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Abstract. Nonlinear systems can have periodic solutions evolving with the parameters of the
system. Studying this evolution (numerical continuation of solutions) uncovers sought-after
regimes in musical acoustics : many musical instruments rely on auto-oscillation, that is, the
excitation of a nonlinear system coupled with a linear resonator, where some parameters may
be adjusted by the player. Periodic solutions can be approximated as truncated Fourier series
(Harmonic Balance Method) ; the period is one of the unknowns. Several stable or unstable
solutions can be found for the same playing parameters thanks to continuation.
An important challenge is the continuation of quasi-periodic solutions, also called multiphonic
sounds by musicians. Depending on the context, these oscillation regimes are considered pleas-
ant (jazz or contemporary music for instance) or unpleasant (classical music). We developed a
method based on double Fourier series, coupled with a continuation technique. The two base
frequencies are unknowns and incommensurable. The system is reformulated as quadratic in
order to allow straight interface with previous work on periodic harmonic balance.
This method is illustrated on simple models relevant to musical acoustics, though the method
can be applied to many nonlinear problems, without a priori knowledge of the solutions.
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1 INTRODUCTION

Nonlinear systems can have periodic solutions evolving with the parameters of the system.
Studying this evolution (numerical continuation of solutions) uncovers sought-after regimes in
musical acoustics : many musical instruments rely on auto-oscillation, that is, the excitation of
a nonlinear system coupled with a linear resonator, where some parameters may be adjusted
by the player. Periodic solutions can be approximated as truncated Fourier series (Harmonic
Balance Method) ; the period is one of the unknowns. Then, using a continuation technique,
solutions can be continued ; they can be either stable or unstable, and different solutions may
occur for the same playing parameters.

However, other solutions can arise, namely quasi-periodic solutions. They are well-known
by musicians, who may call them multiphonics. These solutions can be undesirable : for in-
stance, the wolf note on bowed string instruments is a rough, beating sound, and it is an example
of a quasi-periodic regime of an autonomous system. These solutions can also be produced vol-
untarily, using a forced system: singing at a frequency f1 while playing at a frequency f2 on a
brass instrument can create stunning effects.

Our aim is the continuation of two-frequencies, quasi-periodic solutions. It is important to
notice that even the direct computation of quasi-periodic solutions can be difficult. Because
of dependence on initial conditions, some solutions may be overlooked when using numerical
integration. Moreover, compared to the periodic case, it is not relevant anymore to perform
integration on long intervals to get rid of transient solutions : one cannot determine easily if the
steady-state solution is reached. These drawbacks have lead to specific algorithms to compute
quasi-periodic solutions, first as a response to a quasi-periodic drive [1]. More recently, the com-
putation of quasi-periodic solutions for forced or autonomous systems, based on the Alternating
Frequency/Time Domain Method (AFT [2]), was performed with good qualitative agreement
on a disc brake model [3]. Peletan et al. [4] designed a continuation method, coupling AFT
with pseudo-arclength continuation, and applied it to a Jeffcott rotor. For this system, one of
the two frequencies is known ; and an harmonic selection procedure improves the efficiency of
computations.

For periodic solutions, Cochelin and Vergez [5] showed that given a quadratic reformula-
tion, a coupling of the Harmonic Balance Method and the Asymptotic Numerical Method was
straightforward and allowed computations with high number of harmonics. The method devel-
oped here is an extension of this idea with double Fourier series. The two base frequencies
are unknowns and incommensurable. The system is reformulated as quadratic in order to allow
straight interface with previous work on periodic harmonic balance.

This method is illustrated on simple models, with a forced system and an autonomous one.
System parameters could be chosen to present results more closely related to musical acoustics.
However, simple values underline that the method can be applied to many nonlinear problems,
without a priori knowledge of the solutions.

2 TWO-FREQUENCY HARMONIC BALANCE METHOD

2.1 Principle : quadratic formulation

Instead of one Fourier series, a variable x is sought after in the form

x(t) =
H∑

k1=−H

H∑
k2=−H

xk1,k2e
i(k1ω1+k2ω2)t (1)

2



L. Guillot, P. Vigue, C. Vergez and B. Cochelin

where ω1 and ω2 are the two unknown pulsations. Adding auxiliary variables, a smooth
nonlinear differential system can be transformed into a first-order differential system, with non-
linearities being only products, either of two variables, or a variable and the continuation pa-
rameter λ. Let U denote the vector of variables in the time domain, the following system is
called quadratic formulation :

m(U ′) = c0 + λc1 + l0(U) + λl1(U) + q(U,U) (2)

where c0, c1 are constant vectors, m, l0 and l1 are constant linear operators, and q is a constant
quadratic operator. Like in the periodic case [5], since eq. (2) is quadratic, and due to the
decomposition of variables assumed in eq. (1), substituting this double series in eq. (2) leads to a
(larger) quadratical system where the unknowns are Fourier coefficients plus the two pulsations
ω1, ω2. Note that in the case of a forced system one of these pulsations is the forcing pulsation
(see section 2.2). This larger system reads as a quadratical residual function R :

R : RN+1 −→ RN , (X,λ) 7→ C0 + λC1 + L0(X) + λL1(X) +Q(X,X) (3)

where X contains Fourier coefficients of U , ω1 and ω2. The solution branch R(X,λ) = 0
can then be followed thanks to the Asymptotic Numerical Method.

