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Nonlinear systems can have periodic solutions evolving with the parameters of the system. Studying this evolution (numerical continuation of solutions) uncovers sought-after regimes in musical acoustics : many musical instruments rely on auto-oscillation, that is, the excitation of a nonlinear system coupled with a linear resonator, where some parameters may be adjusted by the player. Periodic solutions can be approximated as truncated Fourier series (Harmonic Balance Method) ; the period is one of the unknowns. Several stable or unstable solutions can be found for the same playing parameters thanks to continuation. An important challenge is the continuation of quasi-periodic solutions, also called multiphonic sounds by musicians. Depending on the context, these oscillation regimes are considered pleasant (jazz or contemporary music for instance) or unpleasant (classical music). We developed a method based on double Fourier series, coupled with a continuation technique. The two base frequencies are unknowns and incommensurable. The system is reformulated as quadratic in order to allow straight interface with previous work on periodic harmonic balance. This method is illustrated on simple models relevant to musical acoustics, though the method can be applied to many nonlinear problems, without a priori knowledge of the solutions.

INTRODUCTION

Nonlinear systems can have periodic solutions evolving with the parameters of the system. Studying this evolution (numerical continuation of solutions) uncovers sought-after regimes in musical acoustics : many musical instruments rely on auto-oscillation, that is, the excitation of a nonlinear system coupled with a linear resonator, where some parameters may be adjusted by the player. Periodic solutions can be approximated as truncated Fourier series (Harmonic Balance Method) ; the period is one of the unknowns. Then, using a continuation technique, solutions can be continued ; they can be either stable or unstable, and different solutions may occur for the same playing parameters.

However, other solutions can arise, namely quasi-periodic solutions. They are well-known by musicians, who may call them multiphonics. These solutions can be undesirable : for instance, the wolf note on bowed string instruments is a rough, beating sound, and it is an example of a quasi-periodic regime of an autonomous system. These solutions can also be produced voluntarily, using a forced system: singing at a frequency f 1 while playing at a frequency f 2 on a brass instrument can create stunning effects.

Our aim is the continuation of two-frequencies, quasi-periodic solutions. It is important to notice that even the direct computation of quasi-periodic solutions can be difficult. Because of dependence on initial conditions, some solutions may be overlooked when using numerical integration. Moreover, compared to the periodic case, it is not relevant anymore to perform integration on long intervals to get rid of transient solutions : one cannot determine easily if the steady-state solution is reached. These drawbacks have lead to specific algorithms to compute quasi-periodic solutions, first as a response to a quasi-periodic drive [START_REF] Chua | Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies[END_REF]. More recently, the computation of quasi-periodic solutions for forced or autonomous systems, based on the Alternating Frequency/Time Domain Method (AFT [START_REF] Cameron | An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems[END_REF]), was performed with good qualitative agreement on a disc brake model [START_REF] Coudeyras | Periodic and quasi-periodic solutions for multiinstabilities involved in brake squeal[END_REF]. Peletan et al. [START_REF] Peletan | Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotorstator dynamics[END_REF] designed a continuation method, coupling AFT with pseudo-arclength continuation, and applied it to a Jeffcott rotor. For this system, one of the two frequencies is known ; and an harmonic selection procedure improves the efficiency of computations.

For periodic solutions, Cochelin and Vergez [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF] showed that given a quadratic reformulation, a coupling of the Harmonic Balance Method and the Asymptotic Numerical Method was straightforward and allowed computations with high number of harmonics. The method developed here is an extension of this idea with double Fourier series. The two base frequencies are unknowns and incommensurable. The system is reformulated as quadratic in order to allow straight interface with previous work on periodic harmonic balance.

This method is illustrated on simple models, with a forced system and an autonomous one. System parameters could be chosen to present results more closely related to musical acoustics. However, simple values underline that the method can be applied to many nonlinear problems, without a priori knowledge of the solutions.

TWO-FREQUENCY HARMONIC BALANCE METHOD

Principle : quadratic formulation

Instead of one Fourier series, a variable x is sought after in the form

x(t) = H k 1 =-H H k 2 =-H x k 1 ,k 2 e i(k 1 ω 1 +k 2 ω 2 )t (1) 
where ω 1 and ω 2 are the two unknown pulsations. Adding auxiliary variables, a smooth nonlinear differential system can be transformed into a first-order differential system, with nonlinearities being only products, either of two variables, or a variable and the continuation parameter λ. Let U denote the vector of variables in the time domain, the following system is called quadratic formulation :

m(U ) = c 0 + λc 1 + l 0 (U ) + λl 1 (U ) + q(U, U ) (2) 
where c 0 , c 1 are constant vectors, m, l 0 and l 1 are constant linear operators, and q is a constant quadratic operator. Like in the periodic case [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF], since eq. ( 2) is quadratic, and due to the decomposition of variables assumed in eq. ( 1), substituting this double series in eq. ( 2) leads to a (larger) quadratical system where the unknowns are Fourier coefficients plus the two pulsations ω 1 , ω 2 . Note that in the case of a forced system one of these pulsations is the forcing pulsation (see section 2.2). This larger system reads as a quadratical residual function R :

R : R N +1 -→ R N , (X, λ) → C 0 + λC 1 + L 0 (X) + λL 1 (X) + Q(X, X) (3) 
where X contains Fourier coefficients of U , ω 1 and ω 2 . The solution branch R(X, λ) = 0 can then be followed thanks to the Asymptotic Numerical Method.

