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PASSENGER CROWDING AND 'TRAFFIC JAM' INSTABILITIES OF V2I PUBLIC TRANSIT SYSTEMS

According to the Data Rate Theorem, if the rate at which control information can be provided to an unstable system is below a critical limit defined by the rate at which the system generates 'topological information', there is no coding strategy, no timing strategy, no control scheme of any form, that can provide stability. For an urban bus system embedded in a larger traffic stream, no matter what V2I headway manipulations are applied, there will always be a critical passenger density per vehicle that creates the public transit system equivalents of a traffic jam such as 'bunching', long headways, and extended on/off delays. An extension of the model finds that V2I systems in general, as a consequence their inherently cognitive nature, may be subject to multiple phase transitions in which passenger density becomes convoluted with traffic density. The only solution to cascading dysfunction under such conditions is to provide adequate numbers of passenger vehicles. In sum, no communications or other 'tech fix' can mitigate inadequate levels of public transportation service.

... [T]he negative impacts of crowding on the reliability of public transport services should be carefully analysed... [START_REF] Tirachini | Crowding in public transport systems: effects on users, operation and implications for the estimation of demand[END_REF] 

I. INTRODUCTION

Urban public transportation, particularly bus service, necessarily interacts with a more general traffic flow on congested roadways that may include trucks, passenger cars, taxis, and emergency vehicles, forming a complex transit ecosystem that is inherently difficult to manage (e.g., [START_REF] Chiabaut | Evaluation of a multimodal urban arterial: the passenger macroscopic fundamental diagram[END_REF][START_REF] Geroliminis | A threedimensional macroscopic fundamental diagram for mixed bimodel urban networks[END_REF]. Recent advances make it possible for an embedding regulatory infrastructure -the 'I' of the title -to communicate with bus and light rail vehicles in real time -the 'V' of the title. Such V2I systems fall under the necessary constraints of the asymptotic limit theorems of control and information theories. Indeed, public transit has been the subject of much mathematical modeling, and the effects of passenger crowding on service continue to receive central focus (e.g., [START_REF] Tirachini | Crowding in public transport systems: effects on users, operation and implications for the estimation of demand[END_REF][START_REF] Tirachini | Multimodal pricing and optimal design of urban public transport: the interplay between traffic congestion and bus crowding[END_REF]Ivanchev et al. 2014, and references therein). [START_REF] Tirachini | Crowding in public transport systems: effects on users, operation and implications for the estimation of demand[END_REF] describe the classic passenger crowding conundrum as follows:

When buses and trains circulate with a low number of passengers, everyone is able to find a seat, transfer of passengers at stations is smooth, and passenger-related disruptions that impose unexpected delays are rare. As the number of passengers increases, a threshold is reached at which not everyone is able to find a seat and some users need to stand inside vehicles. In turn, this may make more difficult the movement of other passengers that need to board to or alight from a vehicle: therefore, riding time increases due to friction or crowding effects among passengers... [Study] finds that dwell time increases with the square of the number of standees inside a bus, multiplied by the total number of passengers boarding and alighting at a bus stop... A formal treatment [finds]... that average waiting time is related not only to the headway (the inverse of bus frequency) but also to the occupancy rate or crowding level in an additive or multiplicative way... A second effect of high occupancy levels on waiting times is the possibility of triggering bus bunching [by a number of mechanisms]... The seduction of real-time V2I systems using GPS positioning of individual transit vehicles is the assumption that sufficient control of vehicle headway will smooth out passenger and vehicle congestion, avoiding bunching, mitigating overcrowding, and so on. Here, via the Data Rate Theorem that links control and information theories, we show that assumption to be an illusion, and that there will always be a critical value of passenger density at which a public transit system suffers the functional equivalent of a massive traffic jam.

The phenomenological model we develop will, in fact, link larger-scale vehicles/mile traffic density with passengers/bus density.

The underlying conceit of V2I systems is that the infrastructure can control individual vehicles to regulate traffic flow. An essential constraint on such systems, however, is that they are inherently unstable, and require a constant flow of control information to stay on the road or, if on a track, to avoid collisions. Aircraft can be designed to be inherently stable, in the sense that, for a short time at least, they can be allowed to proceed 'hands off', as long as the center of pressure of the vehicle is behind the center of gravity. Then small perturbations from steady state rapidly die out. Ground vehicles in heavy traffic on twisting roads must, by contrast, always be under real-time direction by a cognitive entity.

