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We consider the nonlocal diffusion equation ∂ t u = J * u -u + u 1+p in the whole of R N . We prove that the Fujita exponent dramatically depends on the behavior of the Fourier transform of the kernel J near the origin, which is linked to the tails of J. In particular, for compactly supported or exponentially bounded kernels, the Fujita exponent is the same as that of the nonlinear Heat equation ∂ t u = ∆u + u 1+p . On the other hand, for kernels with algebraic tails, the Fujita exponent is either of the Heat type or of some related Fractional type, depending on the finiteness of the second moment of J. As an application of the result in population dynamics models, we discuss the hair trigger effect for ∂ t u = J * u -u + u 1+p (1 -u).
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Introduction

In this work we consider solutions u(t, x) to the nonlinear (p > 0) integro partial differential equation

∂ t u = J * u -u + u 1+p in (0, ∞) × R N , (1) 
in any dimension N ≥ 1. Equation ( 1) is supplemented with a nonnegative and nontrivial initial data, and we aim at determining the so-called Fujita exponent p F , that is the value of p that separates "systematic blow up solutions" from "blow up solutions vs global and extincting solutions" (see below for details). We shall prove that the Fujita exponent dramatically depends on the behavior of the Fourier transform of the kernel J near the origin, which is linked to the tails of J. Depending on these tails, it turns out that the Fujita phenomenon in (1) can be similar to that of the nonlinear Heat equation, or to that of a related nonlinear Fractional equation.

As an application of our main result, we consider

∂ t u = J * u -u + u 1+p (1 -u) in (0, ∞) × R N , (2) 
which serves as a population dynamics model where both long range dispersal (via the kernel J) and a weak Allee effect (via the degeneracy of the steady state u ≡ 0, due to p > 0) are taken into account. Depending on the balance between the tails of J and the strength of the Allee effect, we discuss the so-called hair trigger effect -meaning that any small perturbation from u ≡ 0 drive the solution to u ≡ 1-or the possibility of extincting solutions.

In his seminal work [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF], Fujita considered solutions u(t, x) to the nonlinear Heat equation

∂ t u = ∆u + u 1+p in (0, ∞) × R N , (3) 
supplemented with a nonnegative and nontrivial initial data. For such a problem, the Fujita exponent is p F = 2 N . Precisely, if 0 < p ≤ p F then any solution blows up in finite time; if p > p F then solutions with large initial data blow up in finite time whereas solutions with small initial data are global in time and go extinct as t → ∞. For a precise statement we refer to [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF] for the cases 0 < p < p F and p > p F . The critical case p = p F is studied in [START_REF] Hayakawa | On nonexistence of global solutions of some semilinear parabolic differential equations[END_REF] when N = 1, 2, in [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF] when N ≥ 3, and in [START_REF] Weissler | Existence and nonexistence of global solutions for a semilinear heat equation[END_REF] via a direct and simpler approach. Let us observe that, as well-known, solutions to the Heat equation ∂ t u = ∆u tend to zero as t → ∞ like O t -N 2 , which is a formal argument to guess p F = 2 N . Since then, the Fujita phenomenon has attracted much interest and the literature on refinements of the results or on various local variants of equation ( 3) is rather large. Let us mention for instance the works [START_REF] Weissler | Existence and nonexistence of global solutions for a semilinear heat equation[END_REF], [START_REF] Levine | The role of critical exponents in blowup theorems[END_REF], [START_REF] Deng | The role of critical exponents in blow-up theorems: the sequel[END_REF], [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF], or [START_REF] Quittner | Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher[END_REF] for an overview, and the references therein.

When the Laplacian diffusion operator is replaced by the Fractional Laplacian, the situation is also well understood: the Fujita exponent for

∂ t u = -(-∆) s/2 u + u 1+p in (0, ∞) × R N , 0 < s ≤ 2, (4) 
is p F = s N . We refer to the work of Sugitani [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF]. See also, among others, [START_REF] Birkner | Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach[END_REF] for a probabilistic approach, and [START_REF] Guedda | A note on nonexistence of global solutions to a nonlinear integral equation[END_REF] for a variant of [START_REF] Bebernes | Travelling fronts in cylinders and their stability[END_REF]. Let us observe that, as well-known, solutions to the Fractional diffusion equation ∂ t u = -(-∆) s/2 u tend to zero as t → ∞ like O t -N s , which is again a formal argument to guess p F = s N . As far as we know, much less is known for the nonlocal equation [START_REF] Alfaro | Slowing allee effect vs. accelerating heavy tails in monostable reaction diffusion equations[END_REF]. Let us mention the work of García-Melián and Quirós [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF] (and [START_REF] Yang | Asymptotic behavior of the nonlocal diffusion equation with localized source[END_REF] for a variant) who treat the case of compactly suported dispersal kernel J. In such a situation, the Fujita exponent for (1) is the same as that of (3), namely p F = 2 N . In order to take into account rare long-distance dispersal events, which are relevant in many population dynamics models (seeds dispersal for instance), we allow in this work kernels J which have nontrivial tails. Two typical situations are when J has (light) exponential tails or (heavy) algebraic tails, the latter case meaning

J(x) ∼ C |x| α as |x| → ∞, with α > N. (5) 
Owing to the decay of solutions to ∂ t u = J * u -u proved by Chasseigne, Chaves and Rossi [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF], we guess that p F = 2 N in the exponential case, whereas

p F = α N -1 if N < α ≤ N + 2 2 N if α > N + 2, ( 6 
)
in the algebraic case [START_REF] Birkner | Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach[END_REF]. In other words, in the algebraic case α > N +2 the Fujita exponent is of the Heat type (3) (and so in the exponential case), but in the algebraic case N < α ≤ N + 2 the Fujita exponent becomes of the Fractional type ( 4) with s = α -N ∈ (0, 2]. This is the role of the present paper to prove, among others, these results. Let us comment on some technical difficulties arising from [START_REF] Alfaro | Slowing allee effect vs. accelerating heavy tails in monostable reaction diffusion equations[END_REF]. Notice first that, as far as (3) and ( 4) are concerned, some self similarity properties of both the Heat kernel and the fundamental solution associated to the Fractional Laplacian may be quite helpful, as seen in [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF] or [START_REF] Weissler | Existence and nonexistence of global solutions for a semilinear heat equation[END_REF]. Those self similarity properties are not shared by the fundamental solution of ∂ t u = J * u -u. Secondly, notice that, when J is compactly supported, the underlying nonlocal eigenvalue problem to (1) is rather well understood [START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusion problems[END_REF] and the authors in [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF] took advantage of its rescaling properties. As far as we know, such informations are not available for more general dispersal kernels, as those we consider. We therefore have to adapt some technics, in particular when dealing with blow up phenomena.

