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Abstract

The aim of this work is to study this stochastic individual-based model, structured with respect to age
(progression within the cell cycle) and space (radial distance from the oocyte). We prove the existence of
solutions and the convergence in large population and size scale limit to a partial differential equation.
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1 Introduction

The development of ovarian follicles is a unique instance of a morphogenesis process resulting from the inter-
actions between somatic cells (granulosa cells) and germ cell (oocyte). In mammals, the initiation of follicular
development from the pool of resting follicles is characterized by an increase in the oocyte size concomitant
with the surrounding granulosa cells proliferating (see [19]). In [5], the authors have introduced a multi-scale
stochastic model, taking in accounts for the molecular dialogue existing between the oocyte and granulosa cells,
of the primordial follicle development. We propose, here, to study mathematically this model. The main line
of this model can be summarized as follows :

i) there are a population of small cells of diameter € proliferate around large cell of radius ro (see fig. 1),

ii) there is a dialog (depending on the distance) between the large cell and the small cells (see fig. 1) which
links growth and proliferation.
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Figure 1: Development of preantral follicles. Each follicle is comprised of a germ cell (the oocyte) and gran-
ulosa cells. The oocyte produces GDF9/BMP15 which make granulas cells proliferate around the oocyte and
granulosa cells (small ones) produce KITLG that make the oocyte grows. Therefore, the development of each
follicle (in its basal follicular development), is coordinated by tight interactions existing between the oocytes
and their surrounding granulosa cells.

The age of a cell is simply a positive real number and Age = Ry. To simplify the computation, we choose
an equivalent formulation of this model : the large cell keeps a constant radius (= 1) but the local volume of
space around the oocyte evolves with respect to time. The physical space is

Space =R3/B(0,1), where B(0,1) = {(r,0,¢) € Space : r < 1}. (1)
Let € > 0 the diameter of a granulosa cell, then i'h layer is given by
L5 ={(r,0,¢) € Space : r € [1+ (i —1)e, 1 + e[}, (2)

and for N = E,;(1/e) € N*, a subdivision of these layers (see fig. 2) is given by

L5 =1{(r0,¢) € Space : r €[l + (i —1)¢, 1 + ie],
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Figure 2: Space layer decomposition. The physical space surround the ball (oocyte) in its center. We subdivide
this space in layers (£5); and mesh these layers uniformly (L ;)i jx of volumes (VoIf ;)i k-

For e > 0, the volume of each Lf (resp. L5 ;) (which evolves with the radius of this oocyte o) are given
by

4 4
Volf = —lro +ie — (ro + (i = e = Z[EG3 — 3i + 1) + 3r0(2i — 1) + 3erd], (4)
and 4
Volf = Volf/N? ~ =€ (3¢° = 3i 4 1) + 3¢r0(2i — 1) + 3erd). (5)

For each time, a cell is defined by its age and its position, therefore by a dirac mass on Age x Space. The
whole population is then characterized by a punctual measure on this set, i.e., in Mp(Space x Age). Let

M e
NO

1
Zé‘/f,e(da, dp) = i Z 5((121,6@31,6) € Mp(Space x Age), (6)
k=1

where M is a normalization parameter and (ag, zx)r C Age X Space, the initial population sequence, such that

sup(Néw’E/M) < 00,
€

)

and ré/[’e(O) =19 > 0. Let Q(ds,Compt(dn),dO,Is_(p,dp’)) be a Poisson point measure on Ry X ¢ =
R, x N x R, x R? with intensity

q(ds, Compt(dn),dO,TIS_(p,dp’)) = ds @ Compt(dn) @ d© @ TIS_(p,dp’), dp’ = r*sin(0)drdode,
and independent of Zé\/[’E (see [4, 25, 17, 15, 3]). Let us denote Xéw’e(t) and Ag’e(t) the position and age of the

k' individual at time ¢ (ranked in the lexicographic order on R? x R, see [4, 25, 17, 15, 3] for details). Then
the oocyte radius follows the equation

t
M7 M? N M7 € M7
ro (t) =715 (0) + ZK((’L - l)e)/ (ro “(s—))%( § ik 25 )ds, (7)
ik 0
where a < 0 and k € CP(Ry,R;) and W7 ; , a regular approximation of the characteristic function XL, (see

(28) in the annex : section 5.1). The population at time ¢, denoted by ZtM . is the set of all individuals alive



at time ¢ and follows the master equation

]\/Ie

Me
(da, dp) = Z o AN (0)1,x M (0))

M/ / n<NM€ (t s, XM (s=)) T 5(A£¥“(s—)+t—s7x,¥v€(s—)))1oge<Bﬁ{;i

(O bt rimsgr) ~ St (eoprima ooy oo <py (xie(emy| Qs (dn),dO, TIL_(p, dp)), (8)

where
B%;_ B(AM<(s—), X}(s—)), with B(a,p) =1 — e /Pl X e CO(Ry,RY), 9)
Volg . 1
=C" \I]z 7Zsf ) € )7 with R(l‘) = T _z—u» (10)
%: AT Vol ik L4e 7"
nd oy \G<'> P ()
. ¢ p s—(p p . . s— (P

where C¢ = C'/e? > 0.

The main objective of the paper is to prove the convergence of the stochastic processes (ZtM “(da, dp))e,m
as the population increases to infinity and the size of a cell converges to zero (the existence of solutions to
the system (7)-(17) is quite classical (see [4, 25, 17, 15, 3]) and so be proved in annex 5). Difficulties of this
work appear in the manipulation of stochastic and deterministic tools. Indeed, stochastic processes, their
convergence or/and tightness (compactness) are powerfull mathematical tools but are not well suited for the
punctual (or regular) convergence, therefore for a fixed initial population size (in an equlvalent way, fixing M)
we cannot pass to the limit as e converges to zero. Thus, its not completly clear that (Z, ’E(da dp))e, v converge
for all sequences of (ex, My) — (0,00). We show that the limit (étroite-weak limit [15, 4] for similar studies) of
(Zgw “(da,dp))em (for a fixed € and M — c0) is well defined (unique) and is a strong solution to the following
partial differential equation

wp(tap)dp+Pe() “(t,a,p) =0,

Intermediate eq.{ T6(0) = r(0) + Y s((i — 1)e) / N [[[[ wisso tappdadpds — 12)

i7j7k
p(t,a,p)|a=o = 2/B(a,p)pe(f,a,p)dowlp, p(0,a,p") = p(a,p), r5(0) =ro.