2.2 Forced system

An example of a forced system that exhibits a quasi-periodic behaviour is a forced Van der
Pol oscillator :

x′′ − µ1x
′ + µ2xx

′ + µ3x
2x′ + a1x = cos(λt) (4)

with µ1 = µ2 = 0.1, µ3 = a1 = 1. A Neimark-Sacker bifurcation occurs at λ ' 1.79
[6], and the periodic solution at pulsation ω = λ becomes unstable. A quadratic formulation,
emphasizing constant, linear and quadratic parts in the right-hand side, is

x′ = 0 + y + 0 (5)
y′ = cos(λt) + µ1y − a1x− µ2xy − µ3yz (6)

0︸︷︷︸
mU ′

= ︸ ︷︷ ︸
c0

0 ︸ ︷︷ ︸
l0U

+ z ︸ ︷︷ ︸
q(U,U)

− x2 (7)

The forcing term cos(λt) is placed in the constant operator, similarly to the periodic version
of the method (see [5], example 4).

The continuation of the quasi-periodic solution branch can be performed efficiently and pre-
cisely : in this example, Fourier series were truncated with H = 5. A plot of L2 norm of x is
shown in figure 2.2. Dots indicate the beginning of each continuation step : the ANM provides
smooth continuation with an automatic step size determination. The solution obtained through
this quasi-periodic Harmonic Balance is qualitatively good with H = 2 (figure 2.2, left) : peak-
to-peak amplitude and general shape of the curve in the phase space are reached. But areas left
blank are not actually correct, while with H = 5 (right), its pointwise agreement with a time
integration scheme [7] is excellent.
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Figure 1: Energy (L2 norm) of x with respect to the continuation parameter λ. Red dots indicate the beginning of
each continuation step.
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Quasi−periodic HBM, H=2
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Figure 2: Phase diagrams (x, y), for λ = 2.58. Left : quasi-periodic Harmonic Balance, H = 2. Right :
comparison of quasi-periodic Harmonic Balance (H = 5, blue solid line) and time integration (red dashed line).

2.3 Autonomous system

The equations used for two coupled Van der Pol oscillators are :

x′′1 + a1x
′
1 + Ω2

1x1 = a2λ(x′1 + x′2)− a3λ(x′1 + x′2)(x1 + x2)− a4λ(x′1 + x′2)(x1 + x2)
2 (8)

x′′2 + b1x
′
2 + Ω2

2x2 = b2λ(x′1 + x′2)− b3λ(x′1 + x′2)(x1 + x2)− b4λ(x′1 + x′2)(x1 + x2)
2 (9)

and the quadratic formulation is :
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x′1 = y1 + 0 + 0 (10)
y′1 = 0 − a1y1 − Ω2

1x1 + λ (a2(y1 + y2)− a3v − a4w) + 0 (11)
x′2 = y2 + 0 + 0 (12)
y′2 = 0 − b1y2 − Ω2

2x2 + λ (b2(y1 + y2)− b3v − b4w) + 0 (13)
0 = 0 + r − (x1 + x2)

2 (14)
0 = 0 + v − (x1 + x2)(y1 + y2) (15)
0 = 0 + w − r(y1 + y2) (16)

Parameters values are chosen as : Ω1 = 1, a1 = 0.01, a2 = 0.5, a3 = a4 = 2 ; Ω2 = 2.5,
b1 = 0.025, b2 = 1, b3 = b4 = 4. For these equations, the quasi-periodic solution branch
requires higher orders of truncation of Fourier series H than the forced Van der Pol above. For
example, around λ = 0.36, a good agreement with time integration is achieved with H = 10
(figure 2.3), and some differences are noticeable ifH is too low (areas left empty are not correct
with H = 4). For this system the continuation process takes roughly 6 seconds per step for
H = 4, 43 seconds for H = 6, 220 seconds for H = 8.
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Quasi−periodic HBM, H=4
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Figure 3: Phase diagrams (x1, y1), for λ = 0.36. Left : quasi-periodic Harmonic Balance, H = 4. Right :
comparison of quasi-periodic Harmonic Balance (H = 10, blue solid line) and time integration (red dashed line).

3 CONCLUSION

The coupling of two-frequencies harmonic balance with the Asymptotic Numerical Method,
a robust continuation technique, is performed automatically thanks to the quadratic framework.
It proves very efficient to continue quasi-periodic solutions, without any a priori knowledge
nor optimization. As one could expect, better accuracy is obtained using more Fourier coeffi-
cients, and comparison with time integration is successful. Future works will focus on musical
examples, though this method is relevant for many nonlinear systems.
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