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Stability analysis of
a system coupled to a transport equation

using integral inequalities ?

Lucie Baudouin ∗ Alexandre Seuret ∗ Mohammed Safi ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Abstract: We address the stability of a system of ordinary differential equations coupled with
a transport partial differential equation, using a Lyapunov functional approach. This system
can also be interpreted as a finite dimensional system subject to a state delay. Inspired from
recent developments on time-delay systems, a novel method to assess stability of such a class
of coupled systems is developed here. We will specifically take advantage of a polynomial
approximation of the infinite dimensional state of the transport equation together with efficient
integral inequalities in order to study the stability of the infinite dimensional system. The
main result of this paper provides exponential stability conditions for the whole coupled system
expressed in terms of linear matrix inequalities and the results are tested on academic examples.

Keywords: Transport equation, Lyapunov, integral inequalities, polynomial approximation.

1. INTRODUCTION

Distributed parameter systems represent a wide class
of control systems whose state is of infinite dimension.
This class of system appears in numerous applications
that we will not list here. Analyzing and controlling
distributed parameter systems represents an attractive
area of research in applied mathematics and more recently
in automatic control: see for instance Prieur (2008) Susto
and Krstic (2010), Smyshlyaev et al. (2010), Smyshlyaev
and Krstic (2005), Krstic et al. (2009) among many others.

We study in this document the particular situation where
a finite dimensional system is coupled to a transport
equation, and the main difficulty in the stability analysis
we will perform is related to the infinite dimensional nature
of the transport part of the whole state.

It is worth noting that the class of systems we study
can be also interpreted as Time Delay Systems (TDS),
which have been widely investigated in the literature (see
Fridman (2014); Niculescu (2001); Gu et al. (2003)). The
aim of this paper is to take advantage of some recent
developments on the stability analysis of TDS in order
to provide a new framework for the analysis of this system
of Ordinary Differential Equations (ODEs) coupled with
a transport Partial Differential Equation (PDE). The first
difficulty arises from the fact that stability of TDS can
be assessed using the Lyapunov-Krasovskii Theorem and
analyzing the stability of our system cannot be performed
using exactly the same theorem. The second difficulty
lies in the infinite dimensional part of the system, which
prevents from extending directly the existing methods
from the finite dimension analysis. In order to provide
efficient stability conditions, we will construct a Lyapunov
functional by enriching the classical energy of the whole
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system with terms built on a polynomial approximation
of the infinite dimensional state expressed using Legendre
polynomials.

While polynomial approximation methods for the analysis
of infinite dimension systems is not a new idea (see for in-
stance the convex optimization and sum-of squares frame-
works developed in Papachristodoulou and Peet (2006);
Peet (2014) or Ahmadi et al. (2014)), the novelty of this
approach relies on the use of efficient integral inequalities
that are able to give a measure of the conservatism as-
sociated to the approximation. These inequalities can be
interpreted as a Bessel inequality on Hilbert spaces. In
previous work, e.g. Seuret and Gouaisbaut (2014, 2015),
the efficiency of these inequalities for the stability analysis
of TDS has been shown. Indeed, one can also read in
Seuret et al. (2015) a method based on a polynomial
approximation of the distributed nature of the delay, using
Legendre polynomials and their properties to construct
Lyapunov-Krasovskii functionals. In the present paper,
where a simple transport equation replaces the delay terms
(an approach also studied in e.g. Bekiaris-Liberis and
Krstic (2013)), an alternative use of this new method is
proposed.

In the framework of the stability analysis, the present
article can be seen as a first step towards the study of
more intricate PDE systems using tools inherited from
TDS approaches.

Notations: Herein, N is the set of positive integer, R+ the
set of non-negative reals, Rn the n-dimensional Euclidian
space with vector norm | · |n and Rn×m the set of all n×m
real matrices. If P ∈ Rn×n is symmetric (i.e. P ∈ Sn)
and positive definite, we note either P � 0 or P ∈ S+n
and we denote by λmax(P ) > 0 its largest eigenvalue. The
symmetric matrix [A B

∗ C ] stands for
[
A B
B> C

]
and diag(A,B)

is the diagonal matrix [A 0
0 B ]. Moreover, for A ∈ Rn×n, we



define He(A) = A+A>. The matrix I is the identity matrix
and 0n,m stands for the matrix in Rn×m whose entries
are zero. When no confusion is possible, the subscript
will be omitted. For given vectors {uk}k=0,...,n, we denote
Vectk=0..nuk the vector (u0, . . . , un)>. Finally, L2(0, 1;Rn)
will denote the space of square integrable functions over
the interval (0, 1) ⊂ R with values in Rn.