[ P

with M1(t,p) == [ p(t,a,p)da,

fff\I/”k. (p)Mt(t,p)dpVolg 1

oo € ) with R(:B) S ————) (13)
2% bk Vol 35,k l+e o

Ue(|p" — p|) G5 e p)M1(t, p)dpVolg
fff‘l’ (lg = PG5 () il Vol’jk
Then, we prove that, the limit as € converge to zero, is a weak solution (using Sobolev spaces and weak—sx

convergence [2]) to the following nonlinear partial differential equation (Transport [20, 22], Keller Segel type
12, 13)

IS (p', dp) =

). (14)



o 0
(875 + 5 —)p+ dw(C’pRV(log(l — R))) =0,
Final eq.{ Pla=0=2 [ Bl(a,p)p(t,a,p)da, p—o = po, (15)

ro(t) =ro(0) + / //// “(t,a,p)dadpds, ro(0) = ro.

with €' >0, R = R([y, p(t, a,p)dagryféffizt;fgg?’()tﬁ) and

o) / / / /A el p)r2sin(0)dadrddds, ro(0) = ro. (16)

Therefore, the main difficulty is to mix both approach to prove the convergence. In section 2, we give
main theorems of convergence and proof is done in section 3 (we put in annex (section 5) the most technicals
lemmaes).

2 Main results

Before proving the convergence of the stochastic process ZtM “. we first show that we have existence for all M
and € of ZM’6 (proposition 2.1). Then, we adopt the following approach (see fig. 2.2) : we show, in theorem 2.2
I, that we can extract a subsequence M}, — oo such that (Z; ZMie ), converge to a solution p¢ to an intermediate
partial differential equation (12), then we prove, in theorem 2.2 II, that we can extract a subsequence €, — 0o
such that p converge to p solution to (15). Finally, in theorem 2.2 III, we show that there exists a subsequence

(ex, My) — (0,00) such that ZtM’6 converges to p (see fig. 2.2).

Assumptions
I- Geometric : Assume that for all p, we can define the matrix

SIS, ¥ (la = p)(a —p) ‘(g — p)dg

Mo = e —phdg

which satisfies

My is definite positive
VpVe, 0 <infe,min{\ € Sp(My)} < sup, , max{\ € Sp(My)} < oo (17)
My —C°(Smc0) Ch(p).

Remark 1 The construction we give in section 5.1 satisfies (17) and by symmetry of ¢ we have directly that
Ch(p) = CId for all p € Space. Moreover, we notice that

Volg(3r? + 6r + 3)
Vol WS dp/ VoS —<70
oG /// irdp/Voli jy = 3r2 + 6rro(t) + 3ro(t)?

II- Uniform bounds on Z “ and p(a,p) : assume there exists m > 1 and w > 0 s.t.

o E ////1+a ™) ZM(da, dp))? ////1+a2m+r2m) 2 (da,dp))) < o0, (18)

Uy :={Me > w}, (19)

sup [+ )1 [ (o.p)da+ ([ pia,p)da)® + ([ 15 st pldo)?ldp < . (20)

with
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IT- Convergence of Zéw’€ and p§(a,p) :

Zy"(da, dp) —pi—oo pia,p)dadp, with  ph(a,p) € CHRT x RT x R?) (21)
pi(a,p) — LB AgexSaree) o by with pola,p) € CHRY x RY x R?) (22)

Proposition 2.1 (Ezistence) Under assumptions (6)-(11) and (18) there exists a solution ZtM’E € D(Ry, Mp)
and ro € CONCL(RY) to (7)-(8) for all M,e > 0. Moreover, assuming that (18) is satisfied then we have that

supE sup //// (1+a™+r™) ZM<(da, dp))? //// (1+a" 472z (da, dp))) < oo, VT >0.(23)
M,e te[0,7)

The proof is given in section 5.2.

Theorem 2.2 We have that.

I) Assume that (21) and (18) are satisfied. Then, for all € > 0, (Z"*(da, dp)) s is tight on D(R, (Mp(Age x
Space),weak)). Its limit values limpy, o0 Z;V‘[’“e(da, dp) = p(t,a,p)dadp, are continuous measure-valued pro-
cess satisfying (12)-(14).

II) Assume that (22), (20) and (17) are satisfied then (p¢,rg) solution to (12) weakly converge to (p,ro)
weak solution to (15)-(16).

III) Assume that (21), (22), (18) and (17) are satisfied. Then, for all C > 0, there exists a subsequence
(Gk,Mk) Cc Ug s.t. Mpe, — oo and

lim (Z, ’“’Ek(da dp),v) = (p(t,a,p)dadp,p), Vi € 067

k—o00
weak solution to (15)-(16).
M
A
\\ p . e—0 pf
\\\
Tightness of ZM- M —

e ZM,E

Figure 3: Convergence proof.



3 Proof of the main theorem

The proof of the main theorem follows the scheme given in figure 2.2. The first and third part are stochastic
processes results while the second point is a partial differential equation result.

3.1 Proof of theorem 2.2 Part I : Convergence of the stochastic process ZtM’6 as M — o

To prove tightness of the sequence Ziw’e (da, dp) (as probability measure on D(R, (M p(Age x Space), vague))),
we use a Rolley criterium (see [24, 8, 9]) which establishes that it suffices to prove that for all f of a dense
subspace of (Co(Age x Space,R), ||.||ls) (here C}(Age x Space,R)) the sequence (f;, ZtM’6> is tight in D(R;, R).
In the section 5.3.2, we prove that

(i, 210y = M+ V)
~—— ~——

Martingale  Finite Variation

Therefore, using a criterium of Aldous-Rebolledo [1, 9, 23], it suffices to prove that :
- for all t € T (dense in R.), (M}(f)) and VM(f) are tight on R
-forall T >0, u >0, n >0, there exists § > 0 and Né\/l’€ € N s.t.

sup  P(IOMF () = (MEF()] 20, Tar < Sar+6) <
M>Ne

sup IP(\ “(f) - V%f(f)]zn, TM76<SM+5> <u
M>Ne
for any sequences of stopping times (Sys, Ths) of the natural filtration Fjs, so that Sy < Ty < T. Both points
are a direct consequence of the bounds (42)-(44) (see [26] for more details). Using Prohorov theorem, we can
extract a subsequence ZtM ®¢(da, dp) which vague converges to Zf(da, dp) and by construction

M ? M ’ ||]“||VV100
sup [(fe, Z,%C) — (fen Z,20°)| < Csta ™,
teRy,feC1(Agex Space) 3

the limit process is a.e. continuous. Finally, using a result of convergence [16], to prove the weak convergence,
it suffices to add tightness of (1, ZtM ) (which came directly from bound (38)). Now using (42), we have that
the martingale part of the process satisfies

E(M; (£ < BIM™(0)) = B(M () < Csfw “os00 0.