Forced system

An example of a forced system that exhibits a quasi-periodic behaviour is a forced Van der Pol oscillator :

x -µ 1 x + µ 2 xx + µ 3 x 2 x + a 1 x = cos(λt) (4) 
with µ 1 = µ 2 = 0.1, µ 3 = a 1 = 1. A Neimark-Sacker bifurcation occurs at λ 1.79 [START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF], and the periodic solution at pulsation ω = λ becomes unstable. A quadratic formulation, emphasizing constant, linear and quadratic parts in the right-hand side, is

x = 0 + y + 0 (5) y = cos(λt) + µ 1 y -a 1 x -µ 2 xy -µ 3 yz (6) 0 mU = c 0 0 l 0 U + z q(U,U ) -x 2 (7) 
The forcing term cos(λt) is placed in the constant operator, similarly to the periodic version of the method (see [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF], example 4).

The continuation of the quasi-periodic solution branch can be performed efficiently and precisely : in this example, Fourier series were truncated with H = 5. A plot of L 2 norm of x is shown in figure 2.2. Dots indicate the beginning of each continuation step : the ANM provides smooth continuation with an automatic step size determination. The solution obtained through this quasi-periodic Harmonic Balance is qualitatively good with H = 2 (figure 2.2, left) : peakto-peak amplitude and general shape of the curve in the phase space are reached. But areas left blank are not actually correct, while with H = 5 (right), its pointwise agreement with a time integration scheme [START_REF] Shampine | The Matlab ODE suite[END_REF] is excellent. 

Autonomous system

The equations used for two coupled Van der Pol oscillators are :

x 1 + a 1 x 1 + Ω 2 1 x 1 = a 2 λ(x 1 + x 2 ) -a 3 λ(x 1 + x 2 )(x 1 + x 2 ) -a 4 λ(x 1 + x 2 )(x 1 + x 2 ) 2 (8) x 2 + b 1 x 2 + Ω 2 2 x 2 = b 2 λ(x 1 + x 2 ) -b 3 λ(x 1 + x 2 )(x 1 + x 2 ) -b 4 λ(x 1 + x 2 )(x 1 + x 2 ) 2 (9)
and the quadratic formulation is :

x 1 = y 1 + 0 + 0 (10) y 1 = 0 -a 1 y 1 -Ω 2 1 x 1 + λ (a 2 (y 1 + y 2 ) -a 3 v -a 4 w) + 0 (11) x 2 = y 2 + 0 + 0 (12) y 2 = 0 -b 1 y 2 -Ω 2 2 x 2 + λ (b 2 (y 1 + y 2 ) -b 3 v -b 4 w) + 0 (13) 0 = 0 + r -(x 1 + x 2 ) 2 (14) 0 = 0 + v -(x 1 + x 2 )(y 1 + y 2 ) (15) 0 = 0 + w -r(y 1 + y 2 ) (16) 
Parameters values are chosen as :

Ω 1 = 1, a 1 = 0.01, a 2 = 0.5, a 3 = a 4 = 2 ; Ω 2 = 2.5, b 1 = 0.025, b 2 = 1, b 3 = b 4 = 4.
For these equations, the quasi-periodic solution branch requires higher orders of truncation of Fourier series H than the forced Van der Pol above. For example, around λ = 0.36, a good agreement with time integration is achieved with H = 10 (figure 2.3), and some differences are noticeable if H is too low (areas left empty are not correct with H = 4). For this system the continuation process takes roughly 6 seconds per step for H = 4, 43 seconds for H = 6, 220 seconds for H = 8. 

CONCLUSION

The coupling of two-frequencies harmonic balance with the Asymptotic Numerical Method, a robust continuation technique, is performed automatically thanks to the quadratic framework. It proves very efficient to continue quasi-periodic solutions, without any a priori knowledge nor optimization. As one could expect, better accuracy is obtained using more Fourier coefficients, and comparison with time integration is successful. Future works will focus on musical examples, though this method is relevant for many nonlinear systems.
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 12 Figure 1: Energy (L 2 norm) of x with respect to the continuation parameter λ. Red dots indicate the beginning of each continuation step.

Figure 3 :

 3 Figure 3: Phase diagrams (x 1 , y 1 ), for λ = 0.36. Left : quasi-periodic Harmonic Balance, H = 4. Right : comparison of quasi-periodic Harmonic Balance (H = 10, blue solid line) and time integration (red dashed line).