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Abstract

The first two moments of the steady-state response of a dynamical random system are determined through a
polynomial chaos expansion (PCE) and a Monte-Carlo simulation (MCS) that gives the reference solution.
It is observed that the PCE may not be suitable to describe the steady-state response of a random system
harmonically excited at a frequency close to a deterministic eigenfrequency: many peaks appear around the
deterministic eigenfrequencies. It was proved that the PCE coefficients are the responses of a deterministic
dynamical system, the so-called PC-system. As a consequence these coefficients are subjected to reso-
nances associated to the eigenfrequencies of the PC-system: the spurious resonances are located around the
deterministic eigenfrequencies of the actual system. It is shown that the polynomial order required to obtain
some good results may be very high, especially when the damping is low. These results were shown on a
multi-dof (degree-of-freedom) system with a random stiffness matrix. A 1-dof system was also studied and
new analytical expressions that make the polynomial chaos expansion possible even for high order were
derived. The influence of the PC order was also highlighted. The results obtained in the paper improve the
understanding and scope of applicability of PCE for some structural dynamical systems while harmonically
excited around the deterministic eigenfrequencies.

Keywords: Random systems; structural dynamics; polynomial chaos expansion; steady-state response.

1. Introduction

The consideration of uncertainties plays a crucial role in accessing dynamic performance of a struc-
ture. A primary reason for this is the increasing parametric sensitivity of the dynamic response around the
resonance frequencies. Response sensitivity to variations of the structure, such as parametric variation in
the Young’s modulus, Poisson’s ratio, density, or other kind of error sources, e.g. errors in the model of
damping, can be evaluated through uncertainty quantification. It is generally considered that, at low fre-
quencies, the study of the response is best addressed by a parametric approach. For this case, the stochastic
finite element methods (SFEM) [12] can be applied to obtain statistics of response or the eigenvalues and
eigenvectors of the system.
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Stochastic finite element methods are principally divided into simulation-based methods (e.g. Monte
Carlo Simulation (MCS), see [17]) and expansion-based methods (perturbation method, spectral approach
and stochastic reduced basis method). Reviews on SFEM applied to calculate the response statistics are
given, for example, in [31, 32]. Application of perturbation methods to calculate response can be found
in [19]. Spectral approach methods are reviewed in [24], where the most widely used spectral approach
method is polynomial chaos (PC) using a Galerkin scheme [12] or collocation methods [4, 36, 37]. A
different approach, followed in [33, 34], proposed exact analytical expressions for the response statistics
for a single-degree-of-freedom system. They were obtained from the pdf of the eigenvalues, related to the
pdf of the random parameters. Also, Laplace’s integral has been used to calculate moments and reliability of
response, where the maximum and Hessian of the logarithm of the integrated function are obtained through
different numerical methods [26]. In the context of random skeletal structures, a doubly spectral stochastic
finite element [1] approach was developed in the frequency domain. This can be viewed as a stochastic
dynamic stiffness formulation [3, 22, 25].

The dynamic response of linear stochastic systems can be considered either in the modal domain or
directly in the time or frequency domain. The review papers [29, 31, 32] give an account of the vari-
ous techniques available. In the modal domain, many authors have used polynomial-chaos based spectral
projection approaches [14, 27, 35] for the eigensolutions of the system. However, spectral methods have
not been used widely for the direct computation of the response statistics. Pichler et al. [28] proposed a
mode-based meta-model for the frequency response functions of stochastic structural systems. Adhikari
and Manohar [2] proposed a random eigenfunction expansion method based on Galerkin projection for the
frequency domain response of stochastic dynamical systems. Nieuwenhof and Coyette [5] proposed modal
approaches for the stochastic dynamic response of structures with material and geometric uncertainties in
the frequency domain. Impollonia and Ricciardi [18] proposed a procedure to derive, in explicit form,
the stationary response of a linear structure subjected to Gaussian white noise stochastic excitation. Their
method is based on the solution of complex eigenvalue problems for each fluctuating parameters. Muscolino
et al. [23] discussed improved dynamic analysis of structures with parametric uncertainties under determin-
istic input forces. Fang [10] proposed a transfer matrix based approach in conjunction with a perturbation
method for dynamical systems. Falsone and Ferro [8, 9] proposed the Exact Principal Deformation Mode
(EPDM) approach for the frequency domain response of a general linear dynamic system. Their results
show excellent agreement with direct Monte Carlo simulation results. Recently Kundu and Adhikari [20]
proposed a spectral-function approach for the time-domain response of stochastic systems. The present
work is not related to the time integration issues with PCE as the excitation as well as the response are
harmonic: so the calculations are in the frequency domain and then, different issues arise. Note that Lucor
and Karniadakis have also worked on nonlinear random systems [21].