By passing to the limit in (13)-(14), we have that

C (V5 s Zs_(da, dp))Volg 1
P =Moo Pso(5=) = = ) W5 5 (R(—* - ), with R(z) = ———
K < ; v Vol |4
and
Ue(lp' —pGs_(p)dp" . y \Ifz v Z§(da, dp))Volg
I_(.,d oo oo = S , with GS_(p/) =1-) ¢ d: )
=) i o = el = )Gy ™ G- =1 2 P Vol

’]7

Therefore, we find that for all f € W1 (see lemma 5.2 and the section 5.3.2),
Me M,e K 0 0 Me
0= <ft7 Zt > - <f07 ZO > - <(% + ai)f(ua avp)a Zu ’ (da‘a dp)>du

- /0 ((2f(5,0.p) — f(s,a,p))Bla,p) + /S (F(5..0) — (5.0 9) P (5—) () oo (. i), ZM) s,

‘pace



is satisfied. The limit is a weak solution to the partial differential equation (12), which is unique (see the proof
of IT ). O

3.2 Proof of theorem 2.2 Part II : Convergence of p; as ¢ — 0

Using a fixed point theorem (contraction in Banach space), we prove (in lemma 5.8) the existence of solu-
tion to the master equation (12). To prove the convergence as € — 0, we first prove, in lemmaes 5.9-5.12,
that under assumption (20), for any 7' > 0, M!(t,p) := [ p°(t,a,p)da (vesp. p) belongs to a compact set
of L([0,T] x Space) (resp. L2([0,T] x Age x Space))and VMl(t p) belongs to a weak—x* compact set of
L3([0,T] x Space).

Assume (22) - (17), let f € Cl(Age x Space), multiply (12) by f and integrate with respect to a : we
find that

;t/pf(a’p)pﬁ(t’ “>p)dadp—/ B(a,p)f(a,p)p(t,a,p)dadp

N ///p . (f(“’ ) = fla, P))Hif(p, dp') Ps_(p)p*(t, a, p)dadp.

Rewritting the second member as follows, we have that

JJI (500 = f(0 ) e ) P 901, )i
:///pp/ce(f(a,p/)_ﬂ ) ve(lp’ —p))G ) ( "dp' P;_(p)p%?a’p)dadp:

JITvela - pDGe_(a)dg  C
C° J1J, ¥*(la — pDa ~ IG5 _(a)da Py
I e e e i
ce e - - tq—p)d € €
:/// 7stan f%q" qfemrl(q_prpgzq(q . QP‘EE 2 1,0 >VGG (p)dadp + o(1)
// V f(a,p)p(t,a,p)Ch(p) ( )dpda+o()

By passing to the limit V f(a,p)p¢(t,a,p)Ch(p) in L? and V(log(l - R)) in weak—* L? (see lemmaes 5.10-5.11

and [2]), we have that p is a solution to

Sp(t.a.0) + S pltia.p) + div(p(t. . )M RY (log(1— R)) =0 p(t.0.0) = [ Ble.p)o(t,a.p)da

O 7"2 T
with R = R([, p(t,a,p)dagageit i), 0
3.3 Proof of theorem 2.2 Part III : Convergence of Z,"“ as M — co and ¢ — 0

Let T > 0. Changing the time scale t — te. We first notice that for (M, e) € Uy, bounds given in the proof of
theorem 2.2 Part I are independent of €, M. Indeed, the time scale appeared in lemma 5.5 that gives

SupE sup //// mZME da dp)) < oo, VT >0.
Me  “Nte[0,Td]



Then, changing the time scale, we find that all bounds given in Proof of theorem 2.2 Part I and in technica
part 5.3.2 are in O(T'/eM) therefore uniform in U; (and so the tightness of ZtM *“ is assured in Up). To obtain
the convergence we need that eM — oo. Now, we construct a (e, My) so that the limit is the one we are
expecting ( i.e., p).

Since C} is a separable set, there exists (1) dense subset of C}. Let any sequence (ex); converging to
0. Using theorem 2.2, there exists M" s.t.

1 €
§1<1¥|<Zt]\/[ “!(da, dp), 1) — (pe, (t,a,p)dadp, ¥1)| < 1.

For the same reason, we can find M? s.t.

2 € .
sup (2" (da, dp), vs) — {pey (t, a, p)dadp, ;)| < 1/4, j =1,2.

and so on, there exists M" s.t.

sup (2" (da, dp), ;) — (pe, (t,a, p)dadp, ;)| <1/2", j =1.n.

Therefore, using the theorem 2.2 part I, we have that

lim sup (2" (da, dp), ) — (p(t, a, p)dadp, )| =0, Wi € C.

n—oo t<T

4 Conclusion

In this paper, we prove the convergence of a stochastic process which represent the evolution of a cell population
as its population size goes to infinity and its cell size converges to zero. A way to understand the result is to
imagine that we observe the evolution of the cell population at a certain distance (depending of the number of
cells). If the distance is fixed (i.e. a fixed cell size), then when the number of cells goes to infinity, the whole
space is filled by cells (we are too close) and we can only observe ZtM “ = Cst everywhere. If the distance is too
far with respect to the size population, i.e. cells are too small, we observe a concentrated mass on the boundary
of the oocyte (we are too far). To observe the cell population evolution we have to be, neither too close or
too far, which explains the balance between e (cell size, or observation distance to the follicule) and M (cell
population size). The proof is robust to the change of the birth rate B and cell displacement rate (function
R), as long as there are smooth and bounded. The next step is to study the dynamics of the final equation
(15) and make the link with the partial differential equation of the follicle evolution given in [19, 6, 7].



5 Annex

5.1 Regular approximation of x.

We introduce a regular approximation of the characteristic function Xo ¢x[o0,x/N]x[0,27/N] (see fig. 4). Let
n €]0, 1[ and

T (1,0, ) € R e UR1(r) W57 (0) 5" (9), (24)
a C positive function such that " < 1, such that
(T lpeca-m =1, Crli-necane =0, (25)
(U)lig ey = 1 (U)ljesa =1, W(0+7) = W5(6), 0 (26)
(Wl o myzocn =1 (WS o gy =1, WH(6+2m) = W(), Vo (27)

and satisfying the unity partition formulae

Z\I'”k r,0,0) =1, ¥Y(r,0,¢) € [1+ ne o00[x]0, 7] x [—7,7].
0,5,k

with W{ ., a regular approximation of the characteristic function XLE

' k
Ws k(1 0,0) = U((r — 1) — i€, 0 — % o= ) (28)

Figure 4: Regularization of characteristic function x[g ). Using the convolution and Gaussian function it is
easy to compute a regular approximation of x[g 1) which satisfies (25)-(27).

