLL-ps is box-connected
if, seen as an undirected graph, what is inside any box is recursively connected, that is
(following [20, 6]), for any two ports p and q on the border of a same box, p and q are
connected by a path crossing only ports with depth at least the depth of p (and q). Formally,
our definition relies instead on ?-paths, which are a tool used in the proof of Lemma 23.

I Definition 22 (?-path inside a box, box-connectedness). Given R ∈ PSDiLL and l ∈ Cbox
R , a

?-path ~p = (p0, . . . , pn) in R is inside the box of l if pi ∈ inboxR(l) for all 0 ≤ i ≤ n.
A DiLL-ps R is box-connected if, for any l ∈ Cbox

R and p ∈ inboxR(l), there is a ?-path in
R from pridR(l) to p inside the box of l.

For example, the DiLL-ps R1 and R2 in Fig. 3b-3c, and R and S in Fig. 6a-6b are box-con-
nected; the DiLL-ps R and S in Fig. 4a and 3a are not box-connected. Clearly, any DiLL0-ps,
or more generally, any DiLL-ps R such that Doors?

R = ∅ = Doorscut
R , is box-connected.
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Figure 6 Two non-isomorphic box-connected MELL-ps R (Fig. 6a) and S (Fig. 6b), having in their
Taylor expansions the same element τ1 of order 1 (i.e. the set of DiLL0-ps isomorphic to a 1-diffnet
of R, Fig. 6c), but two different elements ρ2 (Fig. 6d) and σ2 (Fig. 6e) of order 2, respectively.

We stress that the box-connectedness condition (a crucial hypothesis in our main result) is
quite general and not ad hoc. Indeed, it can be proven that: any ACC5 DiLL-ps (in particular,
any MELL-ps coming from a derivation in MELL sequent calculus without mix-rule) having
neither ⊥-cells nor weakenings (i.e. ?-cells with no premises) inside boxes is box-connected;
any MELL-ps which is the translation of a λ-term (according to the call-by-name type identity
o = !o( o) is box-connected; box-connectedness is preserved under cut-elimination.

Box-connection and Taylor expansion Given a box-connected DiLL-ps R and a strongly
R-fat ρ ∈ TR, all information encoded in the indexes of ports and cells of ρ can be recovered in
a “geometric” way via ?-accessibility, without looking at the names of ports and cells of ρ: by
Lemma 23, in ρ the copy with index a of the content of the box associated with a box-cell l of
R is exactly the set of ?-accessible ports from the premise (pridR(l), a) of the !-cell (l, a–) of ρ.

I Lemma 23 (Geometric characterization of the copies of a box in an element of the labelled
Taylor expansion). Let R be a DiLL-ps, ρ ∈ TR and (p, a) ∈ Pρ with p = pridR(l) for some Proof at p. 20
l ∈ Cbox

R .6 Let P l,aρ = {(q, a·b) ∈ Pρ | b ∈ N∗ and q ∈ inboxR(l)}. If R is box-connected and ρ
is strongly R-fat, then P l,aρ = acces?

ρ((p, a)) and thus inboxR(l) = forgetρ,RP (acces?
ρ((p, a))).

In the proof of Lemma 23, the hypothesis of box-connectedness (resp. strong R-fatness)
ensures that the ?-accessible ports from (pridR(l), a) in ρ contain at least (resp. at most) all
the content of the copy with index a of the content of the box associated with the box-cell l
of R. In Fig. 5, τ is a 2-diffnet of both R and S (so is strongly R- and S-fat) but R and S
are not box-connected, and indeed the ?-accessible ports from any premise of a !-cell of ρ
does not cover all the copy of the content of one of the boxes associated with the box-cells l
and o of R and S. In Fig. 6, (any representative of) τ1 (Fig. 6c) is a 1-diffnet of S (hence τ1
is not strongly S-fat) and the ?-accessible ports from the premise of the !-cell of τ1 cover
more than the content of the box of box-cell of S: only in σ2 (Fig. 6e), taking two copies of
the content of the box, the ?-accessible ports correspond exactly to the content of the box.

A consequence of Lemma 23 (and Remark 21) is Cor. 24 below: given two box-connected
MELL-ps R and S, and ρ ∈ TR and σ ∈ TS strongly fat, any isomorphism ϕ between ρ and
σ “preserves” the boxes (Cor. 24.2) and the copies of the content of a box (Cor. 24.1).

I Corollary 24 (Boxes and copies preservation). Let R,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with Proof at p. 23
ϕ = (ϕP , ϕC) : ρ ' σ. If R and S are box-connected and ρ and σ are strongly fat, then for any
(p, a), (p′, a′) ∈ Pρ and (q, b), (q′, b′) ∈ Pσ with ϕP((p, a)) = (q, b) and ϕP((p′, a′)) = (q′, b′):

1. (copies preserv.) boxext
PR(p) = boxext

PR(p′) and a = a′ iff boxext
PS(q) = boxext

PS(q
′) and b = b′;

5 See [20, Def. A.6, Rmk. A.7] for the definition of ACC for MELL-ps, which can easily be adapted to
DiLL-ps: ?-cells (resp. !-cells which are not box-cells) are considered as generalized `-cells (resp. ⊗-cells).

6 This implies that (l, a–) ∈ C!
ρ and (p, a) ∈ Paux

ρ ((l, a–)), according to the definition of boxext
CR in Def. 11.
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2. (boxes preserv.) boxext
PR(p) = boxext

PR(p′) iff boxext
PS(q) = boxext

PS(q
′).

Cor. 24.2 says that if two ports of ρ correspond to two ports of R in the same boxes, then
their images in σ via ϕ corresponds to two ports of S in the same boxes, and conversely.
Cor. 24.1 means that if two ports of ρ are in the same copy of the content of a box in R or
correspond to ports with depth 0 in R, then their images in σ via ϕ are in the same copy of
a box in S or correspond to ports with depth 0 in S, and conversely. The idea of the proof
of Cor. 24.1 is that if two ports of ρ are in the same copy of a box in R, then (Lemma 23)
they are ?-accessible from the same premise of a !-cell of ρ and thus, since ?-accessibility is
preserved by isomorphism (Remark 21), their images via ϕ are ?-accessible from the same
premise of a !-cell of σ, hence (Lemma 23 again) they are in the same copy of a box in S.

Cor. 24 (together with Fact 19) is crucial in the proof of the next lemma, which shows
how to build an isomorphism φ between two box-connected MELL-ps R and S starting from
an isomorphism ϕ between ρ ∈ TR and σ ∈ TS strongly fat: roughly speaking, φ is just the
restriction of ϕ to only one copy (e.g. the first one) in ρ of the content of each box of R.

I Lemma 25 (Building isomorphism). Let R,S∈PSMELL, ρ∈TR and σ∈TS. Suppose ρ and σProof at p. 23
are strongly fat and canonical, and ϕ = (ϕP , ϕC) : ρ ' σ. Let φP : PR → PS and φC : CR → CS
be functions defined in Eq. (1). If R and S are box-connected, then φ = (φP , φC) : R ' S.

φP(p) = forgetσ,SP (ϕP((p, a))) for every p ∈ PR where (p, a) ∈ Pρ with a ∈ {1}∗;

φC(l) = forgetσ,SC (ϕC((l, a))) for every l ∈ CR where (l, a) ∈ Cρ with a ∈ {1}∗.
(1)

I Theorem 26. Let R and S be some box-connected MELL-ps. Let ρ0 ∈ T 'R and σ0 ∈ T 'S
be strongly fat. If ρ0 = σ0 then R ' S.

Proof. According to Def. 17, ρ0 = σ0 implies that there are ρ ∈ TR ∩ ρ0, σ ∈ TS ∩ σ0 and
ϕ = (ϕP , ϕC) : ρ ' σ. By Remark 14, we can suppose without loss of generality that ρ and σ
are canonical. By hypothesis, ρ and σ are strongly fat. By Lemma 25, there is φ : R ' S. J

We point out that Thm. 26 holds for any ρ0 ∈ T 'R strongly fat, in particular when ρ0 is
the point of order 2 of the Taylor expansion of R, i.e. ρ0 is the equivalence class of DiLL0-ps
isomorphic to a 2-diffnet of R (obtained by taking 2 copies of the content of each box in R).
If R or S is not box-connected, or ρ0 is not strongly fat, then in general R 6' S, see Fig. 5-6.

5 Conclusion: injectivity of the relational model

Thm. 26 has a semantic counterpart: the injectivity of relational semantics for box-connected
MELL-ps. The relational model is the simplest model of MELL; it can be seen as a degenerate
case of Girard’s coherent semantics [12], where formulas are interpreted as sets and proofs as
relations between them. It is more or less well-known that, given a MELL-ps R, there is a
correspondence between certain equivalence classes on its relational interpretation JRK and
elements of its Taylor expansion T 'R (see [13], or equivalently Appendix C, for a detailed
proof): in particular, if two cut-free MELL-ps with atomic axioms have the same relational
semantics, then they have the same Taylor expansion. Thus, from Thm. 26 it follows that:

I Corollary 27 (Injectivity for box-connected MELL). Let R and S be box-connected, cut-freeProof at p. 25
MELL-ps with atomic axioms and conclusions of the same type. If JRK = JSK, then R ' S.

