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In this paper, we consider the nonlocal nonlinear renewal equation with diffusion under nonnegative initial data. Under some assumptions on the birth and death rates we prove the existence and uniqueness of the nonlinear renewal equation with diffusion and its corresponding adjoint equation also. In the next part, we prove the convergence of the solution to its steady state as time tends to infinity using the generalized relative entropy inequality and Poincaré Writinger type inequality.

1. Introduction. The structured mathematical models (age structured and size structured) describing the behavior of the cell population have been studied in [START_REF] Arino | A survey of cell population dynamics[END_REF][START_REF] Basse | A mathematical model for analysis of the cell cycle in cell lines derived from human tumors[END_REF][START_REF] Goldbeter | Biochemical oscillators and cellular rhythms[END_REF] (and the references within). According to the biologists, the matter of which sites are active on various chromosomes determines the true age of a biological entity [START_REF] Brewer | The age-dependent eigenfunctions of certain Kolmogorov equations of engineering, economics, and biology[END_REF]. This true age is a multidimensional variable and can be determined by time since birth. We are mainly concerned about the population and not on the individuals, hence we assume that average aging in the population is measured from time since birth (renewal). Because of lots of sources of variation in the vector valued age of individuals, the population as a whole diffuse in population age variable. Let u(t, x) be the population density of cells at time t having age x. Assume that B, d are birth and death rates respectively. We are interested to study the dynamics of the following renewal equation with diffusion.

(1.1)

          
u t (t, x) + u x (t, x) + d(x, S 1 (t))u(t, x) = Cu xx (t, x), t > 0, x > 0, u(t, 0) -Cu x (t, 0) = ∞ 0 B(x, S 2 (t))u(t, x)dx, t > 0, u(0, .) = u 0 (.) > 0,

u 0 ∈ L 1 (R + ) ∩ L 2 (R + ),
where

(1.2) S i (t) = ∞ 0 ψ i (x)u(t, x)dx, ∀i = 1, 2.
Where C is a positive constant of diffusion, u 0 is the initial age distribution, ψ 1 , ψ 2 are the competition weight and S(t) := (S 1 (t), S 2 (t)) is the weighted population which depends on the competition weight ψ i and population density u. The steady state equation of (1.1) is given by

(1.3)              U ′ (x) + d(x, S1 )U (x) = CU ′′ (x), x > 0, U (0) -CU ′ (0) = ∞ 0 B(x, S2 )U (x)dx, ∞ 0 U (x)dx < ∞, Si = ∞ 0 ψ i (x)U (x)dx.
and its corresponding adjoint equation reads as (1.4)

           -φ ′ (x) + d(x, S1 )φ(x) = Cφ ′′ (x) + φ(0)B(x, S2 ), x > 0, φ ′ (0) = 0, ∞ 0 φ(x)U (x)dx = 1.
Throughout the paper, we assume that the functions d, B, ψ are nonnegative and continuous. Further we assume that there exists L > 0 such that for all x, S ā, Sb we have

(1.5) |B(x, S ā) -B(x, Sb)| ≤ L|S ā -Sb|, |d(x, S ā) -d(x, Sb)| ≤ L|S ā -Sb|, (1.6) ∂ ∂S 1 d(., .) > 0, ∂ ∂S 2 B(., .) < 0, (1.7) 0 ≤ ψ(x) ≤ ψ M
where ψ M is a positive constant. Equation (1.1) with C = 0 is popularly known as McKendrick-Von Foerster (MV) equation (see [START_REF] Cushing | An Introduction to Structured Population Dynamics[END_REF][START_REF] Thieme | Mathematics in Population Biology[END_REF]). There are several mathematicians who worked on the stability estimates and longtime behavior of the MV equation ( [START_REF] Cushing | An Introduction to Structured Population Dynamics[END_REF][START_REF] Iannelli | Mathematical Theory of Age-Structured Population Dynamics[END_REF][START_REF] Webb | Theory of non-linear age-dependent population dynamics[END_REF] and the references therein) or MV -like (see [START_REF] Iannelli | Two-sex age structured dynamics in a fixed sex-ratio population[END_REF][START_REF] Kakumani | Extinction and blow-up phenomena in a nonlinear gender structured population model[END_REF] for instance). In [START_REF] Perthame | Nonlinear renewal equations[END_REF][START_REF] Tumuluri | Steady state analysis of a non-linear renewal equation[END_REF] the authors have discussed the existence and uniqueness of a weak solution and have also proved the linear stability around the nontrivial steady state of the nonlinear renewal equation. In order to determine the longtime behavior of the solution, generalized relative entropy (GRE) plays a crucial role. The asymptotic behavior of the solution to the nonlinear MV equation has been studied in [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustrations on growth models[END_REF][START_REF] Perthame | Transport Equations in Biology[END_REF] using the GRE method. The well studied semi group theory techniques can also be applied to prove the existence, uniqueness results (see for instance [START_REF] Benabdallah | Approximation by Diffusion of Renewal Equations[END_REF][START_REF] Iannelli | Approximation of a population dynamics model by parabolic regularization[END_REF]).