5.2 Proof of proposition 2.1 : Existence of the stochastic process ZtM
This process can be construct step by step (see [3, 15, 4, 25, 17]), the only point is to prove global bounds
Me M e

) < Blaup N < B0 < oo, (20)

0< E(O7 < 1
S

10



NMe
0 < 70(0) < E(supro(s)) < ro(0)e =" i)™
s<t

< 00, (30)

where N21¢ = (M€ 1). Using (34), in the particular case f = 1, we have that (using (9), we have B%f_ <
1 < o0)

M,e M e 1 Me 1 ¢ M,e
N / / 120 (daydp) = SN0 (1 e [ | @(ds, (dn), d0, T (p, dp)).
R4 xSpace 0 Je ‘ o

Therefore, for ¢ < TJ]\\,J’E (the stopping time 7']]\\[/[’E is defined in (33)) and NtM “ = E(sup
have that

M,e
sgmin(t,ﬂ']]\b,f’e) Ns )’ we

Ny e _ o N0V T e
)< NI < BG4 [,
M t M o M™°

E(

which implies (using Gronwall inequality on the right side) that

NM,e B NM,E
E(OT) <N < E(Ov)eﬁ
and so, we find that
]\f]u’E t M
P(A}ngT%E > )= P(ry > t) = P( sup NMe > N) < B( ](\]4 Jerr /N, P( lim /" = o0) = 1.
s<min(t,75 %)
Using Fatou lemma, we find that
M ]\7]\4’E t
E( lim sup  NM€)) = E(lim inf sup  NM9)) <lim inf N, < B(=%—)ew,
N—o0 . M,e N—00 . M,e N—o0 M
s<min(t,75 %) s<min(t, 7y %)

M, e
and finally F(sups<; NME < E (NR/I )eﬁ. Similarly, we have (30). Let (T}) the sequences of successive jumps

of the ZM< process, then, limy T, = 0o, a.e. Indeed, let Uy C 2, such that limy Ty (w) < M for w € Uy, then
necessarily limy_, N%Z “(w) < oo (otherwise T]]\\,/[’E < M/2 for N large enough, which is with null probability)
and so, for all w € Uy, we can construct the time sequence (Tj(w)) as a subsequence of a Poisson point process
of intensity (14 C/e?)No (using (9) and (10) we have that 1+ C/e? < 0o) where Noo = limy_,00 N7y, (w) which
is a.e. unbounded. Moreover, we have for all € > 0, F' and f belongs to W1, the infinitesimal generator of
the Markovian process (Z;");>0 issued from Zéw “ is given by

%) ¢ 9 e
LR = GEE A e = FUS AN [ S0 (o)

e 2 1 .
+ (//R.,_XSpace [(F(<f, Z(])W’ )+ Mf(o,p) — Mf(a’p)) — F({f, Zé\/—’ MB(0,a)

P2 + 37 0(@p) = 37 0 as) = F(S, Z370) PiTta(p, do!)| 28" (da dp). (1)

The infinitesimal generator of the Markovian process (rgl’e(t))tzo issued from rq is given by

LROY(0)) = SR W0)lemo = F(ro) Y- w0~ eI (06 0. 737). (3
2,5,k

11



Indeed, let t < 7']]\\;[’E with T]]\\,/[’e =inf{s >0, N2> N}, then using lemma 5.2, we have that

mm(tT )
([ Pz [ S ez oy -
0 ]R+><Space

B(r(f[ (a,9)2,"(da dp))) ~ BF( [ [ (a. p) Zo(da, dp)))
R4 x Space R4 x Space

- [ S [lucapne (P12 + %ﬂo,x%f(s—» L FAN (5), X (5) — F({a Z22))
pcoepie +(FUFZ0) + 32 FAM(s), 1) = 52 AN (5=), X2(5-))) = F((f, Z4))
Loco 5 <pr_ (oo | Qds: (dn),d6, I (p. dp))|.
which can be rewritten (for simplicity) as
i oo @D Zi o (0 dp) = B JIL o S0 2ol )+ E(mine, ), 2),

with

U(t,Z) = /F’ ((f, ZMey) //RMSWE (a,p)ZM<(da, dp)du

2 1
+ (/0 //RJrXSpaceln<Ngﬂfe [(F((f, Zs) + Mf(s,o,p) — Mf(s’a’p)) — F({f, Z))B(p,a)
+ (F({f, Zs) + %f(s’ a,p') — %f(& a,p)) — F({f, Zs)))Ps_(p)II5_(p, dp’)} Zé\/[’e(da,dp),

with B(p,a) = 1 — e~*/*IPl2) | We have the following bound
|9 (min(t, 7y), 2)| < TN F e (14 || fllwroe (1 + Sup/ |p" = p|P*(p)ILs—(p, dp'))).
P

: Me . M
and since Z,  is cad and 7y > 0, we have

8 . € / € a
V() o = (2D [ e n 2 (e dp

2 1
P P62+ 50,00 — 0.0~ FUS 2 )BO.

S F(0,0,9)) — F(F, 20 P (o) To (0, dp')| 27 (da, dp).

+(F(S 20) + 3£ (0,0,8) — o7

(14| fllwr.00 (14+C/€)) < co. Therefore by derivation under domination,

which is dominated by T'—2
we find (31).
O

5.3 Technical lemmaes : Stochastic

In this part, we give the doob decomposition of the stochastic process Zé‘/[’e (issued from Ito calculus). Then,
we give uniform bounds which are used to prove the tightness of Z Me,

12



5.3.1 Ito calculus and first lemmas

For convenience, we introduced stopping time (T]]\\,/[’E)
T =inf{s >0, (1,ZMAry(s)) > N}. (33)
We first give computational lemmas on the population evolution.

Lemma 5.1 For all f € C°(Space x Age), t >0 and ro, ZtM’6 solution to (7)-(8) we have

M

J[ stamzi(da.dp) - Z (1, AY(0) + 1, X1(0))
R4 % Space

/ [ s [(280 0= 5. X246 = AR (5) =8 X0 5 e

(Ft, A (s=) +t—s,p") — f(t, A< (s —)4‘75_5va76(5_)))10<9 BM:< <pe_ (Xn(sf))]

n,s—

Q(ds, (dn), dO, I (p,dp'))  (34)
Proof Direct computation (see [4] for more details).
Lemma 5.2 Let F € C'(R,R) and f € B(Ry x Ry x Space,R) s.t. Vp € Space, (s,a) € RZ — f(s,a,p) €

C;’l(RJ,_ x Space, R) with uniform (in space) bounds of the partial derivation of f then, for allt >0,

[rasaziion[[ L st nzit e dpdn = P 2 - F({fo 23"

[ [ [0 >+Mf(s,0,X£“(s—)>—%f(s,fl%(s—),X%(s—)»—F(<f37Z§4’€>)10§@<Bg;i

(P (o Z0) + 3255, AV (5),1) = 2 (5, AV (5=), XIH(5))) = F((fs, Z2)))

1 ds, (dn),d®, 1" (p,dp))|  (35)

0<O-B}¢ <P:_(Xn(s—)) Q(

with (fs,ZéVI’€> = // f(s,a,p)ZéVI’E(da, dp).
R4 % Space

% + %)f(u, a,p), and integrating in time, we have

Proof Using (34) of lemma 5.1, in the particular case (
that Z,M “ satisfies (for all f given in assumptions)