Few authors have discussed the convergence [30], [11] of the polynomial-chaos expansion for static
problems (elliptic equations in general). Practical works on dynamic problems show that some of the nice
and well known features may not be preserved. There is a lack of a detailed investigation in literature on
the behaviour of the polynomial chaos expansion (PCE) in dynamic context. The aim of this paper is to
contribute in this direction so that PCE can be applied to uncertain dynamic systems in an accurate and
computational efficient manner. First we observe in this paper that the PCE may not be suitable to describe
the steady-state response of a random system harmonically excited at a frequency close to a deterministic
eigenfrequency. Second, an explanation of this undesirable behaviour is given. Third, the quantities of
interest are studied when the number of terms of the PCE is increased: the behavior of the PCE around the
deterministic resonances is highlighted. Finally, it is shown that a PCE may be possible even for high PC
order.
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2. Response of a random dynamical system harmonically excited

2.1. Uncertainties in a dynamic system
The dynamic system is assumed to be described by its n× n mass, damping and stiffness matrices, M,

D, K, where n is the number of degrees of freedom (dof), the forces acting on this system are described by
force vector F(t), and x(t) denotes the degree-of-freedom (dof) vector.

The stiffness matrix is assumed to be uncertain and given by

K = K (1 + δK ξK) (1)

where ξK is a standard normal deviate and, K is a deterministic matrix, which represents the mean stiffness
matrix; the covariance matrix of K is controlled by parameter δK : note that the deterministic dynamic
system corresponds to δK = 0. This uncertainty is very simple. This choice was motivated by the objective
of the paper that is not to find a new method to derive the moments, but to highlight and to explain a specific
feature of a PCE around the deterministic eigenfrequencies: this class of uncertainty makes the equations
and the explanations clearer. From a theoretical point of view the normal distribution may not appear
relevant as a stiffness is nonnegative. However, due to the value of the mean and the standard deviation
of the proposed distribution (standard deviation equals to 0.05 for a unit mean), a negative stiffness is an
extremely rare event: for a 10,000 independent samples of the random variable, no negative realization is
achieved and accordingly the probability that the stiffness matrix defined by Eq. (1) is not positive definite
is extremely weak; so from a practical point of view this distribution is relevant. Further, in a manufacturing
context, the mean and the standard deviation are the only known statics: so, if the constraint of positiveness
is disregarded, the distribution specified by the principle of maximum entropy is the normal distribution. It
must also be specified that all the developments made in this paper are applicable to other distributions such
as the uniform distribution.

In this study the mass and damping matrices are assumed to be deterministic. However, this is not
a restriction and this study may be done with random mass and damping matrices. In fact conceptually
the natural frequencies could have been perturbed. This way our results would have been immediately
generalised to proportionally damped systems.

The force vector is assumed to be harmonic F(t) = F0 e
Iωt and the steady-state response of the

dynamic system is then x(t) = X e Iωt, where I =
√
−1. X is the solution of the following equation:(

−ω2 M + I ω D + K
)
X = F0. (2)

As K is a random matrix, X is a random vector, which can be described by its moments. In this study the
first two moments are estimated. Note that, due to the class of system under study, these moments may also
be obtained by solving deterministic differential equations [15] or by conditional Monte Carlo [15], [16].

As discussed in the introduction section, several methods may be used to derive these moments such
as Monte-Carlo simulation (MCS) or the polynomial chaos (PC) expansion (PCE). In this paper, the MCS
results will be the reference results and the PCE results will be compared to them.

