Volterra-based Nonlinear Compensation in 400 Gb/s WDM Multiband Coherent Optical OFDM Systems

V. Vgenopoulou ${ }^{1, *}$, A. Amari 2, M. Song ${ }^{\mathbf{3}}$, E. Pincemin ${ }^{3}$, I. Roudas ${ }^{1}$, and Y. Jaouën ${ }^{2}$
${ }^{1}$ Department of Electrical and Computer Engineering, University of Patras, Rio, 26500, Greece
${ }^{2}$ Institut Telecom/Telecom Paris Tech, CNRS UMR5141, 75013 Paris, France
${ }^{3}$ Orange Labs Networks, 2 avenue Pierre Marzin, 22307 Lannion, France
*Corresponding author: vvgeno@upatras.gr

Abstract

We apply a $3^{\text {rd }}$-order inverse Volterra series nonlinear equalizer to a $400 \mathrm{~Gb} / \mathrm{s}$ WDM multiband PM-16QAM OFDM signal. IVSTF-NLE provides a 0.6 dB Q-factor improvement and 1 dB nonlinear threshold increase compared to linear equalization. OCIS codes: (060.2330) Fiber optics communications; (060.1660) Coherent communications.

1. Introduction

Multicarrier coherent optical communication systems with high spectral efficiency modulation formats, e.g., 16 - and 64- quadrature amplitude modulation (QAM) can be used to achieve $400 \mathrm{~Gb} / \mathrm{s}$ and $1 \mathrm{~Tb} / \mathrm{s}$ per channel in the near future [1]. Digital equalization techniques might be employed on the receiver's side for the joint compensation of chromatic dispersion (CD) and Kerr nonlinearities [2]. Nonlinear compensation techniques have been employed in both the optical and the electronic domain, such as spectral inversion [3], digital back-propagation (DBP) [4, 5], and Volterra series equalizer [6-10]. Using DBP yields a significant Q-factor improvement but at the expense of the computational complexity, which is a key problem for real-time implementation even in the case of singlewavelength, single-carrier transmission systems.

This paper examines the merits of nonlinear compensation using a $3^{\text {rd }}$-order inverse Volterra series transfer function nonlinear equalizer (IVSTF-NLE) based on a variant of the algorithm proposed in [10]. In particular, we examine whether the IVSTF-NLE performs better in a WDM, multiband, multicarrier coherent optical communication system than its most prominent counterpart, i.e., a digital back-propagation, split-step Fourier (DBPSSF) equalizer. We show that the IVSTF-NLE provides a $\sim 0.6 \mathrm{~dB}$ Q-factor improvement with respect to the purely linear equalization after 1000 km of propagation over both standard single-mode fiber (SSMF) and large effective area fiber (LEAF), while pushing the nonlinear threshold of $\sim 1 \mathrm{~dB}$. This improvement appears rather modest, due to the detection and compensation of each OFDM sub-band separately, leaving interband nonlinearities uncompensated. Nevertheless, it is superior to the one provided by the single-step-per-span DBP-SSF, which appears to be inadequate to reach the maximum efficiency of the IVSTF-NLE in the multicarrier systems under study. In addition, we show that the IVSTF-NLE can be preferable to multistep-per-span DBP-SSF in terms of computational complexity. Consequently, the IVSTF-NLE can be a reasonable choice as a first-generation nonlinear equalizer in multicarrier $400 \mathrm{~Gb} / \mathrm{s}$ and $1 \mathrm{~Tb} / \mathrm{s}$ systems.

2. Simulation setup

The investigated equalizer is based on the IVSTF of an optical fiber and solves the Manakov equation, in the absence of polarization-mode dispersion and polarization-dependent loss, by using the $3^{\text {rd }}$-order kernels [9, 10]. The simulation setup of the investigated system is depicted in Fig. 1. The signal propagates in an optical link comprised of $10 \times 100 \mathrm{~km}$ of SSMF (Table 1) with no inline dispersion compensation. The block-diagram of the IVSTF-NLE is presented in Fig. 2. The CD is compensated in the frequency domain and the nonlinear distortions are compensated in the time domain. The net bit rate is $400 \mathrm{~Gb} / \mathrm{s}$. We assumed 16.67% overhead for forward error correction (FEC) and 3% overhead for protocol services, leading to a total bit rate of $480 \mathrm{~Gb} / \mathrm{s}$. We use 13 dB clipping ratio to reduce the peak-to-average power ratio (PAPR). The cyclic prefix is set to 11.1%. The noise figure of the inline erbiumdoped fiber amplifier (EDFA) is set to 5.5 dB , whereas the gain is equal to the fiber loss. The system under study is a 3-channel, 4 sub-band configuration (see Fig. 3). The channel spacing is set to 100 GHz . Each channel carries a 4 sub-band, PM-16QAM OFDM signal. Each sub-band accommodates 500 data subcarriers carrying $100 \mathrm{~Gb} / \mathrm{s}$ in 20 GHz bandwidth. In order to avoid crosstalk between the 4 sub-bands constituting the OFDM signal, a guard band of 2 GHz is created by switching off 4 neighboring subcarriers. In addition, 8 subcarriers have been used for carrier phase estimation [11]. The laser phase noise is neglected. Unless otherwise stated, only the third sub-band is detected and compensated, as the two middle sub-bands are more affected by the interband nonlinear impairments. The effective number of bits (ENoB) is set to 5 . The bit-error-rate (BER) is calculated by error counting. A total