Using different techniques, De Carvalho [4] proves the following, more general, theorem:

I Theorem 28 (De Carvalho [4], injectivity for full MELL). Let R and S be cut-free MELL-ps
with atomic axioms and conclusions of the same type. If JRK = JSK, then R ' S.
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The injectivity proven in [6] is the same as Cor. 27: two different box-connected, cut-free
MELL-ps with atomic axioms have different relational semantics. However, as stressed in §1,
Thm. 26 (and the proof of Cor. 27) differs a lot from the proof of Thm. 28 so as from the
result of [6]: [4, 6] rely on the presence, in the interpretations of MELL-ps, of points with
arbitrarily large complexity, depending on the two MELL-ps one wishes to discriminate. On
the other hand, our result allows to discriminate any two different box-connected, cut-free
MELL-ps with atomic axioms using a point of the relational semantics with fixed complexity.
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Technical appendix
A Notations and omitted proofs and remarks

A.1 Preliminaries and notations
Formulæ We set LMELL = {1,⊥,⊗,`, !, ?, ax, cut}.

Let VMELL be a countably infinite set whose elements, denoted by X,Y, Z, . . . , are called
propositional variables. The set FMELL of MELL formulas is generated by the grammar:

A,B,C ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A .

If Γ = (A1, . . . , An) is a finite sequence of MELL formulas (with n ∈ N), then `Γ =
A1 ` · · ·`An; in particular, if n = 0 then `Γ = ⊥.

For any A ∈ FMELL, the dual of A, denoted by (A)⊥ or A⊥, is inductively defined by:
(X)⊥ = X⊥, (X⊥)⊥ = X, (1)⊥ = ⊥, (⊥)⊥ = 1, (A ⊗ B)⊥ = (A)⊥ ` (B)⊥, (A ` B)⊥ =
(A)⊥ ⊗ (B)⊥, (!A)⊥ = ?(A)⊥ and (?A)⊥ = !(A)⊥. Therefore, A⊥⊥ = A for any A ∈ FMELL.

Sequences Let A be a set: A∗ is the set of finite sequences over A. Elements of A∗ are
denoted by (a1, . . . , an), where n ∈ N and ai ∈ A for any 1 ≤ i ≤ n. The empty sequence is,
in particular, denoted by ( ); often (a1) ∈ A∗ is denoted by a1.

If a = (a1, . . . , an) with n ∈ N, we set |a| = n and, if n > 0, a– = (a1, . . . , an−1).
Let a = (a1, . . . , an) and b = (b1, . . . , bm) with n,m ∈ N: the concatenation of a and b is

a·b = (a1, . . . , an, b1, . . . , bm). We write a v b if a·c = b for some finite sequence c.

Sets and orders Let A be a set: card(A) is the cardinality of A, P(A) is the power set of
A, Pfin(A) is the set of finite subsets of A,

⋃
A is the union of the elements of A.

A preorder on A is a reflexive and transitive binary relation on A. An order ≤ on A is
an antisymmetric preorder; we say then that A is ordered by ≤.

Let A be ordered by ≤. For every a ∈ A, we set ↓≤ a = {b ∈ A | b ≤ a}; if no ambiguity
arises, ↓≤ a is also denoted by ↓A a. We say that ≤ is a tree-like order if, for any a ∈ A, ↓A a
is a finite subset of A totally ordered by ≤.

Functions Let A,B be sets and f : A → B be a function (resp. partial function): we set
dom(f) = A (resp. dom(f) = {a ∈ A | f(a) is defined}) the domain of f, and im(f) = {f(a) |
a ∈ dom(f)} the image of f. Given A′ ⊆ A, the function (resp. partial function) f�A′ : A′ → B
is defined by dom(f�A′) = dom(f) ∩ A′ and f�A′(a) = f(a) for any a ∈ dom(f�A′).

The function (resp. partial function) f : P(A)→P(B) (the covariant powerset lifting of
f) is defined by f(A′) = {f(a) | a ∈ A′ ∩ dom(f)} for any A′ ⊆ A.

A.2 Omitted proofs and remarks of Section 2
I Fact 4 (Tree-like order on ports). Let Φ be a pps: ≤Φ is a tree-like order relation on PΦ.Stated at p. 5

Proof. Let p, q ∈ PΦ. By Remark 3, if p ≤Φ q and q ≤Φ p then p = q. So, ≤Φ is
antisymmetric and thus an order, according to Definition 2.

Let p, q, r ∈ PΦ with p ≤Φ r and q ≤Φ r. If p 6≤Φ q and q 6≤Φ p then there would be
p′, q′, r′ ∈ PΦ such that p′ 6= q′, p′ <1

Φ r
′ and q′ <1

Φ r
′, but this is impossible by Remark 3.

Thus, either p ≤Φ q or q ≤Φ p. So, for any r ∈ PΦ, the set ↓PΦ r is totally ordered (and finite
since PΦ is finite). J
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I Remark 29. Let Φ be a pps. It follows directly from Def. 1 and 8 that:

1. DoorsΦ = Doors!
Φ ∪ Doors?

Φ ∪ Doorscut
Φ , where Doors!

Φ, Doors?
Φ, Doorscut

Φ are pairwise
disjoint; moreover, DoorsΦ 6= ∅ iff Cbox

Φ 6= ∅ iff there is p ∈ PΦ such that boxext
PΦ(p) 6= •;

2. boxext
PΦ(p) = boxΦ(p) for any p ∈ DoorsΦ;

3. for all l ∈ CΦ and p, q ∈ PΦ with p ∈ Ppri
Φ (l) and q ∈ Paux

Φ (l), if l /∈ Cbord
Φ then boxext

PΦ(p) =
boxext
PΦ(q); the converse does not hold in general (see the pps Ψ1 in Figure 1b: the box-cell

l ∈ Cbord
Ψ but boxext

PΨ1
(p) = l = boxext

PΨ1
(q));

4. for every p ∈ PΦ, if boxext
PΦ(p) = • then boxext

PΦ(q) = • for all q ∈↓PΦ p;
5. boxext

PΦ(p) = • for all p ∈ P free
Φ , since the conclusions of Φ are minimal elements of PΦ with

respect to ≤Φ and P free
Φ ∩ DoorsΦ = ∅;

6. for every p ∈
⋃

Paux
Φ (Ccut

Φ ), boxext
Φ (p) = • if and only if p /∈ Doorscut

Φ .

I Remark 30. Let R a DiLL-ps.
1. By condition 3 in Def. 10, the converse of Remark 29.3 holds in R: for all l ∈ CR with

p ∈ Ppri
R (l) and q ∈ Paux

R (l), if l ∈ Cbord
R then boxext

PR(p) 6= boxext
PR(q).

2. By conditions 1 and 3-4 in Def. 10, a box-cell is in the border of exactly one box: for any
l ∈ Cbox

R with Ppri
R (l) = {p}, one has boxext

PR(p) <Cbox
R
∪{•} l and there is no l′ ∈ Cbox

R ∪ {•}
such that boxext

PR(p) <Cbox
R
∪{•} l

′ <Cbox
R
∪{•} l. This does not hold in general for ?-cells in

Cbord
R , since we use generalized ?-links: a premise of a ?-cell can cross the border of several

boxes, see for instance one of the premises of the ?-cell whose conclusion is of type ?⊥ in
Fig. 3a.

A.3 Omitted proofs and remarks of Section 3
In the original definition by [10] the Taylor expansion of a λ-term (of which the Taylor
expansion of DiLL-ps is a generalization) is a (usually infinite) linear combination of resource
λ-terms with scalars in some semiring. With respect to this paper scalars play no role, thus
we have defined the Taylor expansion of a DiLL-ps as just a set of DiLL0-ps, as in [16, 18].

I Remark 31. Let R be a DiLL-ps and ρ ∈ TR.
1. According to Remarks 29.3 and 30.1, for any (l, a)∈Cρ one has Paux

ρ ((l, a)) = {(p, a) | p ∈
Paux
R (l)} iff l /∈ Cbord

R . This ensures, in particular, that Pleft
τR(f) is well-defined in Def. 13.

2. By Remark 30.2 and the definition of boxext
CR in Def. 11, if l ∈ Cbox

R and (pridR(l), a) ∈ Pρ,
then (l, a–) ∈ C!

ρ and (pridR(l), a) is a premise of (l, a–); if moreover q ∈ inboxR(l), b ∈ N∗
and (q, b) ∈ Pρ, then a v b thanks to the vertical downclosure condition of Def. 12.