The linear version of equation (1.1) with C = 1 has been studied in [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF]. Touaoula et. al., proved the existence and uniqueness of a weak solution. They have used Poincaré Writinger's type inequality to prove the exponential decay of the solution for large times to a steady state. In [START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF], Michel et. al., considered the nonlinearity in the boundary term in equation (1.1) and proved the convergence of the solution towards the steady state problem. In [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF], Kakumani et. al., proved the existence and uniqueness of a weak solution with S 1 = S 2 and they have also proved the longtime behavior is some particular cases. The aim of this paper is to extend the global convergence results of [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustrations on growth models[END_REF][START_REF] Perthame | Transport Equations in Biology[END_REF] (using the entropy method) to a more general class of nonlocal nonlinear diffusive MV equation than those seen in [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF][START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF][START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF]. To do that, we first prove the existence and uniqueness of the solution of the equation in section 2. We also prove the existence and uniqueness of the corresponding steady state equation in the same section. Then, in section 3, we prove the asymptotic behavior of the solution using the GRE result. Finally, in section 4, we present some numerical simulations and we conclude.

2. Existence and uniqueness. In this section we prove existence and uniqueness result of solution to (1.1)-(1.2), (1.3) and (1.4). We use the same definition of weak solution and we follow the similar arguments which are used in [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF] to prove the existence and uniqueness result to (1.1)-(1.2). We start with the following a priori estimate of u.

Lemma 2.1. Assume that S(.) ∈ L ∞ loc (R + ) × L ∞ loc (R + )
, then there exists a unique weak solution u ∈ C R + ; L 1 (R + ) ∩L 2 loc (R + ; W 1,2 (R + )) which solves (1.1). Moreover, we have u ≥ 0, and

(2.1) ∞ 0 |u(t, x)|dx ≤ e ||(B-d)+||∞t ∞ 0 |u 0 (x)|dx. Theorem 2.2. Assume (1.5)-(1.7), then there is a unique weak solution u ∈ C R + ; L 1 (R + ) ∩ L 2 loc (R + ; W 1,2 (R + )) solving (1.1) -(1.
2). Proof. To prove the existence and uniqueness of (1.1)-(1.2) we use banach fixed point theorem. First, we consider the banach space X := C([0, T ],

∞ ) and T is chosen later. Let X + be the set of all nonnegative continuous functions on [0, T ], let

ϑ := ||(B -d) + || ∞ . Let S : [0, T ] × [0, T ] → R 2 be a continuous function. Then we have u ∈ C [0, T ]; L 1 (R + ) which is a solution of (2.2)        u t (t, x) + u x (t, x) + d x, S 1 (t) u(t, x) = Cu xx , t ∈ (0, T ), x > 0, u(t, 0) -Cu x (t, 0) = ∞ 0 B x, S 2 (t) u(t, x)dx, t ∈ (0, T ), u(0, x) = u 0 (x), x > 0.
Now define a map Γ :

X + × X + → X + × X + by S(t) -→ ∞ 0 ψ 1 (x)u(t, x)dx, ∞ 0 ψ 2 (x)u(t, x)dx .
Note that solutions of (1.1) -(1.2) are precisely fixed points of the map Γ. Therefore, it is enough to prove that Γ is a contraction map. Let u 1 (t, x), u 2 (t, x) be solutions of (2.2) corresponding to S a (t) := (S a