The PC method is now a well-known and well-studied alternative to MCS that expands the solution X
in terms of polynomials Ψj whose variables are a set of mutually independent standard normal deviates
[12]. In our case, polynomial chaos Ψj is a Hermite polynomial and depends on one random variable ξK .
So the response can be expanded on the Polynomial Chaos basis such that

X(ω, ξK) =
∞∑
i=0

Xi(ω)Ψi(ξK) (3)
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This expression for X(ω, ξK) can be truncated to a finite number of terms P for the numerical study. P
defines the number of polynomials that is given by P+1 = (m+r)!/(m!r!) where r is the number of random
variables and m is the chaos order. So, by truncating the previous infinite expansion, an approximation of
X(ω, ξK) is obtained as

XP(ω, ξK) =
P∑
i=0

Xi(ω)Ψi(ξK) (4)

In the following the argument ξK of XP is dropped for convenience.

3. PC component dynamic equation

As already mentioned, dof vector x(t) is a random vector and, x(t) is a solution of the equation

M ẍ(t) + D ẋ(t) + K x(t) = F(t) (5)

where K is defined by relation (1).
This random response vector may be expanded in terms of Hermite polynomials Ψj [6, 12]. An approx-

imation is obtained by truncating the infinite series:

xP(t) =
P∑
i=0

Yi(t) Ψi(ξk) (6)

t will be dropped to shorten the equations.
By replacing x by its expression (6) in Eq. (5), one has:

P∑
i=0

Ψj(ξK)
(
M Ÿi + D Ẏi + K Yi

)
= F (7)

By using the Hermite polynomial properties and by taking account of expression (1), the following equa-
tions are obtained:

∀j = 0 · · ·P, < 0, j, j >
(
M Ÿj + D Ẏj + K Yj

)
+

nPC∑
i=0

δK < 1, i, j > K Yj = δ0jF (8)

where δij is the Kronecker delta and

< k, i, j > =

∫ +∞

−∞
ξkKΨi(ξK)Ψj(ξK)

e−ξ
2
K/2

√
2π

dξK (9)

Due to the Hermite polynomial properties, the following relations may be easily derived:

< 0, i, j > =

∫ +∞

−∞
Ψi(ξK)Ψj(ξK)

e−ξ
2
K/2

√
2π

dξK = j ! δij (10)

< 1, i, j > =

∫ +∞

−∞
ξKΨi(ξK)Ψj(ξK)

e−ξ
2
K/2

√
2π

dξK = δj i+1 j ! + δj i−1 (j + 1)! (11)
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Define

Mom0 / Mom0
ij = < 0, i, j > and Mom0 ∈ R(P+1)×(P+1) (12)

Mom1 / Mom1
ij = < 1, i, j > and Mom1 ∈ R(P+1)×(P+1) (13)

M̃ = Mom0 ⊗ M ∈ R2(P+1)×2(P+1) (14)
D̃ = Mom0 ⊗ D ∈ R2(P+1)×2(P+1) (15)
K̃ = (Mom0 + δK Mom1) ⊗ K ∈ R2(P+1)×2(P+1) (16)
Y = [Y0

T Y1
T · · · YP

T ]T ∈ R2(P+1) (17)

F̃(t) = [FT (t) 0 0 · · · 0 ]T ∈ R2(P+1) (18)

where ⊗ denotes the Kronecker product and (•)T denotes the transpose of (•). Then the components of the
PC expansion satisfy the following equation:

M̃ Ÿ(t) + D̃ Ẏ(t) + K̃ Y(t) = F̃(t) (19)

It should be remarked that Eq. (19) shows that the change of variables provided by relation (6) leads to a
2(P + 1) dof dynamical system that will be referred to PC-system in the following. So the PCE transforms
the study of a random dynamical system to the study of a deterministic dynamical system. Accordingly
the PC-system has resonant frequencies and the steady-state response response to a harmonic force shows
peaks related to these spurious resonances, as it will be illustrated with a 2-dof system. This is an important
result of this paper; the spurious resonances will be referred to as PC-resonances.

4. Example

4.1. Two degree-of-freedom system
MCS and PCE will be used to evaluate the mean and the standard deviation of X for the example shown

in 1 [7]. Stiffness k is assumed to be uncertain:

k = k (1 + δK ξK) (20)

Thus, the mean stiffness matrix is

K = k

[
2 −1
−1 1

]
(21)

The characteristics of the system are listed in Tables 1 and 2. The dof vector was found for 501 values
of ω/(2π) in the range [10− 35] Hz (∆f = 0.05 Hz).

k (Nm−1) m (kg) c (Nm−1s−1) δK (%) F01 (N) F02 (N)
15000 1 1 5 1 0

Table 1: System characteristics

The MCS results were obtained with 10,000 samples of the random variable ξK . The first two moments
(mean and standard deviation) are plotted in 2. The deterministic response has been also plotted in 2.