I Remark 32. Let R be a DiLL-ps and f be a Taylor-function of R, with ρ = τR(f) ∈ TR.
These facts follow immediately from Def. 12-13:

1. Any port or cell of ρ comes from a port or cell of R, i.e. if q ∈ Pρ then q = (p, a) where
p ∈ PR, a ∈ f(boxext

PR(p)) and |a| = depthR(p); in particular, if (p, ( )) ∈ Pρ then p ∈ P0
R.

Analogously for the cells of ρ. Moreover, the corresponding ports and cells of ρ and R
“play the same role”: for instance, given a cell (l, a) of ρ having (p, a) as a conclusion,
then l is a cell of R having p as a conclusion.

2. Ports of R contained in the same boxes have in ρ same indexes, i.e. for all a ∈ N∗ and
p, q ∈ PR such that boxext

PR(p) = boxext
PR(q), (p, a) ∈ Pρ iff (q, a) ∈ Pρ. Analogously for cells

of R. Also, the indexes of any cell of ρ and the ones in its conclusions are the same, i.e. if
(l, b) ∈ Cρ and (p, a) ∈ Ppri

ρ ((l, b)) then a = b (see definition of boxext
CR in Def. 11).
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p : 1
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(c) τR(g) ∈ TR

Figure 7 A MELL-ps R (Fig. 7a, where o and l are the box-cells with conclusion of type !1 and
!!1, respectively), and two different but isomorphic elements τR(f) (Fig. 7b) and τR(g) (Fig. 7c) of
TR, where f and g are the Taylor-functions of R defined in Example 33.

3. Due to depth compatibility condition of Def. 12, p ∈ P0
R (resp. l ∈ C0

R) iff (p, ( )) ∈ Pρ
(resp. (l, ( )) ∈ Cρ). In particular, there is a one-to-one correspondence between free ports
(resp. terminal cells) of R and free ports (resp. terminal cells) of ρ.

Given R ∈ PSDiLL and f ∈ T proto
R such that ρ = τR(f) ∈ TR, the functions f ◦ boxext

PR and
f ◦ boxext

CR are some kind of “inverses” of forgetρ,RP and forgetρ,RC , respectively: with every port
and cell of R, they associate the set of indexes of their corresponding ports and cells of ρ. In
other words, for every port p and cell l of R, f(boxext

PR(p)) and f(boxext
CR(l)) are the sets of the

“tracking numbers” of the copies of (the content of the boxes containing) p and l in ρ.

I Example 33. Let R be the MELL-ps as in Figure 7a and let f and g be the Taylor-functions
of R such that f(l) = {(1), (2)}, f(o) = {(1, 1), (2, 1), (2, 2)}, g(l) = {(1), (2)} and g(o) =
{(1, 1), (1, 2), (2, 1)}. Obviously, f 6= g, τR(f) 6= τR(g) (indeed, (p, (2, 2)) ∈ PτR(f) r PτR(g),
see Fig. 7b-7c) but τR(f) ' τR(g) (and τR(f), τR(g) ∈ TR).

I Definition 34 (Pruning of a Taylor-function). Let R be a DiLL-ps. Given f, g ∈ T proto
R , g is

a pruning of f if g(l) ⊆ f(l) for all l ∈ Cbox
R .

In the tree-like representation of Taylor-functions (see Fig. 4c), a pruning of a Taylor-
function f of R is obtained from f by removing some branches.

I Remark 35. Let R be a DiLL-ps and f ∈ T proto
R , with ρ = τR(f) ∈ TR.

1. If R is a MELL-ps, one has: ρ is fat (resp. strongly fat) iff ρ is R-fat (resp. strongly R-fat),
since in a MELL-ps !-cells and box-cells coincide.

2. If ρ is R-fat and p ∈ PR (resp. l ∈ CR), then there is some a ∈ N∗ such that (p, a) ∈ Pρ
(resp. (l, a) ∈ Cρ); if moreover ρ is canonical then such a a can be chosen such that a ∈ {1}∗.
This is false in general if ρ is not R-fat: given l ∈ Cbox

R , if for all !-cells in ρ corresponding
to l one takes 0 copies of the content of the box of l, then (pridR(l), a) /∈ Pρ for all a ∈ N∗.

3. By the vertical downclosure condition in Def. 12, τR(f) is R-fat (resp. strongly R-fat) iff for
any l∈Cbox

R and a∈ f(boxext
CR(l)), a·n∈ f(l) (resp. a·n, a·m∈ f(l)) for some n∈N (resp. n,m∈

N with n 6= m). Given k ∈ N, τR(f) is a k-diffnet of R iff for any l ∈ Cbox
R and a ∈

f(boxext
CR(l)) there are pairwise distinct n1, . . . , nk ∈ N such that f(l) = {a·n1, . . . , a·nk}.

4. If τR(f) is R-fat, then there is a pruning g ∈ T proto
R of f such that τR(g) is a 1-diffnet of R.

I Fact 19 (Isomorphisms between ground-structures). Let R, S be DiLL-ps, and ρ (resp. σ)Stated at p. 11
be a 1-diffnet of R (resp. S).
1. forgetρ,RP and forgetρ,RC are bijections, and (forgetρ,RP , forgetρ,RC ) : Gρ ' GR.
2. Suppose ϕ1 : ρ ' σ. Let ϕP : PR → PS and ϕC : CR → CS be functions defined by (for all

p∈PR, l∈CR and a, b∈N∗ with (p, a)∈Pρ and (l, b)∈Cρ): ϕP(p) = forgetσ,SP (ϕ1P((p, a)))
and ϕC(l) = forgetσ,SC (ϕ1C((l, b))). Then, ϕP and ϕC are bijective and (ϕP , ϕC) : GR ' GS.
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(a) A box-connected MELL-ps R
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⊥ax
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?
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!

!X⊥
!

⊗

?X ⊗ ?⊥
(b) A non-box-con-
nected MELL-ps S

Figure 8 A box-connected DiLL-ps R (Fig. 8a) and a non-box-connected DiLL-ps S (Fig. 8b).
The port p of R is not ?-accessible from the port q of R, but q is ?-accessible from p.

Proof.
1. Let f ∈ T proto

R be such that ρ = τR(f). By Remark 35.3, card(f(l))) = 1 for any
l ∈ Cbox

R , thus forgetρ,RP and forgetρ,RC are bijective. By construction (see also Re-
mark 32.1), forgetρ,RP and forgetρ,RC make diagrams in Fig. 2a (see Def. 5) commute,
hence (forgetρ,RP , forgetρ,RC ) : Gρ ' GR.

2. By Remark 35.2, the functions ϕP and ϕC are defined for any p ∈ PR and l ∈ CR,
respectively, since ρ is R-fat. From Fact 19.1 and since ϕ1 : ρ ' σ, it follows that ϕP and
ϕC are bijections and make diagram in Fig. 2b (see Def. 5) commute, by composition.
Therefore (ϕP , ϕC) : GR ' GS . J

I Definition 36 (Order of an element of the Taylor expansion). Let R be a DiLL-ps and k ∈ N.
A ρ0 ∈ T 'R is the element of order k of T 'R if ρ ∈ ρ0 for some k-diffnet ρ of R.

Recall that the elements of the Taylor expansion of a DiLL-ps are equivalences classes of
DiLL0-ps modulo isomorphism (Def. 17). According to Remark 6.1, given a DiLL-ps R, if ρ0
is the element of order k of T 'R , then all ρ ∈ ρ0 are isomorphic to any k-diffnet of R. Clearly,
for any k ∈ N the element of order k of T 'R exists and is unique. Roughly speaking, (any
representative of) the element of order k of T 'R is obtained by taking exactly k copies of the
content of each box in R.

A.4 Omitted proofs and remarks of Section 4
Note that L-accessibility cannot be defined as a binary symmetric relation on the ports of a
pps Φ: in general, q ∈ acces?

Φ(p) does not imply that p ∈ acces?
Φ(q), as exemplified by the

MELL-ps R in Fig. 8a with L = {?}.

I Remark 37. For any DiLL-ps R and l ∈ Cbox
R , if R is box-connected then inboxR(l) ⊆

acces?
R(pridR(l)). The converse is false: in the non-box-connected MELL-ps S in Fig. 8b, the

only box-cell l is such that inboxR(l) ⊆ acces?
R(pridR(l)).

The next lemma shows how, given a box B in a DiLL-ps R, the L-accessible ports in B
from the pri-door p of B are related to the L-accessible ports from a port corresponding to
p in a R-fat ρ ∈ TR.