2. FORMULATION OF THE PROBLEM

Let us consider the following coupling of a finite dimen-
sional system in the variable X with a transport partial
differential equation in the variable z, in such a way that
the transport mimics a delay term in the ODE in X: Ẋ(t) = AX(t) +Bz(1, t) t > 0,

∂tz(x, t) + ρ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = CX(t), t > 0.

(1)

The pair (X(t), z(t)) ∈ Rn × L2(0, 1;Rm) is the state
of the system and it satisfies compatible initial datum
(X(0), z(x, 0)) = (X0, z0(x)) for x ∈ (0, 1). The matrices
A, B and C are constant in Rn×n, Rn×m and Rm×n.

One should know that equation ∂tz + ρ∂xz = 0 in (1) of
unknown z = z(x, t) is a simple vectorial transport PDE
and if the initial data z0 ∈ L2(0, 1;Rm) and the lateral
boundary data z(0, ·) = CX ∈ L2(R+;Rm) are given, it
has a unique solution z ∈ C(R+;L2(0, 1;Rm)) such that
(see e.g. Coron (2007)), for all t > 0:

‖z(t)‖L2(0,1;Rm) ≤ ‖z0‖L2(0,1;Rm) + ‖X‖L2(R+;Rm).

The stability of System (1) will be studied thanks to
a Lyapunov functional constructed with the state (X, z)
and the smart use of the projection of z over the set
of polynomials of degree less than a prescribed integer
N ≥ 0. We would like to emphasize that this study aims
at guaranteeing the stability of the whole system through
tractable LMI tests.

2.1 Legendre Polynomials and their properties

In order to express the polynomial approximation of the
infinite dimensional state z, we will work with the shifted
Legendre polynomials considered over the interval [0, 1]
and denoted {Lk}k∈N. The main motivation for selecting
these polynomials arise from their useful properties which
will be described below. Instead of giving their explicit for-
mula, we detail here their principal constitutive properties.
To begin with, the family {Lk}k∈N forms an orthogonal
basis of L2(0, 1;R) since

〈Lj , Lk〉 =

∫ 1

0

Lj(x)Lk(x)dx =
1

2k + 1
δjk,

where δjk denotes the Kronecker delta, equal to 1 if j = k
and to 0 otherwise. We denote the corresponding norm of
this inner scalar product ‖Lk‖ =

√
〈Lk, Lk〉 = 1/

√
2k + 1.

The boundary values are given by:

Lk(0) = (−1)k, Lk(1) = 1. (2)

Furthermore, the following derivation formula holds:

L′k(x) =


0, k = 0,
k−1∑
j=0

(2j + 1)(1− (−1)k+j)Lj(x), k ≥ 1.
(3)

One can find details about Legendre polynomials in the
book by Courant and Hilbert (1989).

Therefore, any element y ∈ L2(0, 1;R) can be written
y(x) =

∑
k≥0 〈y, Lk〉Lk(x)/‖Lk‖2 and throughout the pa-

per, we will denote abusively, for z ∈ C(R+;L2(0, 1;Rm)),

z(x, t) =
∑
k≥0

〈z(t), Lk〉
Lk(x)

‖Lk‖2

instead of

z(x, t)=

 z1(x, t)
...

zm(x, t)

=


∑
k≥0 〈z1(t), Lk〉Lk(x)/‖Lk‖2

...∑
k≥0 〈zm(t), Lk〉Lk(x)/‖Lk‖2

 .
The following property will be useful hereafter.

Property 1. Let z ∈ C(R+;L2(0, 1;Rm)) satisfy the trans-
port equation in (1). The time derivative formulas

d

dt
〈z(t), L0〉 = ρz(0, t)− ρz(1, t)

d

dt
〈z(t), Lk〉 = ρ

k−1∑
j=0

(2j + 1)(1− (−1)k+j) 〈z(t), Lj〉

+ ρ(−1)kz(0, t)− ρz(1, t), ∀k ∈ N∗

(4)

holds if ∂tz ∈ C(R+;L2(0, 1;Rm)) .