We now discuss the hair trigger effect in some population dynamics models. Let us start with the Fisher-KPP equation

∂ t u = ∆u + u(1 -u),
which was introduced [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], to model the spreading of advantageous genetic features in a population. From the linear instability of the steady state u ≡ 0, it is well known that any solution u(t, x) to the Fisher-KPP equation, with a nonnegative and nontrivial initial data, tend to 1 as t → ∞, locally uniformly in x ∈ R N . This is referred to as the hair trigger effect.

In order to take into account a weak Allee effect, meaning that the growth per capita is no longer maximal at small densities, one may consider

∂ t u = ∆u + u 1+p (1 -u), (7) 
where p > 0. Then the hair trigger effect for ( 7) is naturally linked with the Fujita blow up phenomena for [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. Hence, in their seminal work, Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF] showed that the hair trigger effect remains valid for [START_REF] Deng | The role of critical exponents in blow-up theorems: the sequel[END_REF] as long as 0 < p ≤ p F = 2 N , whereas some (small enough) initial data may lead to extinction, or quenching, when p > p F = 2 N . See also [START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF], [START_REF] Bebernes | Travelling fronts in cylinders and their stability[END_REF], [START_REF] Zlatoš | Quenching and propagation of combustion without ignition temperature cutoff[END_REF].

Based on our Fujita type results for (1), we shall discuss the hair trigger effect for (2), thus making more precise the balance between the effect of the dispersal tails and the strength of the Allee effect which allows or not the hair trigger effect. Let us mention that, rather recently, various new results studying the interplay between some heavy tails and an Allee effect have been proved. Let us mention [START_REF] Zhang | Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[END_REF], [START_REF] Mellet | Existence and asymptotics of fronts in non local combustion models[END_REF], [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional Laplacians[END_REF], [START_REF] Alfaro | Slowing allee effect vs. accelerating heavy tails in monostable reaction diffusion equations[END_REF], [START_REF] Alfaro | Propagation phenomena in nonlocal monostable equations: traveling waves vs. acceleration[END_REF], and the references therein. In those works, the issue is, in different situations permitting propagation, to determine whether invasion is performed at a constant speed or by accelerating.

Assumptions and results

Let us first present and discuss the assumptions on the dispersal kernel J. As observed and proved in [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF], expansion (8) plays a crucial role in the behavior of the linear equation ∂ t u = J * u -u, and so will for the nonlinear problem (1). Assumption 2.1 (Dispersal kernel). J : R N → R is nonnegative, bounded, radial and satisfies R N J = 1. Its Fourier transform has an expansion

J(ξ) = 1 -A|ξ| β + o(|ξ| β ), as ξ → 0, (8) 
for some 0 < β ≤ 2 and A > 0.

Notice that expansion (8) contains the information on the tails of J. Indeed, for kernels which have a finite second momentum, namely m 2 := R N |x| 2 J(x)dx < +∞, expansion (8) holds true with β = 2, as can be seen in [8, Chapter 2, subsection 2.3.c, (3.8) Theorem] among others. In particular, this is the case for kernels which are compactly supported, exponentially bounded, or which decrease like O 1 |x| N+2+ε with ε > 0. On the other hand, when m 2 = +∞ then more general expansions are possible. For example, for algebraic tails satisfying

J(x) ∼ C |x| α as |x| → ∞, with N < α < N + 2, (9) 
then (8) holds true with β = α -N ∈ (0, 2). This fact is related to the stable laws of index β ∈ (0, 2) in probability theory, and a proof can be found in [8, Chapter 2, subsection 2.7].

In particular it contains the case of the Cauchy law J(x) = 1/π 1+x 2 (when N = 1), for which Nevertheless, as proved in [6, Theorem 5.1], the solutions to ∂ t u = J * u -u still tend to that of the Heat equation, but with a different time velocity. In other words, for such tails, we do believe that p F = 2 N and that this can be proved by additonal technicalities and by using [6, Theorem 5.1] rather than [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF]Theorem 1] to derive an anologous of Lemma 5.1.

J(ξ) = e -|ξ| =
Before going further, we need to say a word on the notion of solutions. A function

u ∈ C 1 ((0, T ), L ∞ (R N ) ∩ L 1 (R N )) ∪ C 0 ([0, T ), L ∞ (R N ) ∩ L 1 (R N
)) for some T > 0, which satisfies the equation a.e. in (0, T ) × R N is a local solution to (1) with u(0, •) as initial data. For such solutions, the comparison principle is available. Furthemore, for a nonnegative u 0 ∈ L ∞ (R N ) ∩ L 1 (R N ), the associated Cauchy problem (1) admits a unique solution defined on some maximal interval [0, T ). Moreover either T = ∞ and the solution is global, either T < ∞ and then both u(t, •) L 1 and u(t, •) L ∞ tend to ∞ as t ր T , which is called blow up in finite time. These facts are rather well-known, and parts of them can be found in [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF] for instance.

As explained in the introduction, our main result is the identification of the Fujita exponent for the nonlocal equation (1) for a large class of dispersion kernels, namely those admitting an expansion [START_REF] Durrett | Probability: theory and examples[END_REF]. In this context, p F := β N is the Fujita exponent. More precisely, the following holds.

Theorem 2.3 (Systematic blow up). Let Assumption 2.1 hold. Assume 0 < p ≤ p F = β N . Assume u 0 ∈ L ∞ (R N ) ∩ L 1 (R N ) is nonnegative and satisfies -for some ε > 0, x 0 ∈ R N , r > 0-u 0 (x) ≥ ε for all x ∈ B(x 0 , r).
Then the solution to the Cauchy problem (1) with u 0 as initial data blows up in finite time. (i) There is δ > 0 such that, for any nonnegative

u 0 ∈ L ∞ (R N ) ∩ L 1 (R N ) with u 0 L 1 + u 0 L 1 < δ,
the solution to the Cauchy problem (1) is global in time and satisfies, for some C > 0,

u(t, •) L ∞ ≤ C (1 + t) N/β , for any t ≥ 0. ( 10 
)
(ii) On the other hand, assume λ > 0 and R > 0 are such that

λ > 1 -C N |z|≤R J(z) dz 1/p , ( 11 
)
where 0 < C N < 1 is a constant that depends only on the dimension N (see subsection 5.2 for the exact value of this constant). Then, the solution to the Cauchy problem (1) with λ1 {|x|≤R} as initial data blows up in finite time.