1 (t), S a 2 (t)), S b (t) := (S b 1 (t), S b 2 (t)) respectively. Then ũ := u 1 -u 2 satisfies            ũt + ũx + d(x, S a 1 (t))ũ + [d x, S a 1 (t) -d x, S b 1 (t) ]u 2 = C ũxx , t ∈ [0, T ], x > 0, ũ(t, 0) -C ũx (t, 0) = ∞ 0 B x, S a 2 (t) ũ(t, x) + [B x, S a 2 (t) -B x, S b 2 (t) ]u 2 dx, ũ(0, x) = 0.
Multiplying the above equation by sgn(ũ) and integrating in x and use (1.5) to get

d dt ∞ 0 |ũ(t, x)|dx ≤ ∞ 0 B x, S a 2 (t) |ũ|(t, x) + B x, S a 2 (t) -B x, S b 2 (t) u 2 (t, x) dx - ∞ 0 d x, S a 1 (t) |ũ|(t, x)dx + ∞ 0 d x, S a 1 (t) -d x, S b 1 (t) u 2 (t, x)dx ≤ ∞ 0 B x, S a 2 (t) |ũ|(t, x) + L|S a 2 (t) -S b 2 (t)|u 2 (t, x) dx - ∞ 0 d x, S a 1 (t) |ũ|(t, x)dx + L|S a 1 (t) -S b 1 (t)| ∞ 0 u 2 (t, x)dx ≤ ϑ ∞ 0 |ũ(t, x)|dx + L|S a (t) -S b (t)| ∞ 0 u 2 (t, x)dx (where |S a (t) -S b (t)| := |S a 1 (t) -S b 1 (t)| + |S a 2 (t) -S b 2 (t)|) ≤ ϑ ∞ 0 |ũ(t, x)|dx + L sup 0≤t≤T |S a (t) -S b (t)| |u 0 | L 1 e ϑt dx.
By Gronwall's inequality we get

∞ 0 |ũ(t, x)|dx ≤ Lt sup 0≤t≤T |S a (t) -S b (t)| |u 0 | L 1 e ϑt ,
and hence

sup 0≤t≤T ∞ 0 |ũ(t, x)|dx ≤ LT sup 0≤t≤T |S a (t) -S b (t)| |u 0 | L 1 e ϑT .
Therefore from the definition of Γ and using (1.7) we obtain

sup 0≤t≤T |Γ(S a ) -Γ(S b )| ≤ ψ M sup 0≤t≤T ∞ 0 |ũ(t, x)|dx ≤ Lψ M T sup 0≤t≤T |S a (t) -S b (t)| |u 0 | L 1 e ϑT .
Now choose T such that Γ is a strict contraction map in a Banach space X + × X + . Since T does not depend on the iteration process, we repeat the same process for [T, 2T ], [2T, 3T ], .... to obtain that there exists a unique solution u to (1.1)

-(1.2) in C R + ; L 1 (R + ) . Therefore we get that S i (.) is continuous and hence S i (.) ∈ L ∞ loc (R + ). Hence there exists a unique weak solution u ∈ C R + ; L 1 (R + ) ∩ L 2 loc R + ; W 1,2 (R + ) to the system (1.1)-(1.
2). Now we prove the existence and uniqueness of (1.3) and (1.4). First we observe that for a given S, we have to consider the associated eigenvalue problem of (1.3) and (1.4). Proposition 2.3. Assume (1.6) and further assume that

(2.3) m ≤ ψ 1 (x) ψ 2 (x) ≤ M, 0 < m ≤ M < ∞, and 
(2.4) B(x, 0) -d(x, 0) > 0 B(x, 0) -d(x, ∞) < 0,
are satisfied then there exists a solution to (1.3)- (1.4). Moreover, if m = M = 1 then we have directly uniqueness of the solution.

Before we prove the Proposition 2.3, we prove some lemmas which are helpful to prove this proposition. We notice that for a given S there exists (λ S , U S , φ S ) solution to the eigenproblem (see [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF] for details),

(2.5)

                   ∂ x U S = C∆U S -d(x, S1 )U S -λ S U S , U S (0) -CU ′ S (0) = B(x, S2 )U S (x)dx, U S ∈ W 1,2 (R + ), -∂ x φ S = C∆φ S -d(x, S1 )φ S + φ S (0)B(x, S2 ) -λ S φ S , φ S ∈ W 1,2 (R + ), φ ′ S (0) = 0 and φ S U S (x)dx = 1.
Lemma 2.4. Assume (1.6) then we have

(2.6) ∂ ∂ S1 λ ∂ ∂ S2 λ = -( ∂ ∂ S1 d)U S φ S dx φ S (0) ( ∂ ∂ S2 B)U S dx < 0 0 .
Proof. The proof goes in similar lines that are given in [START_REF] Michel | Optimal proliferation rate in a cell division model[END_REF][START_REF] Michel | Fitness optimization in a cell division model[END_REF]. Therefore we skip the proof.