The proof derives from the formulas (2) and (3).

2.2 Bessel-Legendre Inequality

The use of an approximation of the infinite dimensional
state z (by a finite dimensional one using polynomials)
will be efficient if we are able to measure the approxi-
mation error. The following lemma provides this kind of
information.

Lemma 1. Let z ∈ C(R+;L2(0, 1;Rm)) and R ∈ S+m. The
integral inequality∫ 1

0

z>(x, t)Rz(x, t)dx ≥
N∑
k=0

(2k+1) 〈z(t), Lk〉>R 〈z(t), Lk〉

(5)
holds for all N ∈ N.

Proof : It relies on the orthogonality of the Legendre poly-
nomials and on the Bessel inequality, see e.g. Seuret and
Gouaisbaut (2015). More precisely, the proof of this lemma
results from the positive definiteness and the expansion of

〈yN (t), RyN (t)〉 =

∫ 1

0

y>N (x, t)RyN (x, t)dx

where

yN (x, t) = z(x, t)−
N∑
k=0

〈
z(t),

Lk
‖Lk‖

〉
Lk(x)

‖Lk‖
is the approximation error between the state z and its
projection over the N + 1 first Legendre polynomials. �

3. STABILITY ANALYSIS

3.1 Lyapunov-Krasovskii functional

Our objective is to construct a Lyapunov functional in
order to narrow the proof of the stability of the complete



system (1) to the resolution of a simple Linear Matrix
Inequality (LMI). Since a part of the state (X, z) of the
system is distributed (z being the solution of a transport
equation and depending on time t and space x variables),
our idea is to take advantage of an appropriate finite
dimensional approximation of the state.

First of all, let us denote by E the total energy of the
system:

E(X(t), z(t)) = |X(t)|2n + ‖z(t)‖2L2(0,1;Rm).

In the sequel, we will use the notation E(t) = E(X(t), z(t))
in order to simplify the notation. Following the previous
developments, N being a prescribed positive integer, we
will introduce an approximate state of size n+ (N + 1)m,
composed by the state of the ODE system X and the
projection of the infinite dimensional state z over the set
of polynomial of degree less than N . In other words, the
approximate finite dimensional state vector is given by[

X(t)
ZN (t)

]
=

[
X(t)

Vectk=0..N 〈z(t), Lk〉

]
.

Inspired by the complete Lyapunov-Krasovskii functional
which is a necessary and sufficient conditions for stability
for delay systems (see Gu et al. (2003)), we are looking
for a candidate Lyapunov functional for system (1) of the
form:

VN (X(t), z(t)) = X>(t)PX(t) + 2X>(t)

∫ 1

0

Q(x)z(x, t)dx

+

∫ 1

0

∫ 1

0

z>(x1, t)T (x1, x2)z(x2, t)dx1dx2

+

∫ 1

0

z>(x, t)Sz(x, t)dx+

∫ 1

0

∫ x

0

z>(y, t)Rz(y, t)dydx,

where the matrices P ∈ S+n , S,R ∈ S+m and the functions
Q ∈ L2(0, 1;Rn×m) and T ∈ L∞((0, 1)2;Sm) have to be
determined. This functional is composed of four typical
terms. The first quadratic term in X(t) is dedicated to the
state of the ODE, while the last three terms are dedicated
to the state of the PDE. It is worth mentioning that the
last two terms can be interpreted as the weighted energy
of the transport equation and have been widely use in
the literature (see for instance Coron (2007)). The term
depending on the function T has been recently considered
in the literature in Peet (2014). The term depending on Q
is introduced in order to represent the coupling between
the system of ODEs and the transport PDE.

While this class of functionals is already classical in the
context of time delay systems, the interpretation of such
functionals for PDEs is quite recent (see for instance the
work Ahmadi et al. (2014) and Papachristodoulou and
Peet (2006)). The novelty of the present paper is closely
related to these works. The difference of our approach re-
lies on the use of polynomial approximation together with
efficient integral inequalities presented in Lemma 1, which
is able to give a measure of the polynomial approximation.