///R+X5pace ou " ; )f(u,a,p)Z,"(da, dp)d M/ Z Fu, AM(0) + u, X2(0))du

i [ au+§>f< )

(—+—) (u AMG( )+ u—s, XMe(s )))10§@<Bg{;_
Gt %)f(u,Aé”’E(s—) b s,pl) = flu AN (5=) 5, X2 (5))

1 ]Q(ds, (dn), dO, 1M (p, dp'))du. (36)

0<O-B);* <P (Xn(s—))

13



Now, using Fubinni theorem fzf:() [ fs 0 fu . and (( C%)f)(u, Au,.) =L (f(u,.+u,.)), we have that
Nyte

[/ G )f(u,a,p)Zi”‘(da,dp)dUZAz;[f(tA%G(O)H,Xy’e(O))—f(O,A%G(O),Xéw’e(o))]

3 / [ [0 = 5.5 = 75,0, X2 (6))
(0 AN (s + 1 XME( ) = Fs, AR (=), X))
(AR 1) ) = (5, A(5), ) = (F(t, AR5+, X204 (a)) = (5, A (5), X24(3-)

10<® BM: <pe (X, (s—)) duQ(ds, (dn),d@,ﬂi\{’ﬁ(pjdp/)).

n,s—

Using formula (34), we find finally that

///R+xspace % aa )f(u, a,p) ZM<(da, dp)du = (f;, Z, >_ (fO,Z(J)w,E>
= gL e (a0, = 0 A0, XD e

+ (F(s, AN (5=).8) = F (. AN (520 X5 (5= oo i —pe (x,00)
Q(ds, (dn), 0,12 (p, dp))]

Now, using the It6 formula with jump processes, we find that (35) is satisfied (see [4, 25, 17, 15, 3] for more
details). O

5.3.2 Doob decomposition of Z}'*

Let m > 1 and assume that

supIE((l + a®™ 4 r?m, Zéw’e(da, dp)y + (1 +a™ + 1™, Z(])W’E(da, dp))?) < oo, (37)
M e

then we have that for all 7' > 0 (see lemmaes 5.3-5.7),

sup]E( sup (14 a®™ + 2™, ZtM’E(da, dp)) + sup (1+a™+ 1™, ZtM’E(da, dp)>2> < o0. (38)
M,e te[0,T€] t€[0,T€]

Moreover, for all f,
(0. ) = MO + V(D).

where

M) = (0 20) = 0, 2") = [ + 50 (0n0.0), 220 e dp)

-/ (26 (5,0.9) — F(5,,p)) Bla,p) + / sp2) ~ Fos ) P I, ), 200 s, (39)
is an L? martingale cadlag nul at ¢ = 0 of quadratic previsible increasing process
(M) =
o [(@16.00) ~ F.0 B+ [ (o)~ o0, P (). 22, ()

Space

14



and

t
V) = o Z")+ [ (G + ) (0n0p), 220 e dp)

" / ((2f(5,0.p) — f(s,0.p))Bla,p) + / (F(s,p.0') — F(s5,0,0)) P (D)TIS_(p, dp'), ZM)ds,  (41)
0 Space

which satisfy in average (in dP(w)) an uniform W,">°(R,) bound. More precisely, for all stopping time T, S

loc
B (sup (")) < (913 + 11 1+ ©) B sup(r. 201 (12)
E (M) — (M) < (0171 + 11+ € ) (2 Lo 020).
IE<?1<1¥ !<V§”,e(f)>\) < E(\(fo, Zé‘“!) - (3HfHLoo + || fllwree (1 + 0))(1 + E(\T| 3252“’ Zj”ﬂ)), (44)

T -S| M
—_— sup  (1,Z;59) ). 45
M ( s§max(T,S)< >)) ( )

E(J0F (£ = OB (M) < (30 leee + If w1+ C) Y E(

Proof To prove bound (38), we use technical lemmas 5.3-5.7 (proves are similar to [26, 17]). Now, for all
f € C%(Space x Age), t > 0 and ro, ZtM’6 solution to (7)-(8) we have (see lemma 5.2)

t
0= 2") = 0, 2") = [ (G + ) wa). 220 (o, dp)

-~ //n<NMe (2 (5,0, X" (s=)) = f (5, A3 (5=), X2 (=) Lo<o< BAM (5-), XM (5—))
+ (f(s, AN (s =), 0') = fls, AR (s =), Xph4(s-))
LB(AM (s—), XM (s—)) O<B(AM (s—), X M (s—))+Pe_ (XM (s—)) | Q(ds, (dn),dO,II5_(p,dp))| (46)
Using (34), we have that

€ 1 ¢ € € €
M) = =57 | [y [(2F5.0.3005)) = 1o AT (52, X)) oo cniasion e
3
(5, AM(5), 1) — s, AV (5-), X2 (5-)
Lp(AM (5—-),XM (s—))<O<B(AM (5—-),XM (s—))+ P<_ (ng(s_))] Q(ds, (dn),d©,1I5_(p, dp)) (47)

with Q = Q — ds ® Compt(dn) ® dO ® HM’G(p, dp') be the compensated Poisson process of @ introduced in

the introduction. Therefore Mi\/l “(f) is a local martingale associated to the stopping times sequence (T]]\\[/le) N

introduced in (33). Using Ito formula, we have that

MiMe / / n<]\/51\f’E
(U 25) 75,0, X2 (52)) = 5, AN (5=, XIE(50))? = (o 229 oz cmiags ooy )
(4o Z2) 3 A6, 01) = o, A0, X ) = 4 2209

LB(AM (s—), XM (s—))<O<B(AM (s—), XM (s—))+ P_ (XM (s ]Q( , (dn),dO,TI5_(p,dp')) (48)
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Using lemma 5.2, we find that

i 29 = 0,231 =2 [ 2N+ o)), 220 (o dp)
2 [ (2221 (5.0.0) - Fsap)Blap) + [ (Fs.ap) ~ flssap) PG (p.dp'), 2 ds
0 Space
7 A0~ ) PBlan)t | (F(svaip) =) PG (), 200 = =M ()

which means that
M?
Mt e(f)2 = LOcalMartingale

: 1‘14/0 (@Fle 0 = 1) Bl ) +/ (F(s,0,9') — F(s,0,p)2PE_(p)TIS_(p, dp'), ZM<)ds

Space

where
€ € ! € a 6 €
Localsartingate = —{fi 2,7V + (fo. 25" )" +2 / (Fus 235N (5 + 50 F (s, p), 2" (da, dp))du
0

+2 / (for ZMV(2f (5,0, p) — f(s, 0. p))Bla,p) + / (f(5,0,0) — F(5, 0,p))Pe_ (p)TIS_(p, dp'), ZM)ds.