Lemma 2.5. Assume (1.6), λ (0,0) > 0, λ (0,∞) < 0 and (2.3) then there exists a solution to (1.3).

Proof. Using that λ (0,0) > 0, λ (0,∞) < 0 and the decay (2.6), we have the existence of Γ decreasing regular function defined on [0, S *

1 [ (with S * 1 ∈ [0, ∞]) so that { S = ( S1 , S2 ) : λ S = 0} = {( S1 , Γ( S1 )) : S1 ∈ R + } ⊂ R 2 + (1-dimension manifold). Let Ũ( S1, S2) = S1 U ( S1, S2) U ( S1, S2) (x)ψ 1 (x)dx , and 
β : S1 → Ũ( S1, S2) (x)ψ 2 (x)dx,
then by assumption (2.3), we have that m S1 ≤ β( S1 ) ≤ M S1 , for all S1 , therefore there exists S+ 1 and S-

1 such that Γ( S+ 1 ) = M S+ 1 , Γ( S- 1 ) = m S- 1 .
Moreover, for S1 small enough ( S1 , β( S1 )) belongs to the connex set of boundary

{( S1 , M S1 ) : S1 ∈ [0, S+ 1 ]}∪{( S1 , m S1 ) : S1 ∈ [0, S- 1 ]}∪{( S1 , Γ( S1 )), S1 ∈ [ S+ 1 , S- 1 },
and for S1 large enough ( S1 , β( S1 )) belongs to the connex set of boundary (see Figure 1)

{( S1 , M S1 ) : S1 > S+ 1 } ∪ {( S1 , m S1 ) : S1 > S- 1 } ∪ {( S1 , Γ( S1 )), S1 ∈ [ S+ 1 , S- 1 }.
Therefore, there exists ( S1 , S2 ) such that Ũ( 

S 1 S 2 β( S1 ) M S1 Γ( S1 ) m S1
Fig. 1: S1 → Γ( S1 ) and S1 → β( S1 ). We see there exists S1 such that β( S1 ) = Γ( S1 ) Remark 2.1. It is easy to check that the Proposition 2.3 is an immediate consequence of Lemma 2.5. Notice that using (2.4), we have λ (0,0) > 0, λ (0,∞) < 0 are satisfied. Uniqueness of U : Let U solution of the eigenproblem given by the Proposition 2.3 and V an another positive solution to

V ′ + d(x, V ψ)V = CV ′′ , V (0) -V ′ (0) = B(x, V ψ)V (x)dx
with V ψ = U ψ. Then there exists V , φ, λ solution to the eigenproblem

V ′ + d(x, V ψ) V = C V ′′ -λ V , V (0) -V ′ (0) = B(x, V ψ) V (x)dx -φ′ + d(x, V ψ) φ = C φ′′ -λ φ + B(x, V ψ)φ(0), φ′ (0) = 0 with λ = 0 (since ∂ ∂S λ S < 0)
. Therefore by integration, we have λ V φ = 0 and V = 0.

3. Asymptotic Behavior. In this section, we prove that the solution of (1.1) converges to the solution of (1.3) for large time. To prove this convergence we need additional hypothesis on φ, B and d, which are given below.

Definition 3.1. Let

f = u/U, dν(x) = U (x)φ(x)dx, and 
f ν := f (t, x)dν(x) = u(t, x)φ(x)dx
The first assumption consists in the comparison between ψ i and φ : (3.1)

kψ i (x) ≤ φ(x) ≤ Kψ i (x), 0 < k ≤ 1 ≤ K < ∞ and ψ i (x)U (x)dx = 1, i = 1, 2.
Therefore we chose Si = 1, i = 1, 2. Further, the vital rates should be of the form:

(3.2) B(x, S 1 ) = B(x, S 2 ) x ∈ (0, x 1 ], B(x) x ∈ (x 1 , ∞). (3.3) d(x, S 1 ) = d(x, S 1 ) x ∈ (0, x 2 ], d(x) x ∈ (x 2 , ∞).
for a fixed x 1 , x 2 in (0, ∞). Remark 3.1. Under the assumptions (3.2) and (3.3), we have Poincaré Writinger type inequality (see [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF] for an unbounded domain) i.e.,

∞ 0 (f -f ν ) 2 dν ≤ C 3 ∞ 0 ∂f ∂x 2 dν,
where C 3 depends on C, max B, min B, max d, min d. Moreover, as in previous work (see [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF]) we add the assumption (to prove the convergence of the linear case)