The first stage of modeling is a linear expansion around a nonequilibrium steady state in which control information is sufficient to keep the system 'on track'.

II. THE DATA RATE THEOREM FOR TRAFFIC FLOW

The Data Rate Theorem [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF]) establishes the minimum rate at which externally-supplied control information must be provided for an inherently unstable system to maintain stability. Given the linear expansion near a nonequilibrium steady state, an n-dimensional vector of system parameters at time t, x t , determines the state at time t + 1 according to the model of figure 1, so that

x t+1 = Ax t + Bu t + W t (1)
where A, B are fixed n × n matrices, u t is the vector of control information, and W t is an n-dimensional vector of white noise. The Data Rate Theorem (DRT) under such conditions states that the minimum control information rate H is determined by the relation

H > log[| det[A m |] ≡ a 0 (2)
where, for m ≤ n, A m is the subcomponent of A having eigenvalues ≥ 1. The right hand side of Eq.( 2) is interpreted as the rate at which the system generates 'topological information'. The proof of Eq.( 2) is not particularly straightforward [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF], and the Mathematical Appendix uses the Rate Distortion Theorem (RDT) to derive a more general version of the DRT. For a simple traffic flow system on a fixed highway network, the source of 'topological information' is the linear vehicle density ρ. The 'fundamental diagram' of traffic flow studies relates the total vehicle flow to the linear vehicle density, shown in figure 2 for a Rome street [START_REF] Blandin | A general phase transition model for vehicular traffic[END_REF]. Behavior shifts from smooth flow to traffic jams at about 40 vehicles/mile, at which value the system 'crystallizes' out into discrete 'chunks' that interfere with each other [START_REF] Kerner | Phase transitions in traffic flow on multilane roads[END_REF][START_REF] Wallace | Canonical instabilities of autonomous vehicle systems[END_REF]. Similar dynamics can be expected from 'macroscopic passenger fundamental diagrams' that examine multimodal travel networks, but focusing on passenger rather than vehicle flow [START_REF] Geroliminis | A threedimensional macroscopic fundamental diagram for mixed bimodel urban networks[END_REF][START_REF] Chiabaut | Evaluation of a multimodal urban arterial: the passenger macroscopic fundamental diagram[END_REF].

Given ρ as the critical traffic density parameter, we can extend Eq.( 2) as

H(ρ) > f (ρ)a 0 (3)
where a 0 is a road network constant and f (ρ) is a positive, monotonically increasing function. The Mathematical Appendix uses a Black-Scholes model to approximate the 'cost' of H as a function of the 'investment' ρ. Surprisingly (or not) the first approximation is linear, i.e. H ≈ κ 1 ρ + κ 2 . Taking f (ρ) to similar order, so that

f (ρ) ≈ κ 3 ρ + κ 4 (4)
the limit condition for stability becomes

T ≡ κ 1 ρ + κ 2 κ 3 ρ + κ 4 > a 0 ( 5 
)
FIG. 3: The horizontal line represents the critical limit a0. If κ2/κ4 κ1/κ3, at some intermediate value of linear traffic density ρ, the temperature analog T ≡ (κ1ρ + κ2)/(κ3ρ + κ4) falls below that limit, traffic flow becomes 'supercooled', and traffic jams become increasingly probable.

For ρ = 0, the stability condition is κ 2 /κ 4 > a 0 . At large ρ this becomes κ 1 /κ 2 > a 0 . If κ 2 /κ 4 κ 1 /κ 2 , the stability condition may be violated at high traffic densities, and instability becomes manifest, as at the higher ranges of figure 2. See figure 3.

III. MULTIMODAL TRANSPORT SYSTEMS

For buses embedded in a larger traffic stream there are two critical densities that must interact: vehicles per linear mile and passengers per bus. There is not, then, a simple 'density' index, but rather a density matrix ρ

ρ 11 ρ 12 ρ 21 ρ 22
where ρ 11 is the number of passengers per bus, ρ 22 vehicles per mile, and the off-diagonal terms are measures of interaction between these since, at the least, buses are part of the traffic stream.