As regards condition [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF], let us notice that if λ > 1 then it is satisfied for any R > 0, indicating that large L ∞ data always lead to blow up; if (1 -C N ) 1/p < λ ≤ 1 then ( 11) is satisfied by taking R > 0 sufficienty large, indicating that intermediate L ∞ data require large initial mass to blow up (at least in our result); if λ ≤ (1 -C N ) 1/p then ( 11) is never satisfied, indicating that small L ∞ data are bad candidates for blowing up.

Let us recall that, when J is compactly supported, the fact that the Fujita exponent p F = 2 N is the same as that of the nonlinear diffusion equation ( 3) was already proved in [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF]. Nevertheless, our results assert further that this remains true for kernels J which have a finite second momentum. On the other hand, when β < 2 in expansion (8) the Fujita exponent becomes that of the Fractional equation ( 3) with s = β ∈ (0, 2). Hence, depending on the tails of the dispersal kernel, the nonlocal equation ( 1) behaves with respect to blow up either like the local Heat equation ( 3), either like a Fractional equation ( 4). This sheds light on the richness of [START_REF] Alfaro | Slowing allee effect vs. accelerating heavy tails in monostable reaction diffusion equations[END_REF].

We now turn to the hair trigger effect for (2), whose analysis makes use of the Fujita type results for [START_REF] Alfaro | Slowing allee effect vs. accelerating heavy tails in monostable reaction diffusion equations[END_REF]. Notice that if 0 ≤ u 0 ≤ u 0 ∞ < +∞ then, from the comparison principle, we get that the solution to (2) satisfies

0 < u(t, x) ≤ max(1, u 0 ∞ ), ∀(t, x) ∈ (0, ∞) × R N ,
so that the solution is always global. 

(ii) Assume p > p F = β N . Then there is δ > 0 such that, for any nonnegative, continuous, bounded and integrable u 0 with u 0 L 1 + u 0 L 1 < δ, the solution to the Cauchy problem (2) satisfies, for some C > 0,

u(t, •) L ∞ ≤ C (1 + t) N/β , for any t ≥ 0. ( 13 
)
Observe that Corollary 2.5 (ii) directly follows from Theorem 2.4 (i) and the comparison principle. Corollary (i), whose proof is rather classical, is the hair trigger effect, but only along a subsequence of time. Under a more restrictive assumption on the exponent p, we can actually prove the following hair trigger effect. 

lim t→∞ inf |x|≤R u(t, x) = 1, for any R ≥ 0. ( 14 
)
The proof of the above result requires the combination of an elaborate subsolution and careful asymptotics of the solution to the linear nonlocal diffusion equation ∂ t u = J * u -u. Using such a strategy, it seems very difficult, if possible, to remove the assumption 0 < p < 1 2 p F . Hence, different approaches should be used for the range 1 2 p F ≤ p ≤ p F , where more complex scenarios may exist. We hope to address this issue in a future work.

Notice also that, these results remain valid for equation

∂ t u = J * u -u + f (u),
as long as f satisfies, for instance, f (u) ∼ ru 1+p as u → 0 (for some r > 0), f > 0 on (0, 1), f (1) = 0, f ′ (1) < 0, f < 0 on (1, ∞). Indeed, in such a case, we can sandwich

mu 1+p (1 -u) ≤ f (u) ≤ M u 1+p (1 -u)
for some m > 0, M > 0, and then combine some comparison and rescaling arguments.

The paper is organized as follows. We recall basic facts in Section 3. In Section 4, we prove the systematic blow up of any solution when 0 < p ≤ p F , that is Theorem 2.3. We study the case p > p F in Section 5, proving blow up or extinction depending on the size of the initial data, as stated in Theorem 2.4. Last, in Section 6, we prove the hair trigger effect, as stated in Corollary 2.5 (i) and Theorem 2.6.

Notations and basic facts

Before proving our results, let us now introduce some notations and recall briefly some basic facts.

For any integrable function J, we define

K(t, •) := e -t δ 0 + e -t +∞ k=1 t k k! J * (k) =: e -t δ 0 + ψ(t, •) ,
where δ 0 is the Dirac mass at 0 and J * (k) := J * • • • * J is the convolution of J with itself k -1 times.

Then, the (unique) bounded solution to

∂ t u = J * u-u with initial condition u 0 ∈ L ∞ (R N ) is given by u(t, x) = K(t, •) * u 0 (x) = e -t u 0 (x) + ψ(t, •) * u 0 (x).
Obviously, though the convolution of a Dirac mass by an L ∞ function is not pointwise well defined, we let δ 0 * u 0 = u 0 . Also, from the normal convergence, in C([0, T ];

L 1 (R N )), of the series +∞ k=1 t k k! J * (k) and +∞ k=1 t k-1 (k-1)! J * (k) we deduce that the function t ∈ [0, ∞) → ψ(t, •) ∈ L 1 (R N ) is of class C 1 and that ∂ t ψ(t, x) = J * ψ(t, •)(x) -ψ(t, x) + e -t J(x). ( 15 
)
Notice also that

R N ψ(t, x)dx = 1 -e -t . (16) 
For the sake of clarity, let us state our conventions on the Fourier transform. If f ∈ L 1 (R N ), we define its Fourier transform F(f ) = f and its inverse Fourier transform F -1 (f ) by

f (ξ) := R N e -iξ•x f (x)dx, F -1 (f )(x) := R N e ix•ξ f (ξ)dξ.
With this definition, we have, for f , g ∈ L 1 (R N ), f * g = f g,

and f = 1 (2π) N F -1 (F(f )) if f , F(f ) ∈ L 1 (R N )
. Also, after defining the Fourier transform on L 2 (R N ) we get the Plancherel formula

R N f (x)g(x)dx = 1 (2π) N R N f (ξ) g(ξ)dξ, for f , g ∈ L 2 (R N ).

