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Comment on ‘Constant stress and pressure rhe-

ology of colloidal suspensions’.

In a recent Letter, Wang and Brady (WB) [1] analyse
the rheology of Brownian hard spheres using constant
stress and pressure Brownian dynamics simulations. The
main observable is the shear viscosity, η(γ̇,Π), expressed
as a function of the shear rate γ̇ and adimensional pres-
sure Π̄ = Πa3/(kBT ), where Π is the pressure, kBT the
thermal energy, and a the average particle diameter. The
central conclusion is the discovery of a “universal viscos-
ity divergence” [1],

η ∼ [φm(Π̄)− φ]−γ , γ ≃ 2, (1)

where φ is the volume fraction and φm(Π̄) a pressure-
dependent critical density. WB argue that Eq. (1) is valid
for all Π̄, unifying the viscosity divergence of both ther-
mal and athermal assemblies of hard spheres. Assum-
ing that (1) describes the jamming transition of ather-
mal hard spheres (at Π̄ → ∞), they conclude that the
same physics must control the rheology at finite Π̄. In
this view, pressure only changes φm(Π̄), which interpo-
lates between the jamming density φJ for Π̄ → ∞ and
the glass transition density at low Π̄ [1], implying that
Eq. (1) is valid also for the glass transition of Brownian
hard spheres at equilibrium.
We show that these conclusions are not valid and pro-

vide the appropriate perspective to interpret WB’s re-
sults. We argue that the reported universality stems
from exploring a single rheological regime where the hard
sphere thermal glass is non-linearly sheared beyond yield,
which directly explains the universal value γ ≈ 2 in terms
of the known hard sphere glass rheology, with no connec-
tion to the Newtonian regimes of either the colloidal glass
transition or the granular jamming transition.
To assess the role of thermal fluctuations in hard

sphere rheology, it is useful to consider not only the re-
duced pressure Π̄ but also the timescales associated with
thermal fluctuations [2]. We consider two Péclet num-
bers: Pe0 = γ̇a2/d0 and Pe = γ̇a2/d, where d(φ) is the
single particle diffusion coefficient at γ̇ = 0, and d0 its
dilute limit. Only Pe is considered in [1], but because
Pe0 < Pe, three different regimes exist, which we use in
Fig. 1 to organise the data of WB.
(i) Pe0 < Pe ≪ 1: The shear flow is slower than equi-

librium relaxation (Pe ≪ 1). In this equilibrium regime,
the viscosity is Newtonian, η = ηT (Π̄) [2]. It depends
only on Π̄ and so cannot be varied in the constant-Π̄
paths of WB. By construction, this approach cannot fol-
low the rapid growth of the Newtonian viscosity of Brow-
nian hard spheres on approaching the glass transition,
which is indeed known [3] to differ from Eq. (1).
(ii) Pe0 ≪ 1 ≪ Pe: This is the shear-thinning regime

(1 ≪ Pe) of the thermal (Pe0 ≪ 1) hard sphere glass.
Most data described by (1) are in this regime (Fig. 1).
WB’s universal collapse therefore describes the diver-
gence of a non-Newtonian viscosity. These constant-Π̄
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FIG. 1: Using adimensional shear rates, we organize the data
of WB measured along constant-Π̄ paths (dashed lines) into
three regimes. Low viscosity data, η < 40, are shown as empty
circles. (i) Newtonian thermal; (ii) shear-thinning thermal;
(iii) Newtonian athermal. Filled symbols indicate data that
are described by Eq. (1), having η > 40. As most of these
data lie in (ii), Eq. (1) follows from the known rheology of the
thermal hard sphere glass. The transition line between (ii)
and (iii) is at Pe0 = 1; the one between (i) and (ii) (Pe = 1)
is determined by adjusting the viscosity model of [2] to WB’s
data.

observations can be accounted for using known laws for
the rheology of amorphous solids (including Brownian
hard spheres). We assume Herschel-Bulkley rheology for
both σ and Π̄: Π̄(φ, γ̇) = Π̄y(φ) + b(φ)γ̇n, where Π̄y(φ),
the inverse function of φm(Π̄), is the pressure at yield.
Expanding to linear order in density change at constant
Π̄ gives φm(Π̄) − φ(γ̇, Π̄) ∼ γ̇n, thus η = σ/γ̇ ∼ σy/γ̇ ∼

[φm(Π̄) − φ]−1/n, showing that γ = 1/n. Numerical re-
sults are well described by n ≃ 0.5 [2], in good agreement
with the value γ ≃ 2 reported by WB. Data in the in-
set of their Fig. 3a are also consistent with the known
yield pressure divergence near jamming [4], from which
we predict φm(Π̄) ∼ φJ − c/Π̄ at large Π̄.

(iii) 1 ≪ Pe0 < Pe: Shear flow dominates even local
thermal motion (1 ≪ Pe0), so this regime is effectively
athermal and the only one where jamming physics could
be explored. The viscosity is Newtonian, η = η0(φ) and
only depends on φ or, in WB’s setup, σ/Π. As shown in
Fig. 1 the data of WB are too sparse in this regime to
assess the functional form of η0(φ). Recent results show
that Eq. (1) is again not valid asymptotically here [5].

A. Ikeda1, L. Berthier2 and P. Sollich3

1Fukui Institute for Fundamental Chemistry, Kyoto
University, Kyoto, Japan

2Laboratoire Charles Coulomb, UMR 5221 CNRS-
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