0 Space

Using uniqueness of Doob decomposition we find that (40) is satisfied and

E(MI(1))) < 130+ O I3~E( sup (1,20 (da, dp)) + sup {1, Z)"(da, dp))?) < oo.
t€[0,T) t€[0,T]

Therefore M;M “(f) is a L? martingale of angle brackets process (40). We have directly (using Rolle’s theorem)
that M"<(f) and V(f) satisfy (42)-(44). O

5.3.3 Uniform bounds on Z;"¢

Lemma 5.3 Let ¢ > 1 and assume that

SupE ////1ZM€dadp)>
C’OT:supE ( sup ////IZMedadp)><oo vT > 0.
M,e tEOT]

Proof Using equation (35) for F': z + 2% and f = 1, we find that

then we have that

0= (1,297 - ((1.25™))"
1
[ b [ (0225 7= (1,259 QUds, (). 40,18 (p. )]

Since (1 +y)? — y? < q2971(1 4+ y271), we have that
t
(1,27 < (1, Z") + g2 /0 / Lyanr [(L+ (1L ZM970 1 g e Q(ds, (dn),dO, TIE_(p, dp')) |,
. :
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t
sSup <172y7€>q < <Lzé\/[7€>q+q2q1/0 /1n<NSIVI |:(1+<17Z.;]\/[76>q71)10§@<3711/1;iQ(d87 (d”%d@aHZf(P, dp,))]v

u<min(TH t)

t
and E(Sup, < pin (1 (L, Zahy) < B((1, Z0"4)9) + q2‘1_1/ / E((1 + (1, zMy971) zM9) 45 Using the
- ’ Agex Space

stopping time T]]\\,/[’E with N; = E(sup
q > 1, we have that

M,e) Ny) and noticing that 7 + x < 2(1 + z) for all x > 0 and

s<min(t, Ty

t
E(  sup (1,Z£4’E>q) < [E(<17Z¥’6>q) + tq2] + q2q/ E( sup <1,Zy’6>q)ds.
u<min(TH t) 0 u<min(T¥,s)

Now, using by Gronwall lemma, we find that

E(  sup  (1,ZM9) < [E((1, 2}")9) + tq29]e?™.

u<m1n(7’1]\v,j )

Thus, limy a0 74 = 00 for all (M, ) and for all ¢t < T

CY = sup E((sup(1, ZM))9) < [sup E((1, Z(])V[’E>q) + tq29)e "t (49)
M,e u<t M,e

Lemma 5.4 Let m > 1 and assume that (where dp = 72 sin(0)drdfd¢)

Sup e //// a™ 22" (da, dp))) < o0, (50)

C’,E:supE sup //// a™ ZM<(da dp))<oo VT > 0. (51)
M,e tEOT

Proof We have that Zi" satisfies (35), for F : # — x and f(a) = a™, we find that

t
(am,ZtM’e> = (a™, Zéw’e) + m/ // . a™ 1t ZMC(da, dp)du
0 Ry xSpace

1 t
i [/0 /1n<Ngz A%76(5_)m10§®<3y;€_62(d8’ (dn),dO,TIS_(p, dp/))]’
£ &

then we have that

t
<am,ZtM’E> < <am,Zé\/l’6) +m/ //]R . a™ 1 zZM<(da, dp)du,
+ X Space

and finally we find that

E(<am, ZtM’E>> < E((am, Z{)‘M) + m/OtE(<am—1Zyv€(da, dp)>)du,

and using that a™ ! < a™ + 1 and (49), we have that

E(u<mit(1f%€,t)<am,Zy’e>) < E((am,Z >) +mt[§\}[11;€)}E(<1 ZMY) + 2t)e 2t +m/ m ZMe<(da dp)))d
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Using Gronwall lemma we find

IE( sup (aijfL\/[ﬂ) < (E((am,Zé\/l’e)) +mt[supE(<1,ZéV[’e>) + 2t]e2t>emt

u<m1n(TIJVVI €t) M,e

Therefore, under assumption (50), we prove that (51) is satisfied. O

Lemma 5.5 Let m > 1 and assume that (where dp = r? sin(0)drdfdg)

supE //// rmZMe(dg dp))) <oo, supE //// 122 (da, dp) )) (52)

then we have that
DTTn:supIE sup //// mZM6 da, dp)) < oo, VT >0. (53)
M,e tE[O T

Proof We have that Z)" satisfies (35), for F' : 2 — z and f(a) = 7™, we find that

1 t
sup (1™, Zy0) = (™, 20 + M[/o / Inenyt [(ij (=) lococnte
; ,

u<m1n(7'11\\,/[ )

+ ((p/)m - (Xé\/[76(8_))m)1371:{;€_§@<BT¥;€_+R§_) Q(dsa (dn)7 d®7 Hg—(pa dp/))]a

and finally we find that

E( sup (r™, Zy‘)) < E((rm, Zé\/[’6>)
u<m1n(7']]\\,4 )

+ /Otza(w,zyﬂ) n yyp;,uemzm(zza(<1,z%>) +E<<rm,Zi‘/[’€>>)du,

t
B( osuwp (7 Z0) <EB(0,20%)) + / E((r, Z20) ) (1 + |PClem2™)du + | Pe_|em2™1tCF.
uSmin(T]]\v,I’e,t) 0

Using Gronwall lemma we find that for all t < T :

IE( sup (r™, Zi‘/[’e>> < (E(Q«m’ Zé”:ﬁ) + ||P§_H62m2m+1tcg) €(1+||P§,H€2m2m)t’
u<m1n(7'1]\\,/[ € te)

with and (53) holds. O

Lemma 5.6 Let m > 1 and assume that

sup //// a™ Zy(da, dp)) )<oo sup e //// QmZodadp)) (54)

CT2—5upE tSE(l)pT //// a™ ZM<(da, dp)) ) < oo, VT >0. (55)
M,e €

then we have that
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Proof We have that (see lemma 5.2), for all ¢t < T,

((a™, ZMN)? = ((a™, Z)"))? +2m/ Z%%))//]R B a™ 1t ZM€(da, dp)du

[ e [ A (@, ) + 1 AN 5 gy Qs ) 40, TE_ (),

therefore, we find that,

B( swp (@ 20)?) <E((@" 23")?)

uSmin(T]]\\,/I’e,t)
t t1
+2m/ E<(<am,2y’6>)// aley’E(da,dp))du—l—/ —E((a2m,Z%€>>du,
0 R x Space 0 M

and using the lemma 5.4 and the Gronwall lemma (and noticing that a™~! < a™ + 1), (55) holds. O

Lemma 5.7 Let m > 1 and assume that

supE //// ™ Zo(da, dp)) ) %, SUpE //// 2mZodadp))

and (19), then we have that

DTQ—supE sup //// mZMedadp))><oo vT > 0.
M,e tG[OTe]

The proof of this lemma is similar to the previous ones.