One might extend the model to higher dimensions by including, for example, passenger densities of a subway or light rail system feeding into a transit 'hot spot'.

Can there still be a single scalar 'ρ' under such complex circumstances so that the conditions of figure 3 apply? An n × n matrix ρ has n invariants r i , i = 1..n, that remain fixed when 'principal component analysis' transformations are applied to data, and these can be used to construct an invariant scalar measure, using the polynomial relation

p(λ) = det(ρ -λI) = λ n + r 1 λ n-1 + ... + r n-1 λ + r n (6)
det is the determinant, λ is a parameter and I the n×n identidy matrix. The invariants are the coefficients of λ in p(λ), normalized so that the coefficient of λ n is 1.

For a 2 × 2 matrix the invariants are the determinant and the trace. It then becomes possible to define a composite scalar index r as a monotonic increasing function of these invariants

r = f (T r[ρ], det[ρ]) (7)
The simplest example would be Again, an n×n matrix will have n such invariants from which a scalar index r can be constructed. Typically, the first invariant will be the trace and the last ± the determinant.

r = α 1 T r[ρ] + α 2 | det[ρ]| ( 

IV. MULTIPLE PHASES OF V2I DYSFUNCTION

The DRT argument implies a raised probability of a transition between stable and unstable behavior if the temperature analog T from Eq.( 5) falls below a critical value, as in figure 3. [START_REF] Kerner | Phase transitions in traffic flow on multilane roads[END_REF], however, argue that traffic flow can be subject to more than two phases. We can recover something similar for V2I transit systems driven by passenger density via a 'cognitive paradigm' similar to that used by [START_REF] Atlan | Immune information, selforganization, and meaning[END_REF] in their study of the immune system. They view a system as cognitive if it must compare incoming signals with a learned or inherited picture of the world, then actively choosing a response from a larger set of those possible to it. V2I systems are clearly cognitive in that sense. Such choice, however, implies the existence of an information source, since it reduces uncertainty in a formal way. See [START_REF] Wallace | Consciousness, crosstalk and the mereological fallacy: an evolutionary perspective[END_REF][START_REF] Wallace | An Information Approach to Mitochondrial Dysfunction: Extending Swerdlow's hypothesis[END_REF] for details of the argument.

Given the 'dual' information source associated with the inherently unstable cognitive V2I public transit system, an equivalence class algebra can be constructed by choosing different system origin states and defining the equivalence of subsequent states at a later time by the existence of a high probability path connecting them to the same origin state. Disjoint partition by equivalence class, analogous to orbit equivalence classes in dynamical systems, defines a symmetry groupoid associated with the cognitive process [START_REF] Wallace | Consciousness, crosstalk and the mereological fallacy: an evolutionary perspective[END_REF]. Groupoids are generalizations of group symmetries in which there is not necessarily a product defined for each possible element pair [START_REF] Weinstein | Groupoids: unifying internal and external symmetry[END_REF], for example in the disjoint union of different groups.

The equivalence classes across possible origin states define a set of information sources dual to different cognitive states available to the inherently unstable V2I system. These create a large groupoid, with each orbit corresponding to a transitive groupoid whose disjoint union is the full groupoid. Each subgroupoid is associated with its own dual information source, and larger groupoids must have richer dual information sources than smaller.

Let X Gi be the V2I system's dual information source associated with groupoid element G i . Given the argument leading to Eqs.(5-7), we construct a Morse Function [START_REF] Pettini | Geometry and Topology in Hamiltonian Dynamics[END_REF] as follows.