Systematic blow up

In this section, we first provide a priori estimates on a crucial quantity related to possible global solutions of (1). They will then enable us to prove the blow up of any solution when 0 < p ≤ p F , as stated in Theorem 2.3.

Some a priori estimates

In this subsection, we assume that u 0 is nonnegative, nontrivial, radial, continuous, bounded, and that both u 0 and u 0 are in L 1 (R N ). We also assume that we are equipped with a global solution u(t, x) of the associated Cauchy problem (1). We then define, for any t ≥ 0, the c quantity

f (t) := R N e t( J (ξ)-1) u 0 (ξ)dξ. ( 17 
)
In the spirit of an original idea of Kaplan [START_REF] Kaplan | On the growth of solutions of quasi-linear parabolic equations[END_REF], also used in [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF], we are going to estimate f (t) from below and above as t → ∞. As clear in the following, another key ingredient is the Fourier duality which enables to recast [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF] as [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF].

Lemma 4.1 (Estimate from below).

There is a constant G > 0 depending only on the dimension N and the kernel J, and a constant t 0 > 0 (that is allowed to depend on the initial data), such that

f (t) ≥ G u 0 L 1 t N/β for any t ≥ t 0 . (18) 
Proof. From (8), we can select ξ 0 > 0 small enough so that

|ξ| ≤ ξ 0 =⇒ J(ξ) -1 ≥ -2A|ξ| β . ( 19 
)
Since u 0 (0) = R N u 0 > 0 and u 0 is a real valued continuous function, up to reducing ξ 0 > 0 if necessary, we can assume that

|ξ| ≤ ξ 0 =⇒ u 0 (ξ) ≥ 0.
On the other hand, J is continuous, J (ξ) -1 < 0 for all ξ = 0, J(ξ) -1 → -1 as |ξ| → +∞, hence there is δ > 0 such that

|ξ| ≥ ξ 0 =⇒ J(ξ) -1 ≤ -δ. (20) 
Now, by cutting into two pieces, we get t N/β f (t) = g 1 (t) + g 2 (t), where

|g 2 (t)| ≤ |ξ|≥ξ 0 t N/β e t( J (ξ)-1) u 0 (ξ)dξ ≤ t N/β e -δt u 0 L 1 → 0 as t → ∞, and 
g 1 (t) = t N/β
|ξ|≤ξ 0 e t( J (ξ)-1) u 0 (ξ)dξ

≥ t N/β |ξ|≤ξ 0 e -2At|ξ| β u 0 (ξ)dξ = R N e -2A|z| β u 0 z t 1/β 1 (0,t 1/β ξ 0 ) (|z|)dz.
By the dominated convergence theorem, the last integral above tends, as t → ∞, to the constant u 0 (0)

R N e -2A|z| β dz = u 0 L 1 R N e -2A|z| β dz =: u 0 L 1 2G,
where G > 0 depends only on the dimension N and the kernel J (via A and β). As a result, we can select t 0 > 0 large enough so that (18) holds true. The lemma is proved.

In order to derive an estimate from above, it is more convenient to use the dual expression (see below for a proof)

f (t) = (2π) N R N e -t δ 0 + +∞ k=1 t k k! J * (k) (x) u 0 (x)dx = (2π) N R N K(t, x)u 0 (x)dx, (21) 
where we recall that K(t, x) was defined in Section 3. Notice that, formally, the fundamental solution of ∂ t u = J * u -u is F -1 (e t( J (ξ)-1) ) = e -t δ 0 + +∞ k=1 t k k! J * (k) (x) so that expression (21) is, again formally, derived from (17) by the Plancherel formula.

Proof of [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF]. From [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF] we get

e t f (t) - R N u 0 (ξ)dξ = R N +∞ k=1 t k k! J k (ξ) u 0 (ξ)dξ = +∞ k=1 R N t k k! J k (ξ) u 0 (ξ)dξ, since k | t k k! J k (ξ) u 0 (ξ)|dξ ≤ k t k k! u 0 L 1 < +∞ (recall that | J(ξ)| ≤ 1). Next J ∈ L 1 (R N ) implies J k (ξ) = J * (k) (ξ), so that e t f (t) - R N u 0 (ξ)dξ = +∞ k=1 R N t k k! J * (k) (ξ) u 0 (ξ)dξ. Next, both J * (k) , u 0 ∈ L ∞ (R N ) ∩ L 1 (R N ) ⊂ L 2 (R N
) so that we can apply the Plancherel formula to get

e t f (t) - R N u 0 (ξ)dξ = (2π) N +∞ k=1 R N t k k! J * (k) (x)u 0 (x)dx = (2π) N R N +∞ k=1 t k k! J * (k) (x)u 0 (x)dx, (22) 
since

k | t k k! J * (k) (x)u 0 (x)|dx ≤ k t k k! J L ∞ u 0 L 1 < +∞.
Last, notice that R N u 0 = u 0 (0). Since u 0 is real and radial, so is u 0 , which in turn implies u 0 = F -1 ( u 0 ) = (2π) N u 0 so that R N u 0 = (2π) N u 0 (0) = (2π) N R N δ 0 u 0 , which we plug into [START_REF] Quittner | Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher[END_REF] to conclude the proof of [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF].

Equipped with the dual formula [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF], we can now prove the following. Lemma 4.2 (Estimate from above). We have

f (t) ≤ (2π) N p + 1 p 1/p 1 t 1/p + e -t u 0 (0) for any t > 0. ( 23 
)
Proof. Let T > 0 be given. Denote

C T := max 0≤τ ≤T +1 u(τ, •) L ∞ + u(τ, •) L 1 < +∞. Fix some 0 < t ≤ T . First observe that (21) is recast h(t) := f (t) (2π) N = R N e -t δ 0 + ψ(t, x) u 0 (x)dx = e -t u 0 (0) + R N ψ(t, x)u 0 (x)dx, (24) 
where