The PC expansion is calculated for two PC orders: 2 and 15. The results are plotted in Figs. 3 and 4,
and they are in a perfect agreement with the MCS results, except around the resonances, even for P = 2.
Around the resonances some spurious oscillations arise and it seems that the curves oscillate more as P
increases.
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Figure 1: A two degree-of-freedom system with stochastic stiffness coefficients

Eigenfrequencies f (Hz) 12.05 31.54
Damping ratio ξ (%) 0.25 0.66

Table 2: Modal characteristics of the deterministic system

As explained above, the PC coefficients are the solution of a deterministic equation of motion of a
mechanical system, the PC-system. The dof number of the PC-system is a multiple of the dof number
of the deterministic real system: so the eigenfrequencies of the PC-system are noticeable in the steady-
state response and are like spurious PC-eigenfrequencies. By solving the PC-eigenproblem associated
with matrices (K̃, M̃), the eigenfrequencies were determined and then the modal damping ratios were
calculated: the eigenfrequencies are listed in Table 3 as well as the modal damping ratios for several PC
expansion degrees.

Table 3 shows that the PC-resonant frequencies may be divided into two sets which are centered around
the eigenfrequencies of the deterministic system. This explains why there seems to be more and more
“oscillations” around the deterministic frequencies when P increases, in Figs 3 and 4. In fact, there are
no oscillations but the peaks are associated with resonances that have no physical meaning and the number
of resonances increases with P . Similarly the damping ratios associated with a set of eigenfrequencies
are similar to the corresponding damping ratio: this explain why the curve is smoother around the second
deterministic eigenfrequency than the first one.

Moreover, it turns out that the deterministic frequencies are in the set of eigenfrequencies only when P
is even: when P is odd the deterministic frequencies are antiresonant frequencies. This fact is illustrated in
Figure 5 around the first and second deterministic frequencies of the system. Not only are fluctuations of
the mean amplitudes observed when P increases, but also there are decreases in the amplitudes and a switch
between high and low amplitudes at the first and second deterministic frequencies. This will be explained
in the following.
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Figure 2: Deterministic responses (solid lines); Monte-Carlo simulation with 10,000 samples (dotted lines); (a): mean of x1; (b):
standard deviation of x1

4.2. One degree-of-freedom system
The study of a random 1-dof system is now required to go further in the calculation, and it shows repre-

sentative behaviour and the underlying physics that would not change significantly with higher dimension.
So to keep working on the same example, a modal analysis is performed and the modal coordinates are
developed on PCs.

Let’s note (ω
(i)
det,Φ

(i)
det) the deterministic i-th mode associated with (K,M): Φ

(i)
det is also an eigenvector

of (K,M), due to relation (20).
In the following, modal quantity (•) related to mode i will be denoted (•)(i). The associated modal

coordinate, q(i)(t), verifies:
m(i) q̈(i) + c(i) q̇(i) + k(i) q(i) = F (i) (22)

where F = Φdet
T F, m(i), c(i), and k(i) may be easily determined from the system characteristics.

Moreover relation (20) means that k(i) = k
(i)

(1 + δK ξK)
Suppose a harmonic force (F0 exp(Iωt)) acts on the mass, and the steady-state response is q(i)(t) =

7



10 15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

f (Hz)

M
ea

n 
of

  o
f x

1 (
m

)

(a)

10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

f (Hz)
S

ta
nd

ar
d 

de
vi

at
io

n 
of

  o
f x

1 (
m

)

(b)

Figure 3: PC expansion of order 2 (solid lines) vs. Monte-Carlo simulation (dotted lines); (a): mean of x1; (b): standard deviation
of x1

Q(i) exp(Iωt). Q(i) is expanded on the PCs

Q(i) =
P∑
j=0

Y
(i)
j Ψj(ξK) (23)

and Q(i) is governed by the following equation:

(a(i) + k
(i)
δK ξK) Q(i) = F (i) (24)

where a(i) = (k
(i) − ω2m(i) + Iωc(i)). Then the PC expansion components satisfy

a(i)
P∑
j=0

Yj Ψj(ξK) + k
(i)
δK

P∑
j=0

Yj ξKΨj(ξK) = F (i) (25)