5.4 Technical lemmaes : PDE

In this part, we prove the existence, regularity and compactness of solution to the intermediate equation.

5.4.1 Proof of existence and uniqueness of solution to (12)

Lemma 5.8 (Ezistence/Uniqueness) Let Z§(a,p) = p§(a, p)dadp satisfying (22) with p§ € C* and
pila=0.p) =2 [ Bla.p)pi(a.p)da. (56)

then Zg(a,p) = limps, o0 Zi\/[k’e(da,dp) is equal to p(t,a,p)dadp with p¢ C' solution to (12).

Proof Let T : g — f solution to

(o4 2007~ Klgl(t.) = ~Kr(t,p)f(t,0,p).

fwamzz/BwMﬂmwwm FE=0..) = (...,

Wlth K fff Pe wf(ta a7p,)dp/7 KT(t,p) = p;o(p)7
fff s . 1.(p)gdadpV ol
Pol) =3 =DM N Vol )
,jk ’.7’
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and

Meodp) . Wp=pDG5-() e (g S we R fff Vi lgdadpVole
dp [[] V(G5 (a)dg’ . i Vol

Using Gronwall lemma and || B||s < 1, we have that

/// f(t,a,p)dadp < ////pf)(a,p)dadpe%,

By computation, and using that |R'| < %, we find that

Kls)~ KI3)60) < Tt rdadpevar o [ 1o~ dbdado

Therefore, using the Characteristics (in (a,t)) of the transport equation (57) (see [20]), we have existence and

uniqueness of the solution. Moreover, for ¢ : t — [ Qefe%(sft)ds, and f = T(g), f = T(§), we have that
(multiplying (57) by ¢ and integrating in (a,p))

it [ 1= oo < e v, ] oo

/// |f_ﬂ¢(t)dadp§/Ota(l—R(ffffpgg(‘;ii)Gdadpezs VOZf]k/// g — glo(s)dadpds.

Therefore T : g € E + f € E with E = C([0,T], L*(Ry x R?)), is a contracting mapping for T > 0 small
enough and there exists an unique solution to (12). Now, we construct a solution on [7T',27]... and finally on
Ry. Since ¥, and R are C*°, the regularity of p¢, solution to the transport equation (12) with the boundary
condition 56, is given by those of pf (under the assumption (56), see [20, 18, 11, 27]). Using uniqueness, we
find that Zf(a,p) = p(t, a, p)dadp. O

and so

5.4.2 Compactness of M(t,p) := [ p(t,a,p)da

Lemma 5.9 Let T > 0, p solution to (12) and assume that (20) is satisfied then we can extract a convergent
subsequence of M(t,p) := [ p(t,a,p)da in L*([0,T] x Space).

Proof Since M!(0,p) € L?(Space) by assumption (20), we have, by integrating equation (12) that M!(¢,p) :=
J pE(t, a, p)da follows the equation

GML(Ep) = [[] Piop) =EMUE p)dp + P (p)ME(tp) =2 [ Blap)of(tap)da, oo
Mel(t—Op fpoapd

First integrating (58) with respect to p and Gronwall lemma, we have that
[alopdr< [l < [ Ml0.papeT, vee 0.1),

therefore p¢ is uniformly bounded in L®([0,T], L'(Age x Space)). Secondly, multiplying (58) by M} and
integrating with respect to p we find that
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o3 f e = [[ e NI G 0 @)~ MW ~ )
+//B(a,p)p6(t, a,p)daM}(t,p)dp,

that can be rewritten as,

01 1 2 1 PS ()M (t,p) e [y P (p) M (t,p) e (4
3752/(ME (,))"dp = // TS ¥<(lg - ')G5_(q )qus_(p) fff‘?e(lq—pl)GE_(@qus‘(p )

(M (t, p) — M (1, ) V(1§ — pl)dpdp' + / / Ba,p)p(t, a, p)daM> (¢, p)dp.

Let p. = (p+p')/2and p_ = (p—p')/2, then we have p = p, +p_, p’ = p; —p_ and for all A, B C'—functions
we have that

A@)B(p) — Ap)B(Y)) = Alpy —p-)B(py +p-) — Blpy —p-)A(p+ +p-)
= (A(p+) — VA(p+)p- +o(p-))(B(p+) + VB(p4)p- + o(p-))
—(A(p+) + VA(p+)p— + o(p-))(B(p+) — VB(p+)p— + o(p-))
= 2(A(p+)VB(p+)p- — B(p+)VA(p+)p-) +o(p-).

Noticing that M/ (t,p) — M/ (t,p') = M (t,p+ +p-) = ML (t,p+ —p-) = 2VM(t, p4)p- + o(p-) and changing
the variables in the integral, we find that

€ 1
gt;/(Ml(t p)) dp:4// IER( q]\f |( ) < (g)dq (p+)VGL_(p+)2p-

Pe Ml( ,.)

(VML (t,p3)p_) ¥ 2lp_|)dpsdp- + // Ba, p)p<(t, a, p)daMX(t, p)dp + o(1).

- Gi_(p+)V

Using that
fff Vs ()M (s, p)dpVolg 1
P (p') = 22\1'”k 4 Vle ), with R(z) = ——
< igk i jik 14+e %
ve(lp' = pl)Gs_(p)dp . fff e S 1 (p) ML (s, p)dpVolg
e (p/, dp) = .  with GS_()=1-S ¢ ‘ ),
T ¥(la— #)G5_(a)da 2 Phanl Vol
we find that
91 o
o3 [y =1c [ [l ) Gre )0 - RY VM pa2t

— M} (t,p+)(1 — R)(ﬁ) (MX(t,py)) VML, P+)2* — R(M[(t,p+)) VML, P+)2p7]

P e
(VM (L, p+) == )W (2lp-|)dp-dp- +/ B(a,p)p (t, a, p)daM(t, p)dp + o(1).
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and

o5 [ aren)ya -

1 t
—a¢ [+ 2L R0 ) (VM 1) [ 20 )2 VAL )W 2l

+ [ [ Blapet.a.pdadti e p)dp + o).

Therefore, we have the following bound

2 [arapraracron, (o 2o dyonie @ epom- < [onemza,

with A, > 0 the infimum (with respect of €) of the minimum of the eigenvalues of the definite positive matrix
/ 2%\116(2|p,|)2%dp,. Finally, using Gronwall inequality we have that for all T > 0

/ (MX(t, p))%dp < / (M(0,p))2dpe™, Vi <T,

and integrating the last inequality, we found that

1 2
/[OT //[1 - Wﬁl(aw]“VMel(ta NP, pe)dp- < f(i\gf (( ‘1;)) dp (T +1).