ψ(t, x) = e -t +∞ k=1 t k k! J * (k) (x) is as in Section 3. For 0 < ε ≤ 1, let us define g ε (s) := R N ψ(t -s + ε, x)u(s, x)dx, 0 ≤ s ≤ t. (25) 
Notice that, if k is sufficiently large, the support of J * (k) meets that of u(s, •), and therefore R N J * (k) (x)u(s, x)dx > 0, which in turn implies g ε (s) > 0. Notice also that, using the dominated convergence theorem, we see that, as ε → 0,

g ε (0) = R N ψ(t + ε, x)u 0 (x)dx → R N ψ(t, x)u 0 (x)dx = f (t) (2π) N -e -t u 0 (0). ( 26 
)
Using the constant C T defined above one can dominate the partial derivative with respect to s of the integrand in [START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF], and therefore prove that g ε is differentiable. Using equations ( 15) and (1), we then compute

g ′ ε (s) = R N (-J * ψ(t -s + ε, •) + ψ(t -s + ε, •) -e -(t-s+ε) J)u(s, •) + R N ψ(t -s + ε, •)(J * u(s, •) -u(s, •) + u 1+p (s, •)) = - R N e -(t-s+ε) Ju(s, •) + R N ψ(t -s + ε, •)u 1+p (s, •), (27) 
by Fubini theorem. From the expression of ψ, we see that e -τ J(x) ≤ ψ(τ,x) τ for τ > 0, so that

R N e -(t-s+ε) Ju(s, •) ≤ 1 t -s + ε g ε (s). (28) 
Next, we write

R N ψ(t -s + ε, •)u 1+p (s, •) = (1 -e -(t-s+ε) ) R N ψ(t -s + ε, •) 1 -e -(t-s+ε) u 1+p (s, •) ≥ 1 (1 -e -(t-s+ε) ) p g 1+p ε (s) ≥ g 1+p ε (s), (29) 
where we have used the Jensen inequality (notice that R N ψ(t-s+ε,•)

1-e -(t-s+ε) = 1 in view of ( 16)). Plugging ( 28) and ( 29) into [START_REF] Zhang | Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[END_REF] and multiplying by the integrating factor (t -s + ε) p we arrive at

g ′ ε (s) g 1+p ε (s) + 1 t -s + ε 1 g p ε (s) (t -s + ε) p ≥ (t -s + ε) p .
The left hand side member is nothing else that d ds

(t-s+ε) p -pg p ε (s)
so that integrating from 0 to t, we get

- 1 p 1 g p ε (t) ε p + 1 p 1 g p ε (0) (t + ε) p ≥ - ε p+1 p + 1 + (t + ε) p+1 p + 1 , which in turn implies 1 g p ε (0) ≥ p p + 1 (t + ε) - p p + 1 ε p+1 (t + ε) p .
Letting ε → 0 and using [START_REF] Yang | Asymptotic behavior of the nonlocal diffusion equation with localized source[END_REF], we get estimate [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF], which concludes the proof of Lemma 4.2.

Proof of systematic blow up

Proof of Theorem 2.3. Let u 0 ∈ L ∞ (R N ) be nonnegative and satisfying -for some ε > 0, x 0 ∈ R N , r > 0-u 0 (x) ≥ ε for all x ∈ B(x 0 , r). Thus there exists a nonnegative, nontrivial, radial and C ∞ c (R N ) function that is smaller than u 0 . By the comparison principle, it is enough to prove blow up for such an initial data. Hence we can assume without loss of generality that u 0 is nonnegative, nontrivial, bounded, that u 0 ∈ C ∞ c (R N ), and thus u 0 ∈ S(R N ). Hence, assuming by contradiction existence of a global solution, all the results of subsection 4.1 are available.

• When 0 < p < β N , letting t → ∞ in ( 18) and ( 23) immediatley gives a contradiction. • In the critical case p = β N , letting t → ∞ in ( 18) and ( 23) only provides u 0 L 1 ≤ C, where the constant C > 0 depends on the dimension N and the kernel J but not on the size of the initial data. Thus, by regarding u(t, •) as an initial value, we derive that

m(t) := u(t, •) L 1 ≤ C, for any t ≥ 0. ( 30 
)
Integrating equation ( 1) over x ∈ R N and using Fubini theorem, we get

d dt m(t) = R N u 1+p (t, x) dx, so that t 0 R N u 1+p (t, x) dxdt = m(t) -m(0) ≤ C, for all t ≥ 0. As a result we know that ∞ 0 R N u 1+p (t, x) dxdt < +∞. ( 31 
)
We are going to derive below a contradiction, using a modification of an original technic of [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF] for a local equation. Notice that our kernel J may not have finite second nor first moment, so we need to derive further estimates. Also, we shall again take advantage of the Fourier duality.

Consider ρ ∈ C ∞ c (R) such that ρ ≡ 1 on (-1, 1), 0 ≤ ρ ≤ 1 and Supp ρ = [-2, 2]. Let T > 0 be given. Let ε > 0 be given. For R > 0, we define

ψ R (t) := ρ t -T R N p = ρ t -T R β , θ R (x) := ρ ε |x| R .
We multiply equation ( 1) by θ R (x)ψ R (t) and integrate over (t,

x) ∈ (T, ∞) × R N to get ∞ T R N u 1+p (t, x)θ R (x)ψ R (t) = - ∞ T R N (J * u -u)(t, x)θ R (x)ψ R (t) + ∞ T R N ∂ t u(t, x)θ R (x)ψ R (t) ≤ - ∞ T R N (J * θ R -θ R )(x)u(t, x)ψ R (t) - ∞ T R N u(t, x)θ R (x)ψ ′ R (t) =: -I 1 -I 2 , (32) 
where we have used Fubini theorem, integration by part in time, in the first, respectively the second, integral of the right hand side member. In the sequel, we denote by C a positive constant that may change from place to place but that is always independent on ε > 0 and R > 0.

Let us deal with

I 2 = I 2 (R). Observe that |ψ ′ R (t)| = | 1 R β ρ ′ t -T R β | ≤ C R β 1 (T +R β ,T +2R β ) (t), so that |I 2 | ≤ C R β T +2R β T +R β |x|≤2R/ε u(t, x) (33) 
≤ C R β T +2R β T +R β |x|≤2R/ε 1 p p+1 T +2R β T +R β |x|≤2R/ε u 1+p (t, x) 1 p+1 = C R β R β 2R ε N p p+1 T +2R β T +R β |x|≤2R/ε u 1+p (t, x) 1 p+1 = C ε Np p+1 T +2R β T +R β |x|≤2R/ε u 1+p (t, x) 1 p+1
, where we have used the Hölder inequality and equality β = N p. In view of (31), the last integral above tends to zero as R → ∞, and so does I 2 .