(3.4) ∃C 0 , C 1 , C 2 s.t. B(x, .) ≥ C 0 φ(x)/φ(0), sup S2 | ∂B ∂S 2 |(x) < C 1 φ(x)/φ(0) ∀x ∈ R + and sup x,S1 | ∂d ∂S 1 | < C 2 ,
and finally, we need that for a given diffusion constant C, the variation of B and d are small enough, i.e.,

r := max 2C 1 √ C 3 K k √ C 0 C , 2C 2 K Ck (1 -( 2C2C3 K kC ) 2 ) , 2C 2 Ck K2 + 2C 1 √ C 3 K2 k √ C 0 C 2 < 1 2 , (3.5) 
where K := max(K, f ν (t = 0)). Theorem 3.2. Under assumption (3.1)-(3.5) we have

u(t, .) → U (.), as t → ∞ in L 2 dν (R + ).
Proof of the main Theorem 3.2. We first state the GRE computation (see [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF][START_REF] Michel | General Relative Entropy in a nonlinear McKendrick model[END_REF][START_REF] Michel | General relative entropy inequality: an illustrations on growth models[END_REF]).

Lemma 3.3. Assume that u solves (1.1) then we have

(3.6) d dt f ν = [d(x, 1) -d(x, S 1 (t))]f (t, x)dν(x) -φ(0) f [B(x, 1) -B(x, S 2 (t))]U (x)dx, and 
(3.7) d dt (f -f ν ) 2 (t, x)dν(x) = -2C (f ′ ) 2 dν(x) -φ(0) [f (t, x) -f (t, 0)] 2 B(x, 1)U (x)dx -2φ(0)[f (t, 0) -f ν ] f [B(x, 1) -B(x, S 2 (t))]U (x)dx -2 f [d(x, S 1 (t)) -d(x, 1)](f -f ν )dν(x).
Proof. By computation (multiplying equation (1.1) by φ and integrating with respect to x), we find that

d dt f (t, x)dν(x) = [-∂ x u + C∆u -d(x, S 1 (t))u]φ(x)dx = [∂ x φ(x) + C∆φ(x) -d(x, S 1 (t))φ(x)]u(t, x)dx + φ(0) B(x, S 2 (t))u(t, x)dx = [d(x, 1) -d(x, S 1 (t))]f (t, x)dν(x) -φ(0) f [B(x, 1) -B(x, S 2 (t))]U (x)dx,
and for the computation of (3.7) refer [START_REF] Perthame | Transport Equations in Biology[END_REF] (or) see appendix (Lemma 5.2). Lemma 3.4. Assume (3.1) then for all

f ∈ L 1 dν (R + , R + ) ∩ W 1,2 dν (R + , R + ) we have (3.8) k f (x)ψ i (x)U (x)dx ≤ f ν ≤ K f (x)ψ i (x)U (x)dx, (3.9) k (f ′2 )ψ i (x)U (x)dx ≤ (f ′ ) 2 dν(x) ≤ K (f ′2 )ψ i (x)U (x)dx.
Proof. The proof is direct consequence under the assumption (3.1). Lemma 3.5. Assume (1.6) then we have

(3.10) min(k, f ν (t = 0)) ≤ f ν ≤ max(K, f ν (t = 0)), ∀t ≥ 0. (3.11) min(k, f ν (t = 0))/K ≤ f (t, x)ψ i (x)dx ≤ max(K, f ν (t = 0))/k, ∀t ≥ 0. (3.12) lim sup t→∞ | f ν -1| ≤ max i lim sup t→∞ | f ν -S i |. Proof. Using (3.8), if f ν ≥ K then S i ≥ 1 (resp. if f ν ≤ k then S i ≤ 1
) and by equation (3.6) and (1.6) we have f ν is decreasing (respectively f ν is increasing). Now, using Lemma 3.4 we find the inequalities (3.10) and (3.11). In order to prove the inequality (3.12), define ǫ i (t) := f ν -S i (t) then

d dt f ν = [d(x, 1) -d(x, f ν -ǫ 1 (t))]f (t, x)dν(x) -φ(0) f [B(x, 1) -B(x, f ν -ǫ 2 (t))]U (x)dx = ((1 + ǫ 1 (t)) -f ν ) d(x,1)-d(x, f ν-ǫ1(t)) ((1+ǫ1(t))-f ν ) f (t, x)dν(x) +((1 + ǫ 2 (t)) -f ν ) B(x,1)-B(x, f ν -ǫ2(t)) ((1+ǫ2(t))-f ν ) f (t, x)U (x)dx.
therefore, we have