Using the Hermite polynomial orthogonality properties given by relations (10) and (11), the following P+1
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Figure 4: PC expansion of order 15 (solid lines) vs. Monte-Carlo simulation (dotted lines); (a): mean of x1; (b): standard
deviation of x1

equations are derived:

a(i) 0! Y
(i)
0 + k

(i)
δK 1! Y

(i)
1 = F (i) (26)

a(i) 1! Y
(i)
1 + k

(i)
δK 1! Y

(i)
0 + k

(i)
δK 2! Y

(i)
2 = 0 (27)
· · · = · · · (28)

a(i) (P − 1)! Y
(i)
P−1 + k

(i)
δK (P − 1)! Y

(i)
P−2 + k

(i)
δK P ! Y

(i)
P = 0 (29)

a(i) P ! Y
(i)
P + k

(i)
δK P ! Y

(i)
P−1 = 0 (30)

Note that the j-th equation may be simplified by divided this equation by (j − 1) !.
Define N (i)

j and D(i)
j as

Y
(i)
j =

N
(i)
j

D
(i)
j

Y
(i)
j−1 (31)
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P=1 P=2 P=3 P=4
f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%)
11.74 0.26 11.51 0.26 11.32 0.27 11.15 0.27
12.34 0.25 12.05 0.25 11.82 0.26 11.63 0.26

12.56 0.24 12.27 0.25 12.05 0.25
12.73 0.24 12.45 0.24

12.88 0.24
30.74 0.67 30.14 0.69 29.64 0.70 29.20 0.71
32.32 0.64 31.54 0.66 30.95 0.67 30.45 0.68

32.88 0.63 32.12 0.65 31.54 0.66
33.33 0.63 32.59 0.64

33.72 0.62

Table 3: Modal characteristics of the PC-component system
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Figure 5: Behaviour around the first (a) and the second (b) deterministic eigenfrequencies for several PC orders.

Then the following recurrence relations hold:

∀j = 2 · · ·P, N (i)
j−1 = − δK D

(i)
j and D

(i)
j−1 =

a(i)

k
(i)
D

(i)
j + δK j N

(i)
j (32)
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with the initial values:

N
(i)
P = − δK and D

(i)
P =

a(i)

k
(i)

(33)

Then, N (i)
1 and D(i)

1 may be derived easily and finally

Y
(i)
0 =

D
(i)
1

a(i) D
(i)
1 + k

(i)
δK N

(i)
1

F (i) (34)

By mathematical induction, it is easy to prove that a(i) may be factorized either in N (i)
j or in D(i)

j for
each j. More precisely, it may be shown that if a(i) is a factor of D(i)

j (resp. N (i)
j ), then a(i) is a factor of

N
(i)
j−1 (resp. D(i)

j−1). However ω(i)
det is a resonant frequency of the FRF 1/a(i), accordingly, ω(i)

det is a resonant
frequency of Y (i)

P , Y (i)
P−2, Y

(i)
P−4, and so on; similarly ω(i)

det is an antiresonant frequency of Y (i)
P−1, Y

(i)
P−3, Y

(i)
P−5,

and so on. Then if P is even, ω(i)
det is a resonant frequency of Y (i)

0 , which corresponds to the mean of
the i-th modal response; if P is odd, ω(i)

det is an antiresonant frequency of Y (i)
0 . The change of variable

XP = Φdet
T Q leads to the same conclusions on the steady-state response.

This shows also that the behavior of the response expanded on the PC depends on the parity of P .
However, PCE converges in probability and in distribution [13], [11], so X2P(ω = ωdet) and X2P+1(ω =
ωdet) tend to the same limit as P tends to infinity. Define the following discrepancy for the first dof:

D(P ) =
||XP+1

1 mean −XP
1 mean||

||XP
1 mean||

(35)

This discrepancy provides a valuable information about the required number of terms to include in the
expansion. Fig. 6(a) shows that for low P this discrepancy varies significantly from P to P + 1 due to
the alternating resonances and antiresonances. However, for P greater than 300, D(P ) is about 10 %. Fig.
7(a) shows that for P = 100, the peaks are still noticeable around the first eigenfrequency whereas the
agreement with the MCS results are excellent for P = 300 (cf Fig. 7(b)). It is also interesting to note the
PC damping effect: as the PC damping ratio associated with the second deterministic mode is higher than
for the first mode, the agreement between PCE and MCS around the second mode is good for a PC order
lower than 300. Indeed, no oscillations are noticeable around the second mode in 7(a), that is for P = 100.