Let us deal with

I 1 = I 1 (R) = T +2R β T R N B(x)u(t, x), where B(x) := (J * θ R -θ R )(x) = R N (θ R (z -x) -θ R (x)) J(z)dz.
First observe that if |x| ≥ 2R/ε then θ R (x) = 0 so that B(x) ≥ 0. As a result

I 1 ≥ I ′ 1 := T +2R β T |x|<2R/ε B(x)u(t, x). ( 34 
)
In order to estimate B(x), we use the Plancherel formula and get

(2π) N B(x) = (2π) N R N θ R (z -x)J(z)dz -(2π) N θ R (x) = R N J(ξ)e -ix•ξ θ R (ξ) dξ -(2π) N θ R (x) = R N (1 -A(ξ)|ξ| β )e -ix•ξ θ R (ξ) dξ -(2π) N θ R (x),
where function A is bounded in view of [START_REF] Durrett | Probability: theory and examples[END_REF]. Since

R N e -ix•ξ θ R (ξ) dξ = F(F(θ R ))(x) = (2π) N θ R (x) and θ R (ξ) = R ε N ρ( R ε ξ), we get (2π) N B(x) = - ε R β R N A ε R ξ ′ |ξ ′ | β e -i ε R x•ξ ′ ρ(ξ ′ ) dξ ′ , so that |B(x)| ≤ 1 (2π) N ε R β A ∞ R N |ξ ′ | β | ρ(ξ ′ )| dξ ′ = C ε β R β , since ρ ∈ S(R N ). As a result |I ′ 1 | ≤ C ε β R β T +2R β T |x|<2R/ε u(t, x).
We are now in the footsteps of (33) so that -notice the presence of the crucial multiplicative factor ε β -similar arguments (Hölder inequality and β = N p) yield

|I ′ 1 | ≤ Cε βp p+1 T +2R β T |x|≤2R/ε u 1+p (t, x) 1 p+1 . (35) 
To conclude, plugging (34) and ( 35) into (32), we get

∞ T R N u 1+p (t, x)θ R (x)ψ R (t) ≤ |I 2 | + Cε βp p+1 T +2R β T |x|≤2R/ε u 1+p (t, x) 1 p+1 . Letting R → ∞ yields ∞ T R N u 1+p ≤ Cε βp p+1 ∞ T R N u 1+p 1 p+1
.

From the arbitrariness of ε > 0 and T > 0 we deduce that u ≡ 0 on (0, ∞) × R N , which is a contradiction. This concludes the proof of Theorem 2.3.

Blow up vs extinction

In this section, we prove that when p > p F = β N , depending on the size of the initial data, the solution to the Cauchy problem (1) can be global and extincting, or blowing up in finite time, as stated in Theorem 2.4.

Extinction for small initial data

Proof of Theorem 2.4 (i). The proof, as that in [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF], relies strongly on [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF] which provides the rate of decrease of the L ∞ norm of the solution of the nonlocal linear equation

∂ t v = J * v -v.
Lemma 5.1 (See Theorem 1 in [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF] and Theorem 5 in [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF]). There is C > 0 such that, for any initial data

v 0 ∈ L 1 (R N ) such that v 0 ∈ L 1 (R N ), the solution of the Cauchy problem ∂ t v = J * v -v satisfies v(t, •) L ∞ ≤ C( v 0 L 1 + v 0 L 1 ) (1 + t) N/β , for any t ≥ 0.
We look after a supersolution to (1) in the form g(t)v(t, x), where g(t) > 0 is to be determined (with g(0) = 1) and v(t, x) is the solution of

∂ t v = J * v -v with u 0 as initial data. A straighforward computation shows that it is enough to have g ′ (t) g 1+p (t) ≥ v(t, •) p L ∞ .
By the above lemma, it is therefore enough to have

g ′ (t) g 1+p (t) = C p ( u 0 L 1 + u 0 L 1 ) p (1 + t) pN/β , g(0) = 1. If u 0 L 1 + u 0 L 1 < δ := 1 C pN β -1 p 1/p
(notice that pN β -1 > 0) then the solution of the above Cauchy problem

g(t) = 1 1 - pC p ( u 0 L 1 + u 0 L 1 ) p pN β -1 1 - 1 (1+t) pN β -1 1/p ,
exists for all t ≥ 0 and is decreasing. It therefore follows from the comparison principle that u(t, x) ≤ g(t)v(t, x) ≤ v(t, x) so that the solution u(t, x) of ( 1) is global in time and, in view of Lemma 5.1, satisfies estimate [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF]. This concludes the proof of Theorem 2.4 (i).

Blow up for large initial data

Proof of Theorem 2.4 (ii). Let λ > 0 and R > 0 be given such that [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF] holds. Now, let us consider the solution u(t, x) to (1) with initial data u 0 = λ1 {|x|≤R} and prove the blow up of the "localized mass"

m(t) := |x|≤R u(t, x)dx, (36) 
which is enough to prove the blow up of the solution.

Integrating equation (1), we get

d dt m(t) = |x|≤R J * u(t, •)(x) dx -m(t) + |x|≤R u 1+p (t, x) dx. (37) 
Denoting B N the volume of the unit ball in R N , we estimate the last term in the above right hand side member by

|x|≤R u 1+p (t, •) = B N R N |x|≤R 1 B N R N u 1+p (t, •) ≥ 1 B p N R N p m 1+p (t), (38) 
thanks to the Jensen inequality. Let us now turn to the first term in the right hand side member of (37). Using Fubini theorem yields

|x|≤R J * u(t, •) = R N u(t, y) |x|≤R J(x -y) dxdy ≥ |y|≤R u(t, y) |z-y|≤R J(z) dzdy.
Now we claim that, for any y such that 0

< |y| < R, |z-y|≤R J(z) dz ≥ C N |z|≤R J(z) dz, (39) 
where 0 < C N < 1 is a constant that depends only on the dimension N . We postpone the proof of (39) and obtain

|x|≤R J * u(t, •) ≥ m(t)C N |z|≤R J(z) dz. (40) 
Then, plugging (38) and ( 40) in (37), we arrive at the differential inequality [START_REF] García-Melián | Fujita exponents for evolution problems with nonlocal diffusion[END_REF], the above differential inequality enforces 2 the blow up of m(t) in finite time. This concludes the proof of Theorem 2.4 (ii).

d dt m(t) ≥ m(t) m p (t) B p N R N p -1 -C N |z|≤R J(z) dz . Since m(0) = |x|≤R u 0 = λB N R N > 1 -C N |z|≤R J(z) dz 1/p B N R N thanks to
For the convenience of the reader, and also to give the exact value of the constant C N , we prove below the rather intuitive claim (39).