Let H(X Gi ) ≡ H Gi be the Shannon uncertainty of the information source associated with the groupoid element G i . We can define a Boltzmann-like pseudoprobability as

P [H Gi ] ≡ exp[-H Gi /T ] j exp[-H Gj /T ] (9)
where the sum is over the different possible cognitive modes of the full system. A 'free energy' Morse Function F can then be defined as

exp[-F/T ] ≡ j exp[-H Gj /T ] ( 10 
)
As a consequence of the inherent groupoid structure, we can now apply an extension of Landau's version of phase transition [START_REF] Pettini | Geometry and Topology in Hamiltonian Dynamics[END_REF]. Landau saw spontaneous symmetry breaking as representing phase change in physical systems, with the higher energies available at higher temperatures being more symmetric. The shift between symmetries is highly punctuated in the temperature index, here the 'temperature' analog of Eq.( 5), in terms of the scalar construct r, but in the context of groupoid rather than group symmetries. Usually, for physical systems, there are only a few phases possible. [START_REF] Kerner | Phase transitions in traffic flow on multilane roads[END_REF] recognize three phases in ordinary traffic flow, but V2I transit systems embedded in a larger traffic network may have relatively complex stages of dysfunction, with highly punctuated transitions between them as passenger density increases.

V. DISCUSSION AND CONCLUSIONS

The essential content of the Data Rate Theorem [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF]) is that, if H, the rate at which control information can be provided to an unstable system is below the critical limit defined by the rate at which the system generates 'topological information', there is no coding strategy, no timing strategy, no control scheme of any form, that can provide stability. Generalization, based on the inherently cognitive nature of V2I systems, suggests that there may be a sequence of stages of increasing dysfunction for public transit under the burden of rising per-bus passenger densities.

In our development, for a bus system necessarily embedded in a larger traffic flow, no matter what V2I headway manipulations are applied, there will always be a critical per-bus passenger density that creates the public transit equivalent of a traffic jam; bunching, long headways, extended on/off delays, and so on. The arguments of [START_REF] Kerner | Phase transitions in traffic flow on multilane roads[END_REF] and [START_REF] Wallace | Canonical instabilities of autonomous vehicle systems[END_REF] on phase transitions carry over into public transit systems whose dynamics are driven by multiple density measures and their interaction. For a given route at a fixed time, there should be a 'passenger macroscopic fundamental diagram' much like figure 2 showing passengers/hour as a function of passengers/vehicle [START_REF] Chiabaut | Evaluation of a multimodal urban arterial: the passenger macroscopic fundamental diagram[END_REF][START_REF] Geroliminis | A threedimensional macroscopic fundamental diagram for mixed bimodel urban networks[END_REF].

The essential solution to traffic jam analogs in public transportation systems is to provide adequate numbers of vehicles so that critical passenger densities are not exceeded.

In sum, there can be no tech fix for inadequate service.

VI. MATHEMATICAL APPENDIX

A. An RDT approach to the DRT

The RDT asks how much a signal can be compressed and have average distortion, according to an appropriate measure, less than some predetermined limit D. The result is an expression for the minimum necessary channel capacity, R, as a function of D. See [START_REF] Cover | Elements of Information Theory[END_REF] for details. Different channels have different expressions. For the Gaussian channel under the squared distortion measure,

R(D) = 1 2 log[ σ 2 D ] D < σ 2 R(D) = 0 D ≥ σ 2 (11)
where σ 2 is the variance of channel noise having zero mean.

Our concern is how a control signal u t is expressed in the system response x t+1 . We suppose it possible to deterministically retranslate an observed sequence of system outputs x 1 , x 2 , x 3 , ... into a sequence of possible control signals û0 , û1 , ... and to compare that sequence with the original control sequence u 0 , u 1 , ..., with the difference between them having a particular value under the chosen distortion measure, and hence an observed average distortion.

The correspondence expansion is as follows. [START_REF] Feynman | Lectures on Computation[END_REF], expanding on ideas of Bennett, identifies information as a form of free energy. Thus R(D), the minimum channel capacity necessary for average distortion D, is also a free energy measure, and we may define an entropy S as

S ≡ R(D) -DdR/dD (12)
For a Gaussian channel under the squared distortion measure,

S = 1/2 log[σ 2 /D] + 1/2 (13)
Other channels will have different expressions.

The simplest dynamics of such a system are given by a nonequilibrium Onsager equation in the gradient of S, (de Groot and Mazur 1984) so that

dD/dt = -µdS/dD = µ 2D (14) 
By inspection,

D(t) = √ µt (15) 
which is the classic outcome of the diffusion equation.