I Lemma 38. Let R ∈ PSDiLL, let ρ ∈ TR be R-fat and (p, a) ∈ Pρ. For any l ∈ Cbox
R , if

pridR(l) = p, then acces?
ρ((p, a)) ⊇ {(q, a·b) ∈ Pρ | b ∈ N∗, q ∈ inboxR(l) and there is a ?-path

in R from p to q inside the box of l}.
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Proof. Let (q, a·b) ∈ Pρ for some b ∈ N∗ and q ∈ PR such that there is a ?-path in R from
p to q inside the box of l. We prove that there is a ?-path in ρ from (p, a) to (q, a·b) (and
then (q, a·b) ∈ acces?

ρ((p, a))) by induction on the definition of the ?-path ~r in R from p to q.
Consider the last rule in the construction of ~r (we follow the enumeration of Def. 20).
(i) ~r = (p), thus q = p and (by depth compatibility condition (1) in Def. 12) b = ( ), so

(q, a·b) = (p, a) and there is a ?-path in ρ from (p, a) to (q, a·b) according to the rule (i)
of Def. 20.

(ii) ~r = (p0, . . . , pn, q) with p0 = p and pn ∈ Ppri
R (l′) for some l′ ∈ CR such that pn 6= q ∈

Ppri
R (l′) ∪ Paux

R (l′). By Remarks 31.2 and 35.2-3, since ρ is R-fat and pn, q ∈ inboxR(l),
there is c ∈ N∗ such that c v b, (pn, a·c) ∈ Ppri

ρ ((l′, a·c)) and (q, a·b) ∈ Paux
ρ ((l′, a·c)). By

induction hypothesis, there is a ?-path ~s in ρ from (p, a) to (pn, a·c), and hence, according
to the rule (ii) of Def. 20, ~s·(q, a·b) is a ?-path in ρ from (p, a) to (q, a·b).

(iii) ~r = (p0, . . . , pn, q) with p0 = p and pn ∈ Paux
R (l′) for some l′ ∈ CR such that tc(l′) 6= ?

and pn 6= q ∈ Ppri
R (l′) ∪ Paux

R (l′). By Remarks 31.2 and 35.2-3, since ρ is R-fat and
pn, q ∈ inboxR(l), one has (l′, a·b) ∈ Cρ, (q, a·b) ∈ Ppri

ρ ((l′, a·b)) and there is c ∈ N∗ such
that b v c and (pn, a·c) ∈ Paux

ρ ((l′, a·b)). By induction hypothesis, there is a ?-path ~s in
ρ from (p, a) to (pn, a·c), and hence, by applying the rule (iii) of Def. 20, ~s·(q, a·b) is a
?-path in ρ from (p, a) to (q, a·b).

(iv) ~r = (p0, . . . , pn, q) with p0 = p and pn ∈ Paux
R (l′) for some l′ ∈ C?

R such that pn 6=
q ∈ Ppri

R (l′) ∪ Paux
R (l′) and, for any p′ ∈ Paux

R (l′), there is a ?-path from p0 to p′. By
Remarks 31.2 and 35.2-3, since ρ is R-fat and pn, q ∈ inboxR(l), one has (l′, a·b) ∈ Cρ
and, for any p′ ∈ Paux

R (l′) (in particular for p′ = pn), there is c ∈ N∗ such that b v c,
(p′, a·c) ∈ Paux

ρ ((l′, a·b)) and (q, a·b) ∈ Ppri
ρ ((l′, a·b)). By induction hypothesis, there is a

?-path in ρ from (p, a) to (p′, a·c) for any p′ ∈ Paux
R (l′). If there where some (q′, d) ∈ Paux

ρ (l′)
such that a 6v d then l′ ∈ Cbord

R and q /∈ inboxR(l), that is impossible. Hence, there is a
?-path in ρ from (p, a) to (q, a·b) by applying the rule (iv) of Def. 20. J

I Remark 39. Let R be a DiLL-ps and f ∈ T proto
R , with ρ = τR(f) ∈ TR. From Remarks 35.2-

3, it follows that, given l ∈ Cbox
R and p ∈ inboxR(l), if ρ is R-fat and card(f(l)) ≥ 2, then

there are b, c ∈ N∗ such that b 6= c, b 6v c, c 6v b and (p, b), (p, c) ∈ Pρ; and if moreover
predR(p) ∈ PR r inboxR(l) then, for any a ∈ N∗ such that (pridR(l), a) ∈ Pρ, either a 6v b or
a 6v c.

I Lemma 23 (Geometric characterization of the copies of the content of boxes in an element of
the labelled Taylor expansion). Let R be a DiLL-ps, let ρ ∈ TR and (p, a) ∈ Pρ with p = pridR(l)Stated at p. 13
for some l ∈ Cbox

R . Let P l,aρ = {(q, a ·b) ∈ Pρ | b ∈ N∗ and q ∈ inboxR(l)}. (Recall that
(l, a–) ∈ C!

ρ and (p, a) ∈ Paux
ρ ((l, a–)), according to Remark 31.2 above).

1. If card(Paux
ρ ((l, a–))) ≥ 2 (in particular, if ρ is strongly R-fat), then acces?

ρ((p, a)) ⊆ P l,aρ .
2. If ρ is R-fat and R is box-connected, then P l,aρ ⊆ acces?

ρ((p, a)).
3. If R is box-connected, and if ρ is R-fat and card(Paux

ρ ((l, a–))) ≥ 2 (in particular, if ρ is
strongly R-fat), then P l,aρ = acces?

ρ((p, a)) and thus inboxR(l) = forgetρ,RP (acces?
ρ((p, a))).

Proof.
1. We prove a stronger statement: if card(Paux

ρ ((l, a–))) ≥ 2 then any ?-path ~r = (r0, . . . , rn)
in ρ with r0 = (p, a) is such that ri ∈ P l,aρ for any 0 ≤ i ≤ n. The proof is by induction on
the definition ~r. Consider the last rule in the construction of ~r (we follow the enumeration
of Def. 20).

(i) ~r = ((p, a)), then n = 0 and r0 = (p, a) ∈ P l,aρ .
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(c) τ ∈ T 'R ∩ T 'S

Figure 9 Two non-isomorphic MELL-ps R (Fig. 9a) and S (Fig. 9b), having the same element τ
of order 2 in their Taylor expansions (Fig. 9c, see Def. 36). Note that R is not box-connected.

(ii) ~r = (r0, . . . , rn, rn+1) with r0 = (p, a) and rn ∈ Ppri
ρ (l′) for some l′ ∈ Cρ such that

rn 6= rn+1 ∈ Ppri
ρ (l′) ∪ Paux

ρ (l′). By induction hypothesis, ri ∈ P l,aρ for any 1 ≤ i ≤ n,
in particular rn = (q′, a ·b′) for some b′ ∈ N∗ and q′ ∈ inboxR(l). By construction,
rn+1 = (q, a·b) for some q ∈ inboxR(l) and b ∈ N∗, thus rn+1 ∈ P l,aρ .

(iii) ~r = (r0, . . . , rn, rn+1) with (p, a) = r0 6= rn ∈ Paux
ρ (l′) for some l′ ∈ Cρ r C?

ρ such that
rn 6= rn+1 ∈ Ppri

ρ (l′) ∪ Paux
ρ (l′). By induction hypothesis, ri ∈ P l,aρ for any 1 ≤ i ≤ n,

in particular rn = (q′, a ·b′) for some b′ ∈ N∗ and q′ ∈ inboxR(l). By construction,
l′ = (l′′, c) for some c ∈ N∗ and l′′ ∈ CR: since l′ /∈ C?

ρ, then l′′ /∈ C?
R. Moreover l′′ 6= l,

otherwise (as card(Paux
R (l)) = 1 and r0 6= rn) rn = (p, d) for some d ∈ N∗ such that

a 6v d, that is impossible since rn = (q′, a·b′). Hence, l′′ is not a cell on the border of the
box of l, and so rn+1 = (q, a·b) for some q ∈ inboxR(l) and b ∈ N∗, thus rn+1 ∈ P l,aρ .

(iv) ~r = (r0, . . . , rn, rn+1) with (p, a) = r0 6= rn ∈ Paux
ρ (l′) for some l′ ∈ C?

ρ such that
rn 6= rn+1 ∈ Ppri

ρ (l′) ∪ Paux
ρ (l′) and, for any r′ ∈ Paux

ρ (l′), there is a ?-path from r0 to
r′. By induction hypothesis, Paux

ρ (l′) ⊆ P l,aρ , so for any r′ ∈ Paux
ρ (l) (in particular, for

r′ = rn) there are b′ ∈ N∗ and q′ ∈ inboxR(l) such that r′ = (q′, a·b′). By construction,
l′ = (l′′, c) and rn+1 = (q, c) for some c ∈ N∗, l′′ ∈ C?

R and q ∈ Ppri
ρ (l′) ∪ Paux

R (l′′). By
Remark 39, q ∈ inboxR(l) and a v c, i.e. c = a·b for some b ∈ N∗. Hence, l′′ is not a
cell on the border of the box of l, and so rn+1 = (q, a·b) ∈ P l,aρ .