We notice that, for all T > 0, the same computation leads to (multiplying (58) by (pM})? and integrating with
respect to p)

/p(Mel (t,p))?dp < [/p(Mel(O,p))zdP + T||M |l co,1), 17 (Spacen Aule™T s VE < T,

with Apys > 0 the supremum (with respect of €) of the maximum of the eigenvalues of the definite positive matrix
J2E=we(2)p_ |)2tp‘ dp_.Thus, we have that (M), is uniformly bounded in L?([0, T, H'(Space) xLidp(Space)).
Moreover, we have directly that |2 2.3 [(MZX(t,p))*dp| is uniformly bounded in L?([0,7]). Therefore, by the
(Lions-Aubin) result (see [14]), we can extract a convergent subsequence of (M}). in L?([0,7] x (Space)). O

Lemma 5.10 LetT > 0. Assume that (VM (t,.)). is L=°([0,T); L?(Space)) and M} converges C°([0, T); L*(Space))
to M as € to 0 then

Z N /)R(fff ‘ljfgk(P)Mel (t,.)dadpVolg Volg(3r? 4 6r + 3)
7]7

: M'(t,p)).
Vols ;. ) 0012 (Space)) R(37“2 + 6r70(s) 4 3ro(s)? (tp))

i7j7k

Proof Indeed, we have that

| Z fff WS k(P M (t, )dadeolG Volg(3r? + 6r + 3)
1,5, k(P

o Volf] A 3r2 4+ 6rro(s) + 3ro(s)?

< |7 / ([ e - miodniap <& [([ ][00k csu)ldudsdy
u<l1 u<1 Jsef0,1]
< 62/ / (/\VMel(p+esu)]2dp)duds,
u<1Jsef0,1]

ML(t,p))dp
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and

Volg(3r? + 6r + 3) Volg(3r? + 6r + 3)
Je= Mt p)) — Rl
3r2 + 6rro(s) + 3ro(s) 3r2 + 6rro(s) + 3ro(s)

< est|RI% / (M (¢, p) — M (¢, p))2dp.

s ML (t,p)))*dp

Under the uniform boundness of VM2 (t,.)). and the C°([0, T]; L?(Space)) convergence of M} we have that

S W ) RO sl QRECIIN) oerges as ¢ =5 0) to ROMY(t,p)) in CO((0, T); L2(Space)). T

Lemma 5.11 Let T > 0, p° solution to (12) and assume that (20) is satisfied then we can extract a convergent
subsequence of M1 (t, p) = [ p%(t, a,p)da which limit is a weak solution to

gtMl(t p) + div(M(t,p)Ch(p )Rv(log(1 - R))) -,

M0, = [ sl p)da,
and H € C([0,T], H*(Space)) and R defined in (15).

Proof Let f € C}(Ry x Space), multiplying (12) by f and integrating with respect to a we find that :

gi |, ot~ [[ Bl st andod= [[] (56~ @)1y P @22

Rewritting the second member as follows, we have that

I (r0) = sty P e )
// Ce —/w >fff\1i |_qp|);|:j§GEP) )qu;éEp) M (t,p)dp =

_/// v ( )Cgfffq‘l’e la = pl)(g — P)GS_(9)dg PE_(p)
- P T (g = p))Ge_(a)dg Ce

Ce Ue(lg — — ) g — p)dag pe €
:/// 'V (o) SIS, ¥ (lg = pl)(g = p) “(g — p)dg PE_(p) VGe

1
T (la — pl)da ¢ Ml g
[ Vsl penmr (o5t - Ro)dp +o(1).

MX(t,p)dp + o(1)

—(p)dp +o(1)

Since, M(t,p) is bounded C([0,T], H'(Space)), we have that log(1— R,) —Pstribution 1o0(1 — R) and by Banach
Aologlu in L? (and identifying the limit) Vlog(l — R.) —* "¢ L* ¥ log(1 — R). Now, by lemmaes 5.9 and
5.10, we have that V f(p)M!(t,p)Ch(p)Rc —* 5 Vf(p)M!(t,p)Ch(p)R and so (there exists H € C([0,T], L?),
the limit of [ B(a,p)f(p)p°(t,a,p)dadp as € — 0)

ot [ sonrwna [[rwnana= [[[ vromrenere (o - m)a.
Therefore the limit is C([0,T], H') and is a weak solution to
9 MY, p) + div(M (¢, p)Ch(p )RV(log(l - R))) ~ A,

ot
with M1(0,p) = [ po(a, p)da. O

23



5.4.3 Proof of existence and uniqueness of solution to (15)bis

Lemma 5.12 Let T > 0, p¢ solution to (12) and assume that (20) is satisfied then we can extract a convergent
subsequence of (p)e in L*([0,T] x Space x Age).

Proof Differentiate (12) with respect to a leads to

€ d € €
(& + 2)2p = [[] PLp) =22 D pe(t a,p!)dp' + PS(p) & p (¢, a,p) = 0,
pla=o =2 [ B(a,p)p(t, ap)da pt:o:po-

Therefore, we have that

=z dp <0,
8t+ /I p°|dp

) ) )
€ < —pt =
(%//\aap dpda/laap |(a = 0)dp

Now, using the intermediate equation, we find that

and for all ¢,a and €, we find that

8 € _ _ a €
5aP a=0)= —2/B(a,p)atp (t,a,p)da

o [[[ e =L [ ety taif)dadd —2P) [ Blap)p (1.0 p)de

%pe(a =0)= —Q/B(a,p)[—aaape + /// Péo(p')Wpe(t,a,p')dp’ — PS(p)pS(t,a,p)lda
+2 / / / P&(p’)lw / B(a,p')p(t, a,p)dadp’ — 2P%,(p) / B(a,p)pf(t, a,p)da,

seota=0 =2 [ 2 papia—2 [ Bapl[f] %@’)Wﬁ(t, a,p)dp' — P () (t,a,p))da

II¢_(p'.d
2 / [ Pt D [ a0y, dadt = Pto) [ Bl (ta.p)da andfinatly,

0 . H6 d .
sela=0==2 [ 5 Bapda—2 [[[ Pe) =T [(Bap) — Bla.p!))o 4 0.1/ )dadl
Therefore, using the same computation as lemma 5.9, we have that
9 la=0 <8|B 1+ A3 M}
||%P (a = 0)[[z2(space) < 8l Bllwr.<)(1 + M)Slelp I M¢ Nl eo,1, 51 (Space)

with Aps > 0 the sup (with respect of €) of the maximum of the eigenvalues of the definite positive matrix
t
J25=w¢(2|p_|)2-£=dp_. And so, using the same computation as lemma 5.9, we have that

p¢ € C([0,T], H' (Age x Space).

Therefore, by the (Lions-Aubin) result (see [14]), we can extract a convergent subsequence of (p¢). in L2([0, T] x
(Space)). O
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