Proof of claim (39). In dimension N = 1, (39) clearly holds true with C 1 = 1 2 since J is even. Let us now assume N ≥ 2. We denote by S N -1 the unit hypersphere of R N . Since J is radial we have

|z|≤R J(z) dz = |S N -1 | R 0 r N -1 J(r) dr, (41) 
where we recall that |S N -1 | = 2π N/2 Γ(N/2) . Let us take y such that 0 < r 0 := |y| < R. Define (e 1 := y r 0 , e 2 , • • • , e N ) an orthonormal basis of R N . For a generic point z ∈ R N we denote 2 Indeed, the Bernouilli equation ẋ = ax 1+p -bx, a > 0, b > 0, can be solved explicitly and blows up in finite time as soon as x(0) > b a

1/p . by (z 1 , • • • , z N ) its cartesian coordinates in (e 1 , • • • , e N ) and (r, θ 1 , • • • , θ N -1 ) ∈ [0, ∞) × [-π 2 , π 2 [ N -2 ×[-π, π
) its polar coordinates, which are related through

z 1 = r cos θ 1 cos θ 2 ... cos θ N -2 cos θ N -1 z 2 = r cos θ 1 cos θ 2 ... cos θ N -2 sin θ N -1 z 3 = r cos θ 1 cos θ 2 ... sin θ N -2 ... z N -1 = r cos θ 1 sin θ 2 z N = r sin θ 1 .
We claim that

D := z : 0 < r < R, |θ i | < θ * := arccos 1 2 1 N-1 ⊂ {z : |z -y| < R} . (42) 
Indeed, for z ∈ D, we have

|z -y| 2 = (z 1 -r 0 ) 2 + z 2 2 + • • • + z 2 N = r 2 -2rr 0 cos θ 1 ... cos θ N -1 + r 2 0 ≤ r 2 -2rr 0 cos N -1 θ * + r 2 0 = r 2 -rr 0 + r 2 0 ≤ max(r 2 , r 2 0 ) < R 2 .
It therefore follows from (42) that |z-y|≤R

J(z)dz ≥ D J(z)dz = θ * -θ * (cos θ 1 ) N -2 dθ 1 θ * -θ * (cos θ 2 ) N -3 dθ 2 ... θ * -θ * dθ N -1 R 0 r N -1 J(r)dr = C N |z|≤R J(z)dz,
in view of (41) and where

C N : = θ * -θ * (cos θ 1 ) N -2 dθ 1 θ * -θ * (cos θ 2 ) N -3 dθ 2 ... θ * -θ * dθ N -1 |S N -1 | = θ * -θ * (cos θ 1 ) N -2 dθ 1 θ * -θ * (cos θ 2 ) N -3 dθ 2 ... θ * -θ * dθ N -1 π/2 -π/2 (cos θ 1 ) N -2 dθ 1 π/2 -π/2 (cos θ 2 ) N -3 dθ 2 ... π -π dθ N -1 ∈ (0, 1),
which concludes the proof of (39).

6 Hair trigger effect 6.1 Hair trigger effect along a subsequence Following the strategy of [START_REF] Quittner | Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher[END_REF]Theorem 18.7], we prove here the hair trigger effect along a subsequence of time.

Proof of Corollary 2.5 (i). First, let v 0 ∈ C(R N , [0, 1]) be such that v 0 (x 0 + •) is radial nonincreasing, for some x 0 ∈ R N . Let v(t, x) be the global solution of (2) with v 0 as initial data. Then, J being radial, v(t, x 0 + •) remains radial nonincreasing for later times t > 0. Let us prove that lim sup

t→∞ v(t, x 0 ) = 1. ( 43 
)
Assume by contradiction that there are 0 < ε < 1 and T > 0 such that v(t, x 0 ) ≤ 1 -ε for all t ≥ T , which in turn implies v(t, x) ≤ 1 -ε, for all (t, x) ∈ [T, ∞) × R N . As a result This concludes the proof of (44).

∂ t v ≥ J * v -v + εv 1+p in (T, ∞) × R N . Hence w := ε 1/p v satisfies ∂ t w ≥ J * w -w + w 1+p in (T, ∞) × R N . Since 0 < p ≤ p F = β N ,

Actual hair trigger effect

In this subsection, we prove the actual hair trigger effect as stated in Theorem 2.6. This requires the combination of an elaborate subsolution involving two different time scalessee [START_REF] Zlatoš | Quenching and propagation of combustion without ignition temperature cutoff[END_REF] for a related argument in a local case-and the following asymptotics for the solution to the linear nonlocal diffusion equation.

Lemma 6.1 (The linear equation from below). Let Assumption 2.1 hold. For a given R > 0, let ϕ(t, x) be the solution of ∂ t ϕ = J * ϕ -ϕ with initial data ϕ 0 ≡ 1 B R . Then there are γ > 0 and m > 0 such that ϕ(t, x) ≥ γ t N/β 1 B mt 1/β (x), for t > 0 large enough and x ∈ R N .

Proof. This is a direct consequence of [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF]. Indeed in virtue of [6, Corollary 2.1], we have

t N/β ϕ(t, x) = t N/β ϕ t, t 1/β x t 1/β -ϕ 0 L 1 G A x t 1/β + ϕ 0 L 1 G A x t 1/β = o(t) + ϕ 0 L 1 G A x t 1/β , as t → ∞, where G A (y) := 1 (2π) N R N e iy•ξ e -A|ξ| β dξ.
Noticing that G A (y) → 1 (2π) N R N e -A|ξ| β dξ > 0 as y → 0 enables to select m > 0 small enough so that, for any x ∈ B mt 1/β , we have

ϕ 0 L 1 G A x t 1/β
≥ 2γ for some γ > 0. This concludes the proof of the lemma.