2. By Lemma 38, acces?
ρ((p, a)) ⊇ {(q, a·b) ∈ Pρ | b ∈ N∗, q∈ inboxR(l) and there is a ?-path

in R from p to q inside the box of l} = P l,aρ , according to the definition of box-connected
(Def. 22).

3. From Lemmas 23.1-2 it follows that P l,aρ = acces?
ρ((p, a)). Thus, forgetρ,RP (acces?

ρ((p, a))) ⊆
inboxR(l) by definition of P l,aρ and forgetρ,RP (Def. 16). Conversely, given q ∈ inboxR(l),
then there exists b ∈ N∗ such that (q, b) ∈ Pρ by Remark 35.2, since ρ is R-fat; according
to Remark 31.2, a v b and hence (q, b) ∈ P l,aρ = acces?

ρ((p, a)), thus q = forgetρ,RP ((q, b)) ∈
forgetρ,RP (acces?

ρ((p, a))). Therefore, inboxR(l) ⊆ forgetρ,RP (acces?
ρ((p, a))). J

Given a DiLL-ps R, ρ ∈ TR, a box-cell l of R and a copy with index a (in ρ) of the content
of the box of l, Lemma 23.1 says that if in ρ there are at least two copies of the content
of the box of l, then the ?-accessible ports in ρ from (pridR(l), a) (which is a premise of a
!-cell of ρ corresponding to l) are contained in the copy with index a of the content of the
box of l; Lemma 23.2 means that if ρ is R-fat and R is box-connected, then the ?-accessible
ports in ρ from (pridR(l), a) contains all the copy with index a of the content of the box of l.
Lemma 23.3 just puts together Lemmas 23.1-23.2. Fig. 6 and 9 give two counterexamples to
Lemma 23.3 if one of its hypotheses does not hold.

I Remark 40 (Box-cells preservation). Let R,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with ϕ =
(ϕP , ϕC) : ρ ' σ. Let a ∈ N∗ and l ∈ Cbox

R : if (pridR(l), a) ∈ Pρ then there are o∈Cbox
S and b∈
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Figure 10 A box-connected DiLL-ps R (Fig. 10a, with Cbox
R = {l} and C!

R r Cbox
R = {o}) and a

2-diffnet ρ (Fig. 10b) of R. See also Remark 40.
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Figure 11 Two box-connected and isomorphic MELL-psR and S (where Cbox
R = {l} and Cbox

S = {o}),
with ρ ∈ TR and σ ∈ TS strongly fat.

N∗ such that ϕP((pridR(l), a)) = (pridS(o), b) and ϕC((l, a–)) = (o, b–), as in a MELL-ps !-cells
and box-cells coincide.7 Analogously for any b ∈ N∗ and o ∈ Cbox

S with (pridS(o), b) ∈ Pσ.

Remark 40 is false in general if R or S is a DiLL-ps: for instance, if R ∈ PSDiLL rPSMELL
and ρ ∈ TR are as in Fig. 10, it is easy to find a ϕ = (ϕP , ϕC) : ρ ' ρ with ϕC

(
(l, ( ))

)
= (o, ( )),

i.e. ϕmaps the !-cell of ρ corresponding to the box-cell ofR into the !-cell of ρ not corresponding
to the box-cell of R. For this reason our main result (Thm. 26) is stated only for MELL-ps.

I Fact 41. Let R be a DiLL-ps and ρ ∈ TR with (p, a), (p′, a′) ∈ Pρ. Suppose that, for any
l ∈ Cbox

R and c ∈ N∗ such that (pridR(l), c) ∈ Pρ, one has (p, a) ∈ P l,cρ iff (p′, a′) ∈ P l,cρ , where
P l,cρ = {(q, d) ∈ Pρ | c v d, q ∈ inboxR(l)}. Then, boxext

PR(p) = boxext
PR(p′) and a = a′.

Proof. By hypothesis, p ∈ inboxR(l) iff p′ ∈ inboxR(l) for any l ∈ Cbox
R , hence boxext

PR(p) =
boxext
PR(p′). In particular, if l = boxext

PR(p) = boxext
PR(p′) (and hence p, p′ ∈ inboxR(l) and

|a| = depthR(pridR(l)) = |a′|), then by hypothesis we have c v a iff c v a′ for any c ∈ N∗ such
that (pridR(l), c) ∈ Pρ, but for such a c one has |c| = depthR(pridR(l)). Therefore, a = a′. J

I Example 42. Let R and S be two box-connected and isomorphic MELL-ps as in Fig. 11a,11c,
let ρ ∈ TR and σ ∈ TS as in Fig. 11b,11d. Let ϕP : Pρ → Pσ be the function defined by
ϕP((r0, ( ))) = (s0, ( )) and:

ϕP((r, (1))) = (s, (2)) ϕP((r, (2))) = (s, (1)) ϕP((p, (1))) = (q′, (2))
ϕP((p′, (1))) = (q, (2)) ϕP((p, (2))) = (q, (1)) ϕP((p′, (2))) = (q′, (1)) .

7 Recall that (l, a–) ∈ C!
ρ and (o, b–) ∈ C!

σ with (pridR(l), a) ∈ Paux
ρ ((l, a–)) and (pridS(o), b) ∈ Paux

σ ((o, b–)),
according to Remark 31.2.
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Then, there exists a suitable bijection ϕC : Cρ → Cσ such that ϕ = (ϕP , ϕC) : ρ ' σ,
but forgetρ,RP

(
ϕP((p, (l, 1)))

)
= q′ 6= q = forgetρ,RP

(
ϕP((p, (l, 2)))

)
. Therefore, the relation

φP ⊆ PR × PS defined by:

(p, q) ∈ φP ⇐⇒ for some finite sequences a, b one has ϕP((p, a)) = (q, b)

is not a function from PR to PS . Similarly, the relation φC ⊆ CR × CS defined analogously is
not a function from CR to CS .

Example 42 shows that to build an isomorphism between two box-connected MELL-ps
starting from two isomorphic strongly fat elements of their (labelled) Taylor expansion is a
delicate issue. However, an isomorphism between two strongly fat elements of the (labelled)
Taylor expansion has another preservation property, as stated in the next lemma (a corollary
of Lemma 23, via Remark 21 and Fact 41), that allows the above issue to be overcome.

I Corollary 24 (Boxes and copies preservation). Let R,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with Stated at p. 13
ϕ = (ϕP , ϕC) : ρ ' σ. If R and S are box-connected and ρ and σ are strongly fat, then for any
(p, a), (p′, a′) ∈ Pρ and (q, b), (q′, b′) ∈ Pσ with ϕP((p, a)) = (q, b) and ϕP((p′, a′)) = (q′, b′):
1. (copies preserv.) boxext

PR(p) = boxext
PR(p′) and a = a′ iff boxext

PS(q) = boxext
PS(q

′) and b = b′;
2. (boxes preserv.) boxext

PR(p) = boxext
PR(p′) iff boxext

PS(q) = boxext
PS(q

′).

Proof.
1. We prove only the left-to-right direction of the equivalence, the proof of the other direction

is analogous, by symmetry. Let us suppose a = a′ and boxext
R (p) = boxext

R (p′).
Let l ∈ Cbox

R and c ∈ N∗ be such that (pridR(l), a) ∈ Pρ (i.e. c ∈ f(l), where f ∈ T proto
R is such

that ρ = τR(f)). Since boxext
PR(p) = boxext

PR(p′), one has p ∈ inboxR(l) iff p′ ∈ inboxR(l);
hence (p, a) ∈ P l,cρ iff (p′, a) ∈ P l,cρ , where we have set P l,cρ = {(r, c · c′) ∈ Pρ | r ∈
inboxR(l) and c′ ∈ N∗}. By Lemma 23.3 (since R and S are box-connected, while
ρ and σ are strongly fat and hence, respectively, strongly R-fat and strongly S-fat,
according to Remark 35.1), (p, a) ∈ acces?

ρ((pridR(l), c)) iff (p′, a) ∈ acces?
ρ((pridR(l), c)).

Since ϕ is an isomorphism between DiLL0-ps, then (q, b) ∈ acces?
σ(ϕP((pridR(l), c))) iff

(q′, b′) ∈ acces?
σ(ϕP((pridR(l), c))) by Remark 21. According to Remarks 31.2 and 40, there

are o ∈ Cbox
R and d ∈ N∗ such that ϕP((pridR(l), c)) = (pridS(o), d) ∈ Pσ and ϕC((l, c–)) =

(o, d–) ∈ Cσ with (pridS(o), b) ∈ Paux
σ ((o, d–)). Therefore, (q, b) ∈ acces?

σ((pridS(o), d)) iff
(q′, b′) ∈ acces?