In order to reveal the approximate state ZN in the candi-
date Lyapunov functional, we select the functions Q and
T as follows:

Q(x) =

N∑
k=0

QkLk(x), T (x1, x2) =

N∑
i=0

N∑
j=0

TijLi(x1)Lj(x2)

where {Qi}i=0..N belong to Rn×m and {Tij = T>ji }i,j=0..N

to Rm×m. Therefore we can write, with the same abuse of
notation as for the energy E(t),

VN (t) =

[
X(t)
ZN (t)

] [
P Q
Q> T

] [
X(t)
ZN (t)

]
(6)

+

∫ 1

0

z>(x, t)Sz(x, t)dx+

∫ 1

0

∫ x

0

z>(y, t)Rz(y, t)dydx,

where

Q = [Q0 . . . QN ] in Rn,m(N+1),
T = [Tjk]j,k=0..N in Rm(N+1),m(N+1).

One should notice that VN is built from the whole state of
the system (X, z) and from the approximate state vector
ZN as well. In the following subsection, conditions for
exponential stability of the origin of system (1) can be
obtained using the LMI framework. More particularly, we
aim at proving that the functional VN is positive definite
and satisfies V̇N (t) + 2δVN (t) ≤ 0 for a prescribed δ > 0
and under LMIs to be determined.

3.2 Exponential stability with guaranteed decay rate

Let us set

SN = diag(S, 3S, . . . , (2N + 1)S) in Rm(N+1),m(N+1)

RN = diag(R, 3R, . . . , (2N + 1)R) in Rm(N+1),m(N+1)

IN = diag(Im, 3Im, . . . , (2N + 1)Im) in Rm(N+1),m(N+1)

1 = [Im Im . . . Im]
>

in Rm(N+1),m

1∗ =
[
Im −Im . . . (−1)NIm

]>
in Rm(N+1),m

AN = [αjkIm]j,k=0..N in Rm(N+1),m(N+1)

with

αjk =

{
(2k + 1)(1− (−1)k+j), if k ≤ j − 1,
0, if k ≥ j.

We provide here a stability result for (1) based on the pro-
posed Lyapunov functional (6) and the use of Property 1
and Lemma 1.

Theorem 1. Consider the coupled system (1) with a given
transport speed ρ > 0. If there exist an integer N ≥ 0,
such that there exist δ > 0, P ∈ Sn, Q ∈ Rn,(N+1)m and
T ∈ S(N+1)m and two matrices S,R ∈ S+m satisfying the
following LMIs

ΦN =

[
P Q
Q> T + SN

]
� 0, (7)

ΨN (ρ, δ) =

 Ψ11 PB − ρQ1 Ψ13

∗ −ρS B>Q− ρ1>T
∗ ∗ Ψ33

 ≺ 0, (8)

ρR− 2δ(S +R) � 0, (9)

where

Ψ11 = He(PA+ ρQ1∗C) + ρC>(S +R)C + 2δP

Ψ13 =A>Q+ ρC>1∗>T + ρQAN + 2δQ

Ψ33 = ρHe(TAN )− ρRN + 2δ(T + SN +RN ),

then the coupled system (1) is exponentially stable.
Indeed, for any constant speed ρ, there exists a constant
K > 0 such that we have a guaranteed decay rate δ for
the energy:

E(t) ≤ Ke−2δt
(
|X0|2n + ‖z0‖2L2(0,1;Rm)

)
,∀t > 0. (10)



Proof : The proof consists in showing that if the LMI
conditions (7), (8) and (9) are verified for given N ≥ 0
and δ > 0, then there exist three positive scalars ε1, ε2
and ε3 such that for all t > 0,

ε1E(t) ≤ VN (t) ≤ ε2E(t), (11)

and
V̇N (t) + 2δVN (t) ≤ −ε3E(t). (12)

Indeed, afterwards, its suffices to integrate (12) in time to
obtain,

VN (t) ≤ VN (0)e−2δt, ∀t ≥ 0.

Next, with the help of (11), we can write

ε1E(t) ≤ VN (t) ≤ VN (0)e−2δt ≤ ε2E(0)e−2δt,

allowing to conclude (10).