Table 1. Fiber parameters

Parameters	SSMF	LEAF
Attenuation (α)	$0.2 \mathrm{~dB} / \mathrm{km}$	$0.19 \mathrm{~dB} / \mathrm{km}$
GVD $\left(\beta_{2}\right)$	$-21.75 \mathrm{ps}^{2} / \mathrm{km}$	$-5.12 \mathrm{ps}^{2} / \mathrm{km}$
Kerr coefficient (γ)	$1.3 \mathrm{~km}^{-1} \mathrm{~W}^{-1}$	$1.5 \mathrm{~km}^{-1} \mathrm{~W}^{-1}$
Effective area	$80 \mu \mathrm{~m}^{2}$	$72 \mu \mathrm{~m}^{2}$
Dispersion	$17 \mathrm{ps} / \mathrm{nm} / \mathrm{km}$	$4 \mathrm{ps} / \mathrm{nm} / \mathrm{km}$

Fig. 2. Block diagram of IVSTF-NLE equalizer.

Fig. 3. Spectrum of $3-\lambda, 4$ sub-bands $400 \mathrm{~Gb} / \mathrm{s}$ OFDM signal
number of 420,000 bits per band is used. As a figure of merit for the performance of the equalization methods is used the Q -factor related to BER by $Q=20 \log _{10}\left[\sqrt{2} \operatorname{erfc}^{-1}(2 \mathrm{BER})\right]$. The optimum Q -factor is evaluated by sweeping the nonlinear adjustable parameter c in the vicinity of its nominal value $c_{0}=\gamma\left(1-\mathrm{e}^{-\alpha \mathrm{Lspan}}\right) / \alpha$.

3. Results and discussion

We compare the performance of the IVSTF-NLE and various DBP-SSF equalizers in a three-wavelength, 4 subband, PM-16QAM OFDM system after using 1000 km of SSMF and LEAF links. For brevity, we employ the notation DBP-SSF ${ }_{\text {Nsteps }}$, where $N_{\text {steps }}$ is the number of steps per fiber span. In Fig. 4(a) we show the Q-factor improvement at various numbers of samples per symbol (SpS) in the SSMF link obtained by the IVSTF-NLE. The net Q -factor improvement is obtained by subtracting the maximum Q -factor values at the optimum launch power with and without IVSTF-NLE (-3 dBm and -4 dBm , respectively) and it is equal to 0.6 dB . We observe that almost all Q-factor improvement is obtained at 8 SpS [12]. In Fig. 4(b), we show the variation of the Q-factor as a function of the input power when the IVSTF-NLE and the DBP-SSF Nsteps are used with 8 SpS . We observe that the DBP-SSF reaches the maximum efficiency at 8 steps-per-span, whereas the IVSTF demonstrates equal performance with the DBP-SSF ${ }_{64}$, offering a 0.6 dB Q-factor improvement. With respect to $\mathrm{DBP}^{-S_{S F}}$, only 0.3 dB of Q -factor improvement is provided. Then, we increase the nonlinearities by replacing the SSMF link with a LEAF link (Table 1). The IVSTF-NLE offers 0.6 dB Q-factor improvement compared to linear compensation whereas the performance of the DBP-SSF 64 is inferior by 0.2 dB compared to the performance of the DBP-SSF 64 in the SSMF link (see Fig. 4(c) and Fig. 4(b)).

Computational complexity is currently one of the most important considerations when designing the digital post-compensation techniques. We estimate the computational effort required for the IVSTF-NLE and the DBP$\mathrm{SSF}_{\text {Nsteps }}$ algorithms in terms of real multiplications following the analysis of [10]. The FFT and IFFT at both ends of the IVSTF-NLE require $4 \log _{2} N_{F F T}$ real multiplications per polarization per sample, where $N_{F F T}$ is the FFT block-size (Fig. 2). The linear compensation part of IVSTF-NLE requires 4 real multiplications per polarization per sample (Fig. 2). The nonlinear compensation part is comprised of K parallel branches which are equal to the number of fiber