However, in practice, a convergence is not purely theoretical: it must be possible to be close enough
to the limit from a numerical point of view. This may be a real problem for a very low damping ratio. In
that case, when the system is excited at a frequency equal to a deterministic eigenfrequency, the alternating
resonance and antiresonance will produce a sequence with alternatively very low and very high values: then
a very high P will be required. In Fig. 6(b), discrepancy D was plotted when the damping is divided by 5,
that is for a first mode damping ratio equal to 0.05 %: it can be remarked that even for P equal to 1500, the
limit is not reached. Unfortunately, for P higher than 1800, some numerical problems occurred and then it
was not possible to have a good estimation of the limit.
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Figure 6: Discrepancy for increasing PC order; (a) damping ratio ξ=0.25 %; (b) damping ratio ξ=0.05 %

The use of the recurrence relation (32) also provides an interesting expression for Y (i)
j :

∀j ≥ 1, Y
(i)
j =

N
(i)
j

D
(i)
j

Y
(i)
j−1 =

N
(i)
j

D
(i)
j

N
(i)
j−1

D
(i)
j−1

· · · N
(i)
1

D
(i)
1

Y
(i)
0 (36)

=
N

(i)
j

D
(i)
j

N
(i)
j−1

D
(i)
j−1

· · · N
(i)
1

D
(i)
1

D
(i)
1

a(i) D
(i)
1 + δK k

mod

i N
(i)
1

Fmod
i (37)

=
N

(i)
j

D
(i)
j

−δK D(i)
j

D
(i)
j−1

· · · −δK D
(i)
2

D
(i)
1

D
(i)
1

a(i) D
(i)
1 + δK k

mod

i N
(i)
1

Fmod
i (38)

= (−δK)j−1
N

(i)
j

a(i) D
(i)
1 + δK k

mod

i N
(i)
1

Fmod
i (39)
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Figure 7: Mean of x1 for P = 100 (a), and P = 300 (b): PC expansion (black lines) vs. Monte-Carlo simulation (red lines)

Then the modal coordinates may be obtained as

Q(i) =
Fmod
i

a(i) D
(i)
1 + δK k

mod

i N
(i)
1

(
D

(i)
1 Ψ0 +

P∑
j=1

(−δK)j−1 N
(i)
j Ψj

)
(40)

5. Conclusion

The comparison between MCS and a PCE of a random system steady-state response statistics showed
that the PCE results tend quickly to the MCS results except around the deterministic eigenfrequencies. This
study proved that these oscillations are due to peaks that correspond to resonances. Indeed the PCE coeffi-
cients turn to be the response of a deterministic dynamical system that have P + 1 eigenfrequencies located
around each deterministic eigenfrequency of the actual system: that explains why the spurious oscillations
increase with the PC order. This result shows that the PCE coefficients are calculated by transforming the
initial deterministic dynamical system into another dynamical system.

Moreover, it was observed that the PCE tends in a not monotonic way to the MCS around the deter-
ministic frequencies: this depends on the parity of the PC order. More precisely, when the random system
is excited at a deterministic frequency, the response moments are associated either to a resonance for even
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PC order or to an antiresonance for odd PC order. Accordingly, it may be very slow for low damping ratios
to reach the MCS results and, may not be achieved numerically. A discrepancy was defined and provides
information about the number of PCs that must be used.

The response of a harmonically excited random system can take advantage of modal analysis to deter-
mine a PCE. Indeed, the equations may be simplified and some recurrence relations were determined. It
was then possible to achieve a PCE even for high PC order that provided results very quickly, which are in
an excellent agreement with the MCS results.

The results are related to a class of uncertain dynamical systems. This may be extended easily to an
uncertain mass, damping, stiffness matrices that have a Karhunen-Loeve expansion, due to the orthogonality
properties of the multidimensional PC. In this study the number of dof was small. Further work that is
submitted for publication is dealing with more realistic systems. Moreover an effort must be done to make
the PCE efficient at each excitation frequency: ongoing work is done to deal with that issue.
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