Existence of ε1: Since S � 0 and ΦN � 0, there exists a
sufficiently small ε1 > 0 such that

S � ε1Im, ΦN =

[
P Q
Q> T + SN

]
� ε1

[
In 0
0 IN

]
.

Therefore, R being positive definite, VN (t) in (6) satisfies

VN (t) ≥
[
X(t)
ZN (t)

]>
ΦN

[
X(t)
ZN (t)

]
− Z>N (t)SNZN (t)

+

∫ 1

0

z>(x, t)Sz(x, t)dx.

Replacing ΦN by its lower bound depending on ε1 and
introducing ε1 in the last integral term, we have

VN (t) ≥ ε1|X(t)|2n + ε1

∫ 1

0

z>(x, t)z(x, t)dx

+

∫ 1

0

z>(x, t)(S − ε1Im)z(x, t)dx− Z>N (t)(SN − ε1IN )ZN (t).

Since S − ε1Im � 0, Lemma 1 ensures∫ 1

0

z>(x, t)(S − ε1Im)z(x, t)dx ≥
N∑
k=0

(2k + 1) 〈z(t), Lk〉> (S − ε1Im) 〈z(t), Lk〉 .

This inequality can be rewritten in a more compact form
using the approximate state ZN (t) and the square matrices
SN and Im defined earlier as follows∫ 1

0

z>(x, t)(S−ε1Im)z(x, t)dx ≥ Z>N (t)(SN−ε1IN )NZN (t).

We obtain a lower bound of VN depending on the energy
function E(t):

VN (t) ≥ ε1|X(t)|2n + ε1‖z(t)‖2L2(0,1;Rm) = ε1E(t).

Existence of ε2: There exists a sufficiently large scalar
β > 0 such that [

P Q
Q> T

]
� β

[
In 0
0 IN

]
,

yielding, under the assumptions S � 0 and R � 0, and
after an integration by parts, that

VN (t) ≤ β|X(t)|2n + βZ>N (t)INZN (t)

+

∫ 1

0

z>(x, t)(S +R)z(x, t)dx.

Applying Lemma 1 to the second term of the right-hand
side ensures that

VN (t)≤ β|X(t)|2n +

∫ 1

0

z(t)>(βIm + S +R)z(t)dx

≤ β|X(t)|2n + ε2‖z‖2L2(0,1;Rm) ≤ ε2E(t)

where ε2 = β + λmax(S) + λmax(R).

Existence of ε3: Let us begin with a new formulation of
equation (4) in Property 1, using the notations recently
introduced:

d

dt
ZN (t) = ρANZN (t) + ρ1∗CX(t)− ρ1z(1, t). (13)

The proof of (12) will also partly rely on the definition of
an augmented approximate vector of size n + (N + 2)m
given by

ξN (t) =

[
X(t)
z(1, t)
ZN (t)

]
.

Let us split the computation of V̇N into three terms,
namely V̇N,1, V̇N,2 and V̇N,3 corresponding to each term of
VN in (6). On the one hand, using the first equation in (1)
and the new formulation (13) of Property 1, we have

d

dt

[
X(t)
ZN (t)

]
=

[
AX(t) +Bz(1, t)

ρANZN (t) + ρ1∗CX(t)− ρ1z(1, t)

]
so that we can calculate

V̇N,1(t) + 2δVN,1(t)

=
d

dt

([
X(t)
ZN (t)

]> [
P Q
Q> T

] [
X(t)
ZN (t)

])
+ 2δ

[
X(t)
ZN (t)

]> [
P Q
Q> T

] [
X(t)
ZN (t)

]
= ξ>N (t)

φ1 PB − ρQ1 Ψ13

∗ 0 B>Q− ρ1>T
∗ ∗ ρHe(TAN ) + 2δT

 ξN (t)

with φ1 = He(PA + ρQ1∗C) + 2δP . On the other hand,
using the transport equation of (1),

V̇N,2(t) =

∫ 1

0

∂t
(
z>(x, t)Sz(x, t)

)
dx

= −ρ
∫ 1

0

∂x
(
z>(x, t)Sz(x, t)

)
dx

= ρX(t)>C>SCX(t)− ρz(1, t)>Sz(1, t)

= ξN (t)>

ρC>SC 0 0
0 −ρS 0
0 0 0

 ξN (t),

and we also get

V̇N,3(t) =

∫ 1

0

∫ x

0

∂t
(
z>(y, t)Rz(y, t)

)
dydx

= −ρ
∫ 1

0

∫ x

0

∂y
(
z>(y, t)Rz(y, t)

)
dydx

= ρX(t)>C>RCX(t)− ρ
∫ 1

0

z>(x, t)Rz(x, t)dx.