For the 'natural' channel having R(D) ∝ 1/D, D(t) ∝ the cube root of t. This correspondence reduction allows an expansion to more complicated systems, in particular, to the control system of figure 1.

Let H be the rate at which control information is fed into an inherently unstable control system, in the presence of a further source of control system noise β, in addition to the channel noise defined by σ 2 . The simplest generalization of Eq.( 14), for a Gaussian channel, is the stochastic differential equation

dD t = [ µ 2D t -F (H)]dt + βD t dW t (16) 
where dW t represents white noise and F (H) ≥ 0 is a monotonically increasing function. This equation has the nonequilibrium steady state expectation

D nss = µ 2F (H) (17) 
measuring the average distortion between what the control system wants and what it gets. In a sense, this is a kind of converse to the famous radar equation which states that a returned signal will be proportional to the inverse fourth power of the distance between the transmitter and the target. But there is an even deeper result to be found.

Applying the Ito chain rule to Eq.(15) [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF][START_REF] Khashminskii | Stochastic Stability of Differential Equations[END_REF], it is possible to calculate the expected variance in the distortion as E(D 2 t ) -(E(D t )) 2 . But application of the Ito rule to D 2 t shows that no real number solution for its expectation is possible unless the discriminant of the resulting quadratic equation is ≥ 0, so that a necessary condition for stability is

F (H) ≥ β √ µ H ≥ F -1 (β √ µ) (18) 
where the second expression follows from the monotonicity of F . As a consequence of the correspondence reduction leading to Eq.( 15), we have generalized the DRT of Eq.( 2). Different 'control channels', with different forms of R(D), will give different detailed expressions for the rate of generation of 'topological information' by an inherently unstable system.

B. A Black-Scholes model

Take H(ρ) as the control information rate 'cost' of stability at the level of crowding ρ. What is the mathematical form of H(ρ) under conditions of volatility i.e., variability in ρ proportional to it? Let

dρ t = g(t, ρ t )dt + bρ t dW t ( 19 
)
where dW t is taken as white noise and the function g(t, ρ) will 'fall out' of the calculation on the assumption of certain regularities.

Let H(ρ t , t) be the minimum needed incoming rate of control information under the Data Rate Theorem, and expand in ρ using the Ito chain rule [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]) Since H is an information index, it is a kind of free energy in the sense of [START_REF] Feynman | Lectures on Computation[END_REF] and L is a classic entropy measure.

dH t =
Heuristically, replacing dX with ∆X in these expressions and applying Eq.( 20), ∆L = (-∂H/∂t -1 2 b 2 ρ 2 ∂ 2 H/∂ρ 2 )∆t ( 22)

As in the classical Black-Scholes model [START_REF] Black | The pricing of options and corporate liabilities[END_REF], the terms in g and dW t 'cancel out', and the effects of noise are subsumed into the Ito correction factor, a regularity assumption making this an exactly solvable but highly approximate model.

The conventional Black-Scholes calculation takes ∆L/∆T ∝ L. Here, at nonequilibrium steady state, we assume ∆L/∆t = ∂H/∂t = 0, so that

- 1 2 b 2 ρ 2 ∂ 2 H/∂ρ 2 = 0 (23)
By inspection,

H = κ 1 ρ + κ 2 (24)
where the κ i are nonnegative constants.
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 1 FIG.1:A linear expansion near a nonequilibrium steady state of an inherently unstable control system, for which xt+1 = Axt + But + Wt. A, B are square matrices, xt the vector of system parameters at time t, ut the control vector at time t, and Wt a white noise vector. The Data Rate Theorem states that the minimum rate at which control information must be provided for system stability isH > log[| det[A m |],where A m is the subcomponent of A having eigenvalues ≥ 1.

  8) for positive α i . Recall that, for n = 2, Tr[ρ] = ρ 11 + ρ 22 and det[ρ] = ρ 11 ρ 22 -ρ 12 ρ 21 .

  [∂H/∂t + g(ρ t , t)∂H/∂ρ + 1 2 b 2 ρ 2 t ∂ 2 H/∂ρ 2 ]dt +[bρ t ∂H/∂ρ]dW t (20)Define a quantity L as a Legendre transform of the rate H by convention having the form

	L = -H + ρ∂H/∂ρ	(21)