Fig. 4. Performance improvement obtained for $400 \mathrm{~Gb} / \mathrm{s} 3-\lambda, 4$ sub-band, PM-16QAM OFDM signal transmitted over $10 \times 100 \mathrm{~km}$. a) Q-factor improvement vs. number of SpS with IVSTF-NLE in SSMF; b) Q-factor vs. input power without/with IVSTF-NLE and DBP-SSF $1,2,8,64$ in SSMF; c) Q-factor vs. input power with IVSTF-NLE and DBP-SSF 64 equalizer in LEAF.
spans, $N_{\text {spans }}$. The necessary number of real multiplications per polarization per sample per branch is $6.5+4 \log _{2} N_{\text {FFT }}$. More specifically, 4 real multiplications are needed for the $\mathrm{CD}, 4 \log _{2} N_{F F T}$ multiplications for the FFT/IFFT, and 2.5 multiplications for the nonlinear phase computation per polarization [10]. Thus, the total number of real multiplications per polarization per sample, required for the IVSTF-NLE, is $4 N_{\text {spans }} \log _{2} N_{\text {FFT }}+6.5 N_{\text {spans }}+4 \log _{2} N_{F F T}+4$ in order to reach the maximum performance. The required number of real multiplications, per polarization per sample, for the DBP-SSF Nsteps $^{\text {is, } N_{\text {steps }} \times\left(4 N_{\text {spans }} \log _{2} N_{F F T}+10.5 N_{\text {spans }}\right)[6,10] \text {. As the number of steps of the DBP-SSF }}$ increases, the computational load increases prohibitively for real-time implementation. Both the IVSTF-NLE and the DBP-SSF ${ }_{1}$ require the same number of real multiplications over $10 \times 100 \mathrm{~km}$ and $N_{F F T}=512$. On the contrary, the gain in real multiplications as a function of the FFT size is lower for IVSTF-NLE compared to DBP-SSF ${ }_{2,8}$ reaching almost the same performance as the computationally intense DBP-SSF 64 (see Fig. 5 and Fig. 4(b)).

Fig. 5. Gain in real multiplications when using IVSTF-NLE and DBP-SSF $2_{2,8}$ with $8 \operatorname{SpS}$ over $(10 \times 100) \mathrm{km}$.

5. Conclusion

In this paper, we compared, for the first time, the performance of the $3^{\text {rd }}$-order IVSTF-NLE vs. several DBP$\mathrm{SSF}_{\text {Nsteps }}$ equalizers in a three-wavelength, 4 sub-band PM-16QAM coherent optical OFDM system. The simulation results for a $400 \mathrm{~Gb} / \mathrm{s}$ signal transmitted over a $10 \times 100 \mathrm{~km}$ of SSMF and LEAF revealed a 0.6 dB Q-factor improvement using the IVSTF-NLE compared to linear compensation only. The IVSTF-NLE demonstrates very similar performance to the DBP-SSF 64 with a significantly lower computational complexity. Thus, the low computational complexity is a key attribute, rendering the IVSTF-NLE the method of choice for compensating nonlinear distortion and CD in WDM multicarrier long haul terrestrial systems.

Acknowledgement

This work was supported in part by the CELTIC SASER-SIEGFRIED project.

4. References

[1] S. Chandrasekhar and X. Liu, "OFDM based superchannel transmission technology," J. Lightw. Technol., LT-30, 3816-3823 (2012).
[2] E. Ip and J. M. Kahn, "Compensation of dispersion and nonlinear impairments using digital backpropagation," J. Lightw. Technol., LT-26, 3416-3425 (2008).
[3] D. Rafique and A. D. Ellis, "Various nonlinearity mitigation techniques employing optical and electronic approaches," IEEE Photon. Technol. Lett., PTL-23, 1838-1840 (2011).
[4] F. Yaman and G. Li, "Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation," IEEE Photon. J., 2, 816-832 (2010).
[5] E. F. Mateo, F. Yaman, and G. Li, "Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission," Opt. Exp., 18, 15144-15154 (2010).
[6] F. P. Guiomar, J. D. Reis, A. L. Texeira, and A. N. Pinto, "Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer," Opt. Exp., 20, 1360-1369 (2012).
[7] M. Nazarathy, "Nonlinear impairments in coherent optical OFDM systems and their mitigation," in Advanced Photonics \& Renewable Energy, OSA Technical Digest (CD), 2010, paper SPThC1.
[8] E. Giacoumidis, I. Aldaya, M. A. Jarajreh, A. Tsokanos, S. T. Le, F. Farjady, Y. Jaouën, A. D. Ellis, and N. J. Doran, "Volterra-based reconfigurable nonlinear equalizer for coherent OFDM," IEEE Photon. Technol. Lett., PTL-26, 1383-1386 (2014).
[9] K. Peddanarappagari and M. Brandt-Pearce, "Volterra series transfer function of single-mode fibers," J. Lightw. Technol., LT-15, 22322241 (1997).
[10] L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, "Intrachannel nonlinearity compensation by inverse Volterra series transfer function," J. Lightw. Technol., LT-30, 310-316 (2012).
[11] S. L. Jansen, J. Morita, T. C. W. Schenk, and H. Tanaka, "Long-haul transmission of $16 \times 52.5 \mathrm{Gbits} / \mathrm{s}$ polarization-division-multiplexed OFDM enabled by MIMO processing," J. Opt. Comm. Network, 7, 173-182 (2008).
[12] G. Raybon, P. J. Winzer, A. A. Adamiecki, A. H. Gnauck, A. Konczykowska, F. Jorge, J. Y. Dupuy, L. L. Buhl, C. R. Doerr, R. Delbue, and P. J. Pupalaikis, "All-ETDM 80-Gbaud (160-Gb/s) QPSK generation and coherent detection," IEEE Photon. Technol. Lett., PTL-23, 1667-1669 (2011).