σ((pridS(o), d)). By Lemma 23.3, (q, b) ∈ Po,dσ iff (q′, b′) ∈ Po,dσ , where we
have set Po,dσ = {(r, d·d′) ∈ Pσ | r ∈ inboxS(o) and d′ ∈ N∗}.
Since Remark 40 establishes a one-to-one correspondence between c ∈ N∗ and l ∈ Cbox

R

such that (pridR(l), c) ∈ Pρ, and d ∈ N∗ and o ∈ Cbox
S such that (pridS(o), d) ∈ Pσ, we can

apply Fact 41 and hence boxext
PS(q) = boxext

PS(q
′) and b = b′.

2. According to Remark 32.2, since boxext
PR(p) = boxext

PR(p′) and (p, a) ∈ Pρ, then (p′, a) ∈ Pρ.
Thus, by Corollary 24.1, one has boxext

PS(q) = boxext
PS(q

′). J

I Lemma 25 (Building isomorphism). Let R,S∈PSMELL, ρ∈TR and σ∈TS. Suppose ρ and σ Stated at p. 14
are strongly fat and canonical, and ϕ = (ϕP , ϕC) : ρ ' σ. Let φP : PR → PS and φC : CR → CS
be functions defined in Eq. (2). If R and S are box-connected, then φ = (φP , φC) : R ' S.

φP(p) = forgetσ,SP (ϕP((p, a))) for every p ∈ PR where (p, a) ∈ Pρ with a ∈ {1}∗;

φC(l) = forgetσ,SC (ϕC((l, a))) for every l ∈ CR where (l, a) ∈ Cρ with a ∈ {1}∗.
(2)

Proof. First, observe that ρ is strongly R-fat and S is strongly S-fat according to Remark 35.1.
Besides the functions φP and φC are well-defined: indeed, by Remark 35.2, for every p ∈ Pρ



24 Computing connected proof(-structure)s from their Taylor expansion

there is a a ∈ {1}∗ such that (p, a) ∈ Pρ, since ρ is canonical; according to the depth
compatibility condition of Def. 12, such a a is unique.

We prove that φP : PR → PS is bijective. The proof that φC : CR → CS is bijective is
perfectly analogous and it is left to the reader.

Injectivity: Let p, p′ ∈ PR with p 6= p′. Then, for the unique a, a′ ∈ {1}∗ such that
(p, a), (p′, a′) ∈ Pρ, one has (p, a) 6= (p′, a′). Let ϕP(p, a) = (q, b) ∈ Pσ and ϕP(p′, a′) =
(q′, b′) ∈ Pσ: by definition of φ, φP(p) = q and φP(p′) = q′. Since ϕP is injective,
(q, b) 6= (q′, b′). There are only two cases:

either boxext
PR(p) = boxext

PR(p′) and hence depthR(p) = depthR(p′). By the depth compat-
ibility condition of Def. 12, one has |a| = |a′|. Hence, from a, a′ ∈ {1}∗ it follows that
a = a′. According to copies preservation (Corollary 24.1), boxext

PS(q) = boxext
PS(q

′) and
b = b′. As (q, b) 6= (q′, b′), then q 6= q′;

or boxext
PR(p) 6= boxext

PR(p′) and hence boxext
PS(q) 6= boxext

PS(q
′) according to boxes preserva-

tion (Corollary 24.2); so, q 6= q′.

In both cases, φP(p) = q 6= q′ = φP(p′). Therefore, φ is injective.

Surjectivity: Let q ∈ PS and Pqσ = {(q, b) ∈ Pσ | b ∈ N∗} = {(q, b1), . . . , (q, bn)} for some
n ∈ N and some pairwise distinct b1, . . . , bn ∈ N∗. By Remark 35.2, n > 0. Since
ϕP is bijective, ϕ−1

P (Pqσ) = {(p1, a1), . . . , (pn, an)} ⊆ Pρ where ϕP((pi, ai)) = (q, bi)
for all 1 ≤ i ≤ n, and p1, . . . , pn ∈ PR and a1, . . . an ∈ N∗. By boxes preservation
(Corollary 24.2) boxext

PR(pi) = boxext
PR(pj) for any 1 ≤ i, j ≤ n. By copies preservation

(Corollary 24.1), a1, . . . , an are pairwise distinct since b1, . . . , bn are so. Therefore, given
f ∈ T proto

R such that ρ = τR(f), one has f(boxext
PR(pi)) = {a1, . . . , an} for any 1 ≤ i ≤ n.

Since ρ is canonical, there exists 1 ≤ i ≤ n such that ai ∈ {1}∗: thus, for such a i,
φP(pi) = forgetρ,RP (ϕP((pi, ai))) = q. Hence, φ is surjective.

We now prove that (φP , φC) : GR ' GS , that is φP and φC make diagrams in Fig. 2a (see
Def. 5) commute. Let f ∈ T proto

R be such that ρ = τR(f). By Remark 35.4, there is a pruning
of f1 of f such that τR(f1) is a 1-diffnet of R. According to Remark 14, we can suppose
without loss of generality that f1 is canonical. Let ρ1 = τR(f1). Note that Pρ1 ⊆ Pρ and
Cρ1 ⊆ Cρ, therefore we can consider the images ϕP(Pρ1) and ϕC(Cρ1) of Pρ1 and Cρ1 via ϕP
and ϕC , respectively. By copies preservation (Corollary 24.1), given (q, b) ∈ ϕP(Pρ1), for any
(q′, b) ∈ Pσ such that boxext

PS(q) = boxext
PS(q

′) one has (q′, b) ∈ ϕP(Pρ1) (and analogously for
cells): the whole b copy of the content of the box of boxext

PS(q) is in ϕP(Pρ1). This means that
ϕP(Pρ1) and ϕC(Cρ1) are generated by some g ∈ T proto

S as in Def. 13: in other words, if we set
σ1 = τS(g) and h ∈ T proto

S is such that σ = τS(h), g is a pruning (not necessarily canonical) of
h such that (ϕP�Pρ1

, ϕC�Cρ1
) : ρ1 ' σ1 where σ1 ∈ TS is a 1-diffnet of S (since ρ1 is a 1-diffnet

of R). Since ρ1 is canonical, one has φP = forgetρ,RP ◦ ϕP�Pρ1
and φC = forgetρ,RC ◦ ϕC�Cρ1

,
therefore (φP , φC) : GR ' GS according to Fact 19.2.

Following Def. 5, we now prove that im(φC�Cbox
R

) = Cbox
S and im(ϕP�DoorsR) = DoorsS .

The first identity follows immediately from Remark 40. The second identity follows from
Corollary 24.2, since DoorsR and DoorsS are entirely characterized by boxext

PR and boxext
PS

respectively, according to Remark 29.6 (for Doorscut
R and Doorscut

S ) and Remarks 29.3 and
30.1 (for Doors!

R ∪ Doors?
R and Doors!

S ∪ Doors?
S).

We complete the proof that (φP , φC) : R ' S by showing that φP and φC make diagram
in Fig. 2b (Def. 5) commute. This fact follows from Corollary 24.2, since boxext

PR(p) = boxR(p)
and boxext

PS(q) = boxS(q) for any p ∈ DoorsR and q ∈ DoorsS according to Remark 29.2. J
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A.5 Omitted proofs of Section 5
I Corollary 27 (Injectivity for box-connected MELL). Let R and S be cut-free, η-expanded Stated at p. 14
and box-connected MELL-ps with conclusions of the same type. If JRK = JSK, then R ' S.

Proof. Let Γ be the type of the conclusions of R and S. From JRK = JSK it follows that
JRKinj/∼`Γ = JSKinj/∼`Γ (see Def. 61-62 in Appendix C for the meaning of JRKinj/∼`Γ ).
By Prop. 64 (see Appendix C), since R and S are cut-free and η-expanded, one has T 'R = T 'S ,
in particular they have the same element of order 2 (which is strongly fat). As R and S are
box-connected, from Thm. 26 it follows that R ' S. J

B Computing boxes

Unlike usual syntaxes of LL- or DiLL-proof structures (see for example [12, 15, 5, 21]), in our
syntax there is no explicit (inductive) constructor for boxes: a box in a pps Φ is defined as a
particular sub(hyper)graph of Φ. This more “geometric” approach was followed for example
in [3, 20, 16, 6]. In our syntax, the boxes in a DiLL-ps R are reconstructed in a non-inductive
way using some “geometric” informations coming from R. Roughly speaking, given a box-cell
l of R, the box associated with l defined) is all that is above (in the sense of ≤R) of l and
the ports in box−1

R (l′) for any box-cell l′ above l (in the sense of ≤Cbox
R
). In this subsection we

show how to compute all that. It is worth noting that this section is not necessary to prove
our main results: our goal here is to convince the reader that in a DiLL-ps R we have all the
information to recover the boxes of R, even if there is not an explicit constructor for them.