Proof of Theorem 2.6. Let u 0 : R N → [0, 1] be as in Theorem 2.6, that is continuous and nontrivial. Let ε > 0 and R > 0 be given. In view of the hair trigger effect along a subsequence (44) and thanks to the comparison principle, it is enough to consider the solution u(t, x) to (2) with the initial datum u

0 ≡ (1 -ε)1 B R .
Let ϕ(t, x) denote the solution to ∂ t ϕ = J * ϕ -ϕ with initial datum u 0 ≡ (1 -ε)1 B R . Notice that, from the comparison principle, we get ϕ ≤ u. From Lemma 6.1 we deduce that there is τ 0 > 0 such that

ϕ(τ, x) ≥ (1 -ε) γ τ N/β 1 B mτ 1/β (x) =: Φ 0 (x), ∀(τ, x) ∈ (τ 0 , ∞) × R N . Let Φ(t, x) denote the solution to ∂ t Φ = J * Φ -Φ with initial datum Φ 0 . Let U (t, x) denote the solution to ∂ t U = J * U -U + U 1+p (1-U ) with initial datum Φ 0 . Since U (0, x) = Φ 0 (x) ≤ ϕ(τ, x) ≤ u(τ, x), the comparison principle yields u(τ + t, x) ≥ U (t, x), ∀(t, x) ∈ (0, ∞) × R N . (45) 
Next, for X > 0, let us define w(t, X) := 1 (X -p -εpt) 1/p = X (1 -εptX p ) 1/p , 0 < t < 1 εpX p , that is the solution to the Cauchy problem ∂ t w(t, X) = εw 1+p (t, X), w(0, X) = X.

Notice that ∂ X w = w 1+p X 1+p and ∂ XX w = (1 + p) w 1+p X 2+2p (w p -X p ) ≥ 0 so that X → w(t, X) is convex. Proof. Since Φ(t, x) ≤ Φ 0 L ∞ = (1-ε)γ τ N/β , we see that W (t, x) ≤ 1 -ε on (0, T ) × R N . As a result

∂ t W -(J * W -W ) -W 1+p (1 -W ) ≤ ∂ t W -(J * W -W ) -εW 1+p = W 1+p Φ 1+p (J * Φ -Φ) -(J * W -W ),
by a direct computation. On the other hand where we have used the convexity of X → w(t, X). This concludes the proof of the lemma.

(J * W -W )(t, x) = R N J(
Since W (0, x) = Φ 0 (x) = U (0, x), the comparison principle yields U (T, x) ≥ W (T, x) = Φ(T, x) -p -εpT ψ(T, x -y)dy , using [START_REF] Kaplan | On the growth of solutions of quasi-linear parabolic equations[END_REF]. From now, we restrict ourselves to x ∈ B R . Hence, up to enlarging τ 0 > 0 if necessary, we can get rid of the term 1 -1 B mτ 1/β (x) for any τ ≥ τ 0 and get Φ(T, x) -p = τ pN/β (1 -ε) p γ p 1 - k(1 -J (ξ))dξ.

Since 1 -J(ξ) ∼ A|ξ| β as ξ → 0, it follows that, up to enlarging τ 0 > 0, we have for all τ ≥ τ 0 and all k ≥ 1

|z|≥ m 2 τ 1/β J * (k) (z)dz ≤ kC2Aτ N/β |ξ|≤ 1 Cτ 1/β |ξ| β dξ ≤ k C ′ τ ,
for some C ′ > 0. Plugging this into (48) we get

|y|≥mτ 1/β ψ(T, x -y)dy ≤ e -T +∞ k=1 T k k! k C ′ τ = C ′ T τ . (49) 
To conclude, the key point is that, in view of (49), (46) and assumption 0 < p < 1 This concludes the proof of Theorem 2.6.
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  x) -pτ pN/β (1 -ε) p γ p + 1 (1 -ε) p -1/p, by definition of time T . But, in view of Section 3, one can writeΦ(T, x) = K(T, •) * Φ 0 (x) = (1 -ε)γ τ N/β K(T, •) * 1 B mτ 1/β (x) = (1 -ε)γ τ N/β e -T 1 B mτ 1/β (x) + ψ(T, •) * 1 B mτ 1/β (x) = (1 -ε)γ τ N/β 1 -e -T (1 -1 B mτ 1/β (x)) -|y|≥mτ 1/β
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 1 → 0, as τ → ∞, uniformly with respect to x ∈ B R . Hence, in view of (47) and up to enlarging τ 0 > 0, we have U (T, x) ≥ 1 -2ε for any τ ≥ τ 0 , any x ∈ B R . Hence, we deduce from (45) thatu(τ + T (τ ), x) ≥ 1 -2ε, ∀τ ≥ τ 0 , ∀x ∈ B R , which in turn implies u(t, x) ≥ 1 -2ε, ∀t ≥ t 0 := τ 0 + T (τ 0 ), ∀x ∈ B R .

  it follows from Theorem 2.3 and the comparison principle that w is non global, which is a contradiction. Now, let u 0 : R N → [0, 1] be as in Corollary 2.5 (i), that is continuous and nontrivial. We need to prove lim sup

	t→∞	inf |x|≤R	u(t, x) = 1,	for any R ≥ 0.	(44)

By a time shift if necessary, we can assume further that u 0 > 0. Therefore u 0 dominates some ũ0 : R N → [0, 1] which is nontrivial and radial nonincreasing. Hence, by comparison, it suffices to prove (44) for ũ(t, x) the solution of (

2

) with ũ0 as initial data, for which we can take advantage of the fact that ũ(t, •) is radial nonincreasing for later times t > 0. Again, by a time shift if necessary, we can assume further that ũ0 > 0. Now, for a given

x 0 ∈ R N , ũ0 dominates some v 0 ∈ C(R N , [0, 1]) such that v 0 (x 0 + •) is radial nonincreasing. It

follows from (43) and the comparison principle that lim sup t→∞ ũ(t, x 0 ) = 1. Since x 0 is arbitrary and since ũ(t, •) is radial nonincreasing, this implies lim sup t→∞ inf |x|≤R ũ(t, x) = 1, for any R ≥ 0.
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τ 1/β J * (k) (z)dz. (48)