d dt | f ν -1| = -(|1 -f ν | ± ǫ 1 (t)) d(x, 1) -d(x, f ν -ǫ 1 (t)) ((1 + ǫ 1 (t)) -f ν ) f dν(x) -(|1 -f ν | ± ǫ 2 (t)) B(x, 1) -B(x, f ν -ǫ 2 (t)) ((1 + ǫ 2 (t)) -f ν ) f (t, x)U (x)dx,
and we find that (3.12) is satisfied. Hence the lemma is proved. Proposition 3.6. Assume (3.1) -(3.4) then we have that, for

C 2 < Ck 2C3 K , lim sup t→∞ | f ν -S i | ≤ r max i lim sup t→∞ |S i -1|.
Proof. Using (3.1) and Cauchy-Schwarz inequality we find that

d dt (f -f ν ) 2 (t, x)dν(x) ≤ -2C C3 (f -f ν ) 2 (t, x)dν(x) -φ(0) [f (t, x) -f (t, 0)] 2 B(x, 1)U (x)dx +2φ(0)( |f (t, 0) -f (t, x)| 2 dν(x)) 1/2 C 1 |S 2 -1| f |B(x,1)-B(x,S2(t))| C1 U (x)dx +2C 2 ( f 2 dν(x)) 1/2 |S 1 -1|( (f -f ν ) 2 (t, x)dν(x)) 1/2 ≤ -2C C3 (f -f ν ) 2 (t, x)dν(x) -C 0 [f (t, x) -f (t, 0)] 2 dν(x) +2C 1 ( |f (t, 0) -f (t, x)| 2 dν(x)) 1/2 |S 2 -1| K +2C 2 ( f 2 dν(x)) 1/2 |S 1 -1|( (f -f ν ) 2 (t, x)dν(x)) 1/2 ≤ -C C3 (f -f ν ) 2 (t, x)dν(x) -C0C C3 [f (t, x) -f (t, 0)] 2 dν(x) (f -f ν ) 2 (t, x)dν(x) +2C 1 ( |f (t, 0) -f (t, x)| 2 dν(x)) 1/2 |S 2 -1| K +2C 2 ( f 2 dν(x)) 1/2 |S 1 -1|( (f -f ν ) 2 (t, x)dν(x)) 1/2 ,
and define w(t

) := (f -f ν )(t, .) 2 L 2 dν
, then we have

d dt w(t) ≤ - C 0 C C 3 |f (t, 0) -f (t, x)| 2 dν(x) 1/2 [(w(t)) 1/2 - 2C 1 √ C 3 K √ C 0 C |S 2 -1|] - C C 3 (w(t)) 1/2 [(w(t)) 1/2 - 2C 2 C 3 ( f 2 dν(x)) 1/2 C |S 1 -1|].
Using the similar argument in Lemma 3.5, we get lim sup

t→∞ w(t) ≤ max 2C 1 √ C 3 K √ C 0 C lim sup t→∞ |S 2 -1|, lim sup t→∞ 2C 2 C 3 ( f 2 dν(x)) 1/2 C |S 1 -1| .
Thus, we find that lim sup

t→∞ (f -f ν )(t, .) 2 L 2 dν ≤ max lim sup t→∞ 2C 2 C 3 K kC 2 f (t, .) 2 L 2 dν , 2C 1 √ C 3 K2 k √ C 0 C 2 ,
and for

C 2 < Ck 2C3 K , we have lim sup t→∞ f L 2 dν ≤ max K (1 -( 2C2C3 K kC ) 2 ) , K2 + 2C 1 √ C 3 K2 k √ C 0 C 2 , therefore lim sup t→∞ w(t) ≤ max 2C 1 √ C 3 K √ C 0 C lim sup t→∞ |S 2 -1|, 2C 2 K C (1 -( 2C2C3 K kC ) 2 ) lim sup t→∞ |S 1 -1|, 2C 2 C K2 + 2C 1 √ C 3 K2 k √ C 0 C 2 |S 1 -1| .
Since we have