We start with a lemma which holds for pps.

I Lemma 43 (About minimal elements for boxext
Φ ). Let Φ be a pps and p ∈ PΦ. If, for all

q ∈ PΦ, q <Φ p implies boxext
Φ (q) <Cbox

Φ
∪{•} boxext

Φ (p), then p ∈ DoorsΦ.

Proof. According to Definition 8 and Remark 29.2, either boxext
Φ (p) = • or there is q ∈↓Φ

p ∩ DoorsΦ such that boxext
Φ (p) = boxΦ(q) = boxext

Φ (q). It follows from the hypothesis that
q 6<Φ p, but q ≤Φ p, therefore q = p. J

The converse of Lemma 43 does not hold in general for pps: in the pps Ψ1 (Figure 1b),
p ∈ DoorsΨ1 but boxext

Ψ1
(p) = boxext

Ψ1
(q) with q <Ψ1 p.

The following fact gives a characterization of ≤Cbox
Φ
.

I Fact 44 (Equivalent definition of ≤Cbox
Φ
). Let Φ be a pps and l, l′ ∈ Cbox

Φ : l ≤Cbox
Φ
l′ iff there

are p, p′ ∈ PΦ such that p ≤Φ p′ and boxext
PΦ(p) = l and boxext

PΦ(p
′) = l′.

Proof. ⇐: According to Definition 8, there are q = max≤Cbox
Φ

(↓PΦ p ∩ DoorsΦ) and q′ =
max≤Cbox

Φ

(↓PΦ p′ ∩ DoorsΦ) with l = boxext
Φ (p) = boxΦ(q) and l′ = boxext

Φ (p′) = boxΦ(q′);
in particular, q ≤Φ p and q′ ≤Φ p′. As p ≤Φ p′, one has q ≤Φ p′. Since ↓PΦ p′ is finite, it
is totally ordered by ≤Φ according to Fact 4, so either q ≤Φ q′ or q′ <Φ q. But q′ 6<Φ q
because of the maximality of q′, since q ∈↓PΦ p′ ∩ DoorsΦ. Thus, q ≤Φ q′ and therefore
l = boxΦ(q) ≤Cbox

Φ
boxΦ(q′) = l′ according to Definition 9.

⇒: According to Definition 9 and Remark 29.2, there are p, p′ ∈ DoorsΦ such that p ≤Φ p′
and l = boxΦ(p) = boxext

Φ (p) and l′ = boxΦ(p′) = boxext
Φ (p). J

From now on, we will consider DiLL-ps only.

I Definition 45 (Doors of a box). Let R be a DiLL-ps and l ∈ Cbox
R . We set:
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auxdR(l) = {q ∈ Doors?
R | l ≤Cbox

R
boxR(q) and boxext

R (predR(q)) <Cbox
R
∪{•} l}, whose

elements are the aux-doors of the box of l (in R),
cutdR(l) = {q ∈ Doorscut

R | l ≤Cbox
R

boxR(q)}, whose elements are the cut-doors of the box
of l (in R),
doorsR(l) = {pridR(l)} ∪ auxdR(l)∪ cutdR(l), whose elements are the doors of the box of l
(in R),

Intuitively, given a box-cell l in a DiLL-ps R, the doors of the box of l mark the boundary
of the box of l, and the ports in inboxR(l), which represent the content of the box of l, are
all and only the ports above (in the sense of ≤R) the doors of the box of l, as explained in
Fact 47.2 below.

I Remark 46. It follows from Definition 45 and Remarks 29.1-2 that, given a DiLL-ps R
and l ∈ Cbox

R , if p ∈ doorsR(l) then p ∈ DoorsR and l ≤Cbox
R

boxext
R (p) 6= •.

Since we use generalized ?-cells, the same premise of a ?-cell might be an aux-door of
several boxes of box-cells, i.e. in a DiLL-ps R there might be p ∈ Doors?

R and l, l′ ∈ Cbox
R such

that p ∈ auxdR(l) ∩ auxdR(l′) and l 6= l′. Analogously, the same premise of a cut-cell might
be a cut-door of several boxes of box-cells.

Fact 47.1 below gives a criterion to find the doors of the box of a box-cell.

I Fact 47 (Geometric description of the content of a box). Let R be a DiLL-ps.
1.
⋃
l∈Cbox

R
doorsR(l) = DoorsR.

2. For any l ∈ Cbox
R , one has inboxR(l) = {q ∈ PR | ∃ p ∈ doorsR(l) : p ≤R q}.

3. For all p, q ∈ PR and l ∈ Cbox
R , if p <R q and q ∈ doorsR(l), then p /∈ inboxR(l); in

particular, p /∈ doorsR(l).

So, to compute the content of the box associated with a box-cell l of a DiLL-ps R, first
one has to identify the doors of the box of l and then one has to take all and only the ports
above (in the sense of ≤R) such doors (Fact 47.2). Moreover, Fact 47.3 says that two doors
of the box of l cannot be above each other and hence all the ports below a door of the box of
l are outside the box of l. Facts 47.2-3 mean that the minimal elements (with respect to
≤Cbox

R
) of inboxR(l) are the doors of the box of l, in particular the premise of l is the unique

such minimal element that is the premise of a !-cell, all other such minimal elements being
premises of cut-cells or ?-cells. More precisely, condition 3 (resp. 4) in Definition 10 plays a
crucial role in the proof that among such minimal elements there is at least (resp. at most)
one premise of a !-cell.

It is worth noting that Fact 47.2 does not imply Fact 47.3.

I Proposition 48 (Nesting condition). Let R be a DiLL-ps and l, l′ ∈ Cbox
R .

1. If l <Cbox
R
l′ then inboxR(l′) ( inboxR(l).

2. If l 6≤Cbox
R
l′ and l′ 6≤Cbox

R
l, then inboxR(l) ∩ inboxR(l′) = ∅.

3. If l 6= l′ then either inboxR(l) ∩ inboxR(l′) = ∅, or inboxR(l) ( inboxR(l′) or inboxR(l′) (
inboxR(l).

Proof. 1. First, we show that inboxR(l) 6= inboxR(l′). Let p = pridR(l) and p′ = pridR(l′).
By Remark 29.2, boxext

R (p) = l and l′ = boxext
R (p′), hence p ∈ inboxR(l) and p′ ∈ inboxR(l′).

One has {p, p′} 6⊆ inboxR(l) ∩ inboxR(l′), otherwise l ≤Cbox
R

boxext
R (p′) = l′ and l′ ≤Cbox

R

boxext
R (p) = l according to Definition 45, and hence l = l′ by condition 1 in Definition 10,

but this is impossible since l 6= l′. Therefore, either p ∈ inboxR(l) r inboxR(l′) or
p′ ∈ inboxR(l′) r inboxR(l): this proves that inboxR(l) 6= inboxR(l′).
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We now show that inboxR(l′) ⊆ inboxR(l). If q ∈ inboxR(l′) then, according to Defini-
tion 45, l′ ≤Cbox

R
boxext

R (q). By hypothesis, l ≤Cbox
R
l′. Therefore, l ≤Cbox

R
boxext

R (q) and thus
q ∈ inboxR(l).

2. If p ∈ inboxR(l)∩inboxR(l′) then, by Definition 45, p ∈ dom(boxext
R ) and l, l′ ≤Cbox

R
boxext

R (p).
By condition 1 in Definition 10 and since Cbox

R is finite, ↓Cbox
R

boxext
R (q) is totally ordered

by ≤Cbox
R
, so either l ≤Cbox

R
l′ or l′ ≤Cbox

R
l.

3. Suppose that inboxR(l)∩ inboxR(l′) 6= ∅. By Proposition 48.2, either l <Cbox
R
l′ or l′ <Cbox

R
l

(because l 6= l′ by hypothesis). By Proposition 48.1, either inboxR(l′) ( inboxR(l) or
inboxR(l) ( inboxR(l′). J

Now we are able to define the box associated with every box-cell of a DiLL-ps and prove
that it is a DiLL-ps (Proposition 50).

I Definition 49 (Box of a box-cell). Let R be a DiLL-ps and l ∈ Cbox
R . The box of l in R is

the 9-tuple Rl = (PRl , CRl , tcRl ,P
pri
Rl
,Paux

Rl
,Pleft

Rl
, tpRl , C

box
Rl
, boxRl) where:

PRl = inboxR(l) ∪
⋃

Ppri
R (Cbord

R );
CRl = {l′ ∈ CR |

(
Ppri
R (l′) ∪ Paux

R (l′)
)
∩ inboxR(l) 6= ∅} and tcRl = tcR�CRl ;

Ppri
Rl

= Ppri
R �CRl , Paux

Rl
(l′) = Paux

R (l′) ∩ PRl for all l′ ∈ CRl , Pleft
Rl

= Pleft
R �C⊗,`

Rl

and tpRl =
tpR�PRl ;
Cbox
Rl

= Cbox
R ∩ CRl and boxRl = boxR�inboxR(l).