Merging the expressions of V̇N,1, V̇N,2 and V̇N,3 and using
the definition of the matrix ΨN (ρ, δ) in (8), the following

expression of V̇N + 2δVN can be obtained (using an
integration by parts for the term in R):



V̇N (t) + 2δVN (t) = ξ>N (t)ΨN (ρ, δ)ξN (t)

+ Z>N (t)[ρRN − 2δ(SN +RN )]ZN (t)

−
∫ 1

0

z>(x, t)(ρR− 2δ(S +R))z(x, t)dx

− 2δ

∫ 1

0

xz>(x, t)Rz(x, t)dx.

Following the same procedure as for the existence of ε1,
the LMIs (8) and (9) ensure that there exists a sufficiently
small ε3 > 0 such that

ρR− 2δ(S +R) � ε3Im, ΨN (ρ, δ) ≺ −ε3

[
In 0 0
0 0 0
0 0 IN

]
.

Hence, injecting these inequalities into the upper bound of
V̇N (t) + 2δVN (t) (and using also R � 0 to get rid of the
last term) yields

V̇N (t) + 2δVN (t) ≤ −ε3|X(t)|2n − ε3
∫ 1

0

|z(x, t)|2dx

+ Z>N (t)[ρRN − 2δ(SN +RN )− ε3IN ]ZN (t)

−
∫ 1

0

z>(x, t)(ρR− 2δ(S +R)− ε3Im)z(x, t)dx.

Since ρR− 2δ(S +R)− ε3Im ∈ S+n , Lemma 1 gives:

−
∫ 1

0

z>(x, t)(ρR− 2δ(S +R)− ε3Im)z(x, t)dx

≤ −Z>N (t)[ρRN − 2δ(SN +RN )− ε3IN ]ZN (t),

so that the Lyapunov functional VN satisfies, for all t > 0

V̇N (t) + 2δVN (t) ≤ −ε3E(t).

Therefore, one can conclude to the exponential stability of
system (1) provided that LMIs (7)-(8)-(9) are solvable at
the order N . �

3.3 Exponential stability results

The following corollary allows to guarantee the exponential
stability of system (1) without considering information on
the decay rate δ.

Corollary 2. Let ρ > 0 be a given transport speed and
N ≥ 0 an integer. If there exist matrices P,Q,R, S, T such
that P ∈ Sn, Q ∈ Rn,(N+1)m, T ∈ S(N+1)m, S and R ∈ S+m
satisfy ΦN � 0 and ΨN (ρ, δ = 0) ≺ 0, then the coupled
system (1) is exponentially stable.

Proof : If the conditions ΦN � 0 and Ψ(ρ, 0) ≺ 0 are
verified, then equations (11) and (12) hold with δ = 0.

It follows that V̇N (t)+2δ∗VN (t) ≤ 0 with 2δ∗ = ε3/ε2 and
the conclusion stems as for Theorem 1. �

4. NUMERICAL EXAMPLES

Example 1: As a first illustration of our approach, we
consider system (1) with the following matrices:

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
, C =

[
1 0
0 1

]
.

Th.1 δ = 0 δ = 0.005 δ = 0.01 Variables

N=0 0.2284 0.2611 0.2885 16

N=1 0.1761 0.2073 0.2325 27

N=2 0.1653 0.1957 0.2202 42

N=3 0.1623 0.1925 0.2168 61

N=4 0.1620 0.1919 0.2159 84

Table 1. Minimal allowable transport speed
ρmin in example 1.

Note first that the finite dimensional system considered
alone, i.e. without the coupling with the transport PDE,
is stable since the eigenvalues of A+BC are −1.9 and −3.
This system refers to one of the most classical time-delay
example driven by the state equation

Ẋ(t) =

[
−2 0
0 −0.9

]
X(t) +

[
−1 0
−1 −1

]
X(t− 1/ρ).