| f ν -f ψiU | = | f -f ν ψiU | ≤ 1 k (f -f ν ) 2 ν , we find that lim sup t→∞ | f ν -S i | ≤ r max i lim sup t→∞ |S i -1| is satisfied. Proof. (of Theorem 3.2)
To prove this theorem it is enough to prove that (ff ν ) 2 (t, x) L 2 dν = 0, as t → ∞. Using Lemmas 3.3-3.5 and Proposition (3.6), we have

lim sup t→∞ | f ν -1| ≤ lim sup t→∞ | f ν -S i | ≤ r lim sup t→∞ |S i -1|,
and finally lim sup Lemma 3.6). Therefore S i → t→∞ 1, f ν → t→∞ 1 and finally we have

t→∞ |S i -1| ≤ lim sup t→∞ | f ν -1| + lim sup t→∞ | f ν -S i | ≤ 2r lim sup t→∞ |S i -1|, with r < 1/2 (see
lim sup t→∞ (f -f ν ) 2 (t, x) L 2 dν = 0.
Hence the theorem is proved.

4. Numerical Simulations. In this section, we present some examples to illustrate the result of Section 3. We have considered finite difference schemes with uniform step size to perform our numerical simulations. Let ∆t and ∆x be the step size for time and age respectively. We have used ∆t = 0.004 and ∆x = 0.1 for our numerical simulations.

Example 1 (convergence of the solution to the steady state) Assume that the vital rates, initial data and the competition weights are given by

d(x, S) = (1 + e -x )S, B(x, S) = 2 + e -x-S , u 0 (x) = e -x , ψ 1 = ψ 2 = 4.1376χ [0,22] .
In Figure 2, we compare the normalized solution of (1.1)-(1.2) with the steady state (normalized) at t = 20 and the absolute error plot is also given. We observe that the normalized solution of (1.1)-(1.2) is in good agreement to the normalized vector of its steady state. In Figure 4, we plot the solution of (1.1)-(1.2) at x = 10 and we notice that the solution converges for a longtime. We have also given the plots of (U, φ) in Figure 3.

Example 2 (behavior of S(.) when C or ψ i 's varies) In this example, we assume that the birth and death rates can be written as a product of two terms: one depends of the age x and the other depends on the weighted population S. The vital rates and initial data are given by:

d(x, S) = 1 + x 10 S 10 + 0.1 , B(x, S) = 10e -80(x-2) 2 -1.1S , u 0 (x) = e -x .
In Figures 5 and6, we have given the plot of S(.) with C = 0.15 and C = 0.00001 using ψ 1 = ψ 2 = 1χ [0,22] , we notice that the oscillations will disappear as C increases. We also observe that the S(.) converges for large value of the diffusion constant in large time, where as it does not converge for small values of the diffusion constant. Contrary, for the fixed diffusion constant C = 0.00001 from the Figures ( 6)-( 9), we notice that the S(.) also converges for large time when ψ i varies (keeping supp(ψ i ) fixed).

Conclusions.

We have proved the existence and uniqueness result for a nonlocal nonlinear renewal equation with diffusion and its corresponding steady state equation also. We have used the fixed point techniques to prove the results. We have established the convergence of the solution to its steady state for large time. We took the help of GRE inequality and the Poincaré Writinger type inequality for unbounded domain. The assumptions on the vital rates i.e., assumptions (3.2)-(3.4) are strong to prove the convergence of the solution, we would try to minimize the assumptions on the birth and death rates to prove the convergence part. Some numerical simulations are given to make sure that the solution converges. These simulations shows that the normalized solution of (1.1)-(1.2) converges to the normalized vector of its steady state for large time. We have also given an example where the S(.) oscillates and does not converge for the small values of the diffusion constant C and the oscillations vanishes and converges when C is large or ψ i 's are moving towards +∞ (keeping supp(ψ i ) fixed). We would like to work on the bifurcation analysis of the diffusion constant C, local convergence and linear stability around the steady state of the solution of the equation (1.1)-(1.2). Proof. First we consider the case of bounded domain, i.e.,

               U ′ R (x) + d(x, S1 )U R (x) = CU ′′ R (x), x ∈ (0, R), U R (0) -CU ′ R (0) = R 0 B(x, S2 )U R (x)dx, R 0 U R (x)dx = 1, and U R (R) = 0. (5.1) 
and its adjoint equation is given by (5.2)

           -φ ′ R (x) + d(x, S1 )φ R (x) = Cφ ′′ R (x) + φ R (0)B(x, S2 ), x ∈ (0, R), φ ′ R (0) = 0, R 0 φ R (x)U (x)dx = 1, and φ R (R) = 0.
Denote U R , φ R be the solutions of (5.1) and (5.2) respectively. Existence of U R , φ R can be obtained by using the method of subsolution and supersolution (see [START_REF] Pao | Nonlinear Parabolic and Elliptic equations[END_REF]).