I Proposition 50. Let R be a DiLL-ps (resp. MELL-ps). For every l ∈ Cbox
R , the box Rl of l

in R is a DiLL-ps (resp. MELL-ps), with P free
Rl

= predR({pridR(l)} ∪ auxdR(l)) ⊆ Ppri
R (Cbord

R ).

Proof. Left to the reader. J

C Relational semantics

Relational Experiments The relational model is the simplest and maybe the most canonical
model of LL It can be seen as a degenerate case of Girard’s coherent semantics [12], and as
such, fomulæ are interpreted as sets and proofs as relations between them.

I Definition 51 (Web of a MELL formula). Let At be a countably infinite set such that
At ∩ (LMELL ∪ {( )}) = ∅; the elements of At are called atoms. By induction, we define a
function |·| on MELL formulæ by, for A ∈ FMELL:

|X⊥| = |X| = At, for any X ∈ VMELL; |1| = |⊥| = {()};
|A⊗B| = |A`B| = |A| × |B|; |!A| = |?A| = Mfin(|A|),

For a formula A, the set |A| is called the web of A, whose elements are the points of A.

So |A⊥| = |A| for any A ∈ FMELL: relational semantics is a degenerate model of MELL.
Following the interpretation of MELL proofs (in sequent calculus) in [1, Appendix] and

the notion of multiplicative experiment [12, Definition 3.17], we first define experiments on
DiLL0-ps.

I Definition 52 (Experiment of a DiLL0-ps). Let Φ be a DiLL0-ps.
An experiment e of Φ is a function associating with every p ∈ PΦ an element of |tpΦ(p)|

verifying the following conditions:
if l ∈ Cax

Φ with Ppri
Φ (l) = {p, q}, then e(p) = e(q);
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if l ∈ Ccut
Φ with Paux

Φ (l) = {p, q}, then e(p) = e(q);
if l ∈ C1,⊥

Φ with Ppri
Φ (l) = {q}, then e(q) = ();

if l ∈ C⊗,`Φ with Paux
Φ (l) = {p1, p2}, Pleft

Φ (l) = {p1}, Ppri
Φ (l) = {q} and e(pi) = ai for any

i ∈ {1, 2}, then e(q) = (a1, a2);
if l ∈ C!,?

Φ , Paux
Φ (l) = {p1, . . . , pn} for some n ∈ N and Ppri

Φ (l) = {q}, then

e(q) =
n∑
i=1

[e(pi)] .

A partial experiment is a partial function satisfying the same conditions.

Experiments are well-defined on equivalence classes of DiLL0-proof structures. Precisely,

I Fact 53. Let Φ be a DiLL0-ps, and e an experiment of Φ. Let Ψ be a DiLL0-ps so that
ϕ = (ϕP , ϕC) : Φ ' Ψ . The isomorphism ϕ transports naturally e to an experiment of Ψ ,
noted ϕ∗e, defined by, for all p ∈ PΨ , ϕ∗e(p) = e(ϕ−1

P (p)).

I Remark 54. As a consequence of Fact 53, an isomorphism ϕ : Φ ' Ψ of DiLL0-ps induces
a bijection ϕ∗ between the set of experiments of Φ and the set of experiments of Ψ .

Relational Semantics In order to define the interpretation of a DiLL0-ps Φ in the relational
model, we have to fix an order on the conclusions of Φ, engendering indexed DiLL0-ps. The
notion of isomorphism extends to indexed DiLL0-ps: an isomorphism between two indexed
DiLL0-ps is an isomorphism between DiLL0-ps preserving the order of the conclusions.

I Definition 55 (Indexed DiLL0-proof structure). An indexed DiLL0-ps is a pair R =
(ΦR, conclR) where ΦR is a DiLL0-ps and conclR : {1, . . . , n} → P free

ΦR
is a bijection (for

n ∈ N).
The type of the conclusions of R is the tuple (A1, . . . , An) where n = card(P free

ΦR
) and

tpΦR(conclR(i)) = Ai for any 1 ≤ i ≤ n.
The set of indexed DiLL0-ps is denoted by PSind

DiLL0
.

I Definition 56 (Result of an experiment and interpretation of an indexed DiLL0-ps). Let
R = (ΦR, conclR) be an indexed DiLL0-ps with card(P free

ΦR
) = n ∈ N.

Let e be an experiment of ΦR: the result of e with respect to conclR is

|e|conclR = (e(conclR(1)), . . . , e(conclR(n))).

The relational interpretation of R is: JRK = {|e|conclR | e is an experiment of ΦR}.

The relational interpretation is actually defined on equivalence classes of indexed DiLL0-ps.
A crucial property of the relational interpretation of indexed DiLL0-ps introduced in

Definition 56 is that it is invariant under cut-elimination [1]. It is also possible to check that
it is invariant under η-expansion too.

On a cut-free indexed DiLL0-ps, all the information of an experiment is in its conclusion:
two experiments have the same conclusion if and only if they are equal.

Semantics of DiLL The Taylor expansion associates a set of DiLL0-ps with a DiLL-ps. We
have defined an interpretation of indexed DiLL0-ps, the relational interpretation J·K. In order
to extend these interpretations to the whole of PSDiLL, we need to extend Definition 55 to
the context of DiLL-ps (which is straightforward) and to remark that an indexed DiLL-ps
induces an indexation on the elements of its Taylor expansion.
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I Fact 57. Let R = (ΦR, conclR) be an indexed DiLL-ps. Let ρ be a DiLL0-ps in the Taylor
expansion of ΦR.

The forgetful function forgetρ,RP on ports from ρ to R induces a bijection forgetρ,Rconcl between
conclusions of ρ and conclusions of R.

The pair (ρ,
(

forgetρ,Rconcl

)−1
◦ conclR) is an indexed DiLL0-ps.

We still write T : PSind
DiLL →P(PSind

DiLL0
) the function that maps an indexed DiLL-ps R to

its indexed Taylor expansion, that is, the set of indexed DiLL0-ps whose underlying DiLL0-ps
is in the Taylor expansion of the underlying DiLL-ps of R endowed with the indexation of R,
and T ' the quotiented Taylor expansion function.

We define the interpretation of an indexed DiLL-ps through the interpretation of its Taylor
expansion.

I Definition 58 (Interpretation of a DiLL-ps). The relational interpretation (or semantics) of
an indexed DiLL-ps R is the set JRK =

⋃
ρ∈T '

R
JρK.

I Remark 59 (Experiment of a DiLL-proof structure). The definition of an experiment for
MLL-proof structures is very straightforward [12]. The presence of exponentials in the full
MELL engenders complications when tackled directly (see for instance [20, 6]).

The Taylor expansion acts as a bridge in our definition, hiding all the complexity of the
definition of experiments. It allows to retain the simplicity of the MLL framework while
being usable for the whole of DiLL.

Injective Semantics The relational interpretation of an indexed DiLL0-ps is determined
by the interpretation of its axioms. In a cut-free indexed DiLL0-ps, all the axioms can be
interpreted by pairwise different atoms, which yields points of the relational interpretation
that are more informative than others. We now define semantically such elements, called
injective.

I Definition 60 (Injective elements). Let A be a MELL formula.
An element a ∈ |A| is injective if every atom occuring in a occurs exactly twice.
If X ⊆ |A|, we set Xinj = {a ∈ X | a is injective}.

For example, [ ] ∈ |!A|inj = |?A|inj for any formula A.

I Definition 61 (Injective interpretation). Let R be an indexed DiLL0-proof structure. We
define its injective interpretation as the set of injective points of its semantics:

JRKinj = JRK ∩ |`Γ |inj

where Γ is the type of the conclusions of R.

I Definition 62. Let A be a MELL formula. We define ∼A as the equivalence relation on
|A| defined by: a ∼A a′ iff there exists a bijection σ : At → At such that a = σA(a′).

I Remark 63. Let A ∈ FMELL. If a ∈ |A|inj and σ : At → At, then σA(a) ∈ |A|inj.

Given a MELL formula A , the equivalence relation ∼A on |A|inj identifies any two injective
points of A that are equal up to renaming of their atoms.

I Proposition 64. Let R be an indexed cut-free and η-expanded DiLL-ps with conclusions of
type Γ . The quotient of the identity JRKinj =

⋃
ρ∈T '

R
JρKinj through the equivalence ∼`Γ is a

bijection JRKinj/∼`Γ ' T 'R .
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We can thus say that the injective elements of JRK are the elements of the Taylor expansion
of R, up to the renaming of the atoms.

This is folklore, as relational experiments and differential nets inside the Taylor expansion
are variations around the idea that a box enshrines a subnet that can be copied an arbitrary
number of time. We nonetheless decide to emphasize its precise formulation.
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