A frequency approach can easily ensure that this system
is asymptotically stable for all delay 1/ρ in the interval
[0, 6.1725], i.e. for all transport speed ρ > 0.1620.

For this example, Table 1 gathers the minimal allowable
values for the transport speed ρmin for several values of
the required exponential decay rate δ and of the degree
of the polynomial approximation N obtained solving the
conditions of Theorem 1. When δ = 0, one can see that
Theorem 1 is able to recover an accurate (10−4) estimate
of the minimal transport speed, when N = 4. Table 1
also shows that for this example, increasing N leads to a
notable reduction of the conservatism.
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Fig. 1. Evolution of the decay rate δ with respect to ρ.

The graphs pictured in Figure 1.a show the evolution of
the exponential convergence rate δ with respect to the
transport speed ρ for different values of N . A notable
aspect of these graphs is that Theorem 1 is able to show
that the exponential decay rate δ reaches a maximum for



optimal values of ρ located around ρ = 5. This shows that
limiting the transport speed in system (1) may improve
the convergence rate.

Example 2: Besides, Theorem 1 addresses also the stabil-
ity of systems that may be unstable for a very high speed
of transport as it is illustrated with the second example.
We consider now a second set of matrices:

A =

[
0 1
−2 0.1

]
, B =

[
0
1

]
, C = [1 0] .

Here, one should be aware that system (1), with an
arbitrarily large transport speed ρ, is not asymptotically
stable since the trace of A + BC =

[
0 1
−1 0.1

]
is strictly

positive. Indeed the system has at least one eigenvalue in
the right-hand-side of the complex plane.

Table 2 gathers for this example the minimal and maximal
allowable transport speed ρmin and ρmax for several values
of the required exponential decay rate δ and of the degree
of the polynomial approximation N obtained solving the
LMI conditions of Theorem 1. From this table, we see again
that increasing the degree of approximation N delivers
more accurate estimation of the minimal and maximal
allowable ρ. In other words, the results obtained with a
given N are included in the ones obtained with N + 1.

N=0 N=1 N=2 N=3

Variables 8 12 17 23

δ = 0 -
ρmin = 0.6491
ρmax = 9.9404

0.5840
9.9800

0.5822
9.9800

δ = 0.005 -
ρmin = 0.6569
ρmax = 9.0334

0.5890
9.0744

0.5866
9.0744

δ = 0.01 -
ρmin = 0.6647
ρmax = 8.2781

0.5939
8.3195

0.5909
8.3195

Table 2. Minimal and maximal allowable trans-
port speed in example 2.

The evolution of δ with respect to ρ for different values
of N = 0, 1, 2, 3, 4 is displayed in Figure 1.b. Again, for
this example, an optimal value of the transport speed
is detected by Theorem 1 leading to a maximum of the
convergence decay rate.

5. DISCUSSION AND CONCLUSION

In this paper we have presented a novel approach for
the stability analysis of coupled ODEs - transport PDE
systems issued from recent developments on time-delay
systems. The method is based on the construction of
a Lyapunov functional and the use of projections on
Legendre polynomials. Exponential stability conditions for
the complete infinite dimensional system providing an
estimation of the decay rate are detailed and expressed in
terms of tractable LMIs which depends explicitly on the
transport velocity and on the degree N of the polynomial
approximation.

This work can be interpreted as an alternative vision of
the analysis provided in Seuret and Gouaisbaut (2015) and
Seuret et al. (2015). In these articles, it is shown that the
LMI conditions issued from this approximation method
using Legendre polynomials form a hierarchy, i.e. that it
is possible to prove that when increasing the degree N of
approximation, the stability regions are enlarged. In other
words, if there exists a solution to the LMI conditions for

given ρ and δ at an order N , there also exists a solution
to the same problem at the order N + 1.

The contribution presented in this paper constitutes a
preliminary result on the stability analysis of a system in-
cluding PDEs using Legendre polynomials and the Bessel-
Legendre inequality. The problem treated here only covers
a particular and simple example of distributed systems.
Our objective is to consider a larger class of systems
(coupled with ODE’s or not) including, at a first stage,
the heat or wave equations.
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