Step 1: In this step, we prove the existence of solution to (1.3). Multiply U R on both sides to equation (5.1) and integrate from 0 to R and use integration by parts to get 

C R 0 |U ′ R | 2 dx + R 0 d(x, S1 )|U R | 2 dx ≤ 1 2 B 2 M .
C R 0 |U ′ R | 2 dx + d m R 0 |U R | 2 dx ≤ C R 0 |U ′ R | 2 dx + R 0 d(x, S1 )|U R | 2 dx ≤ 1 2 B 2 M .
Hence, U R ∈ W 1,2 (R + ). Set U R (x) = 0 in x > R, then there exists a subsequence (still denote them by U R ) we get the existence of U which is the solution of (1.3) such that U R ⇀ U in W 1,2 (R + ). Uniqueness follows from the standard arguments (see Section 2).

Step 2: In this step, we prove the existence of solution to (1.4). Multiply e where C 3 = -Cφ(0)H u(t,0) U(0) U x (0).

Now we consider

C 1 + C 2 = H ′ u(t,0) U(0) φ(0) -Cu x (t, 0) + u(t,0) U(0) CU x (0) = H ′ u(t,0) U(0) φ(0) -u(t, 0) + 

Fig. 2 :Fig. 3 : 3 . 5 . 1 .

 23351 Fig. 2: left:Solution of (1.1)-(1.2) at t = 20. Right: Absolute error.

Fig. 4 :Fig. 5 :Fig. 6 :Fig. 7 :

 4567 Fig. 4: Solution of (1.1)-(1.2) at x = 10.

Fig. 8 :Fig. 9 :

 89 Fig.8: C = 0.00001, ψ 1 = ψ 2 = 1χ[START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF][START_REF] Tumuluri | Steady state analysis of a non-linear renewal equation[END_REF] .

0 B 2 R 0 (

 020 equation with g(x) and integrate from 0 to R to get , S1 )φ R (x)e x g(x)dx = φ R (0, S2 )e x g(x)dx , where g solves the differential equation(5.3) -(e x c g ′ (x)) ′ = U R (x), , x ∈ (0, R), g(R) = 0, g ′ (0) = 1.It is easy to observe that ex c g(x) ≤ U R (x). Using (1.7) we get C+dm C+BM ≤ φ R (0) ≤ 1 + dM C . Multiplying φ R (x)U R (x) to equation (5.2) and integrate from 0 to R and use integration by parts to getC S1 )(φ R (x)) 2 U R (x)dx = φ R (0) R (x, S2 )φ R (x)U R (x)dx -R (x)) 2 U R (x)dx + d m φ R (x)) 2 U R (x)dx ≤ φ R (0)B M ≤ (1 + d M C )B M .

∞ 0 B 1 U

 01 (x, S 2 )u(x)dx +u(t, 0) 1x, S 2 )u(x)dx -u(t,0) U(0) ∞ 0 B(x, S2 )U (x)dx .Now we considerL + C 3 = H u(t,0) U(0) φ(0)U (0) -Cφ(0)H u(t,0) U(0) U x (0) = H u(t,0) U(0) φ(0) ∞ 0 B(x, S2 )u(x)dx.Hence after rewriting we getd dt ∞ 0 H(u/U )U φdx = CD H dif f (u) + D H ren (u) + Remainder.Now take H(x) = x 2 and use (3.6) to get (3.7).
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It is easy to show that φ R ∈ L ∞ (R + ) (see [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF]). By similar analysis as in Step 1, we get the existence of φ which is the solution of (1.4). From the Lebesgue theorem we get ∞ 0 U (x)φ(x)dx = 1. Remark 5.1. In equation (5.1), even if

∞ the proof still works by modifying the constants accordingly.

Lemma 5.2. Let u, U, φ be solution to equation (1.1), (1.3) and (1.4) respectively. Let the entropy is defined by

where H is a convex function. Then we have

where the entropy dissipation due to diffusion and the renewal terms are

then we get

where

First we Consider

where C 1 = -CH ′ u(t,0) U(0) φ(0)u x (t, 0). Now consider

where C 2 = Cφ(0)H ′ u(t,0) U(0) u(t,0) U(0) U x (0). Adding I 1 and I 2 to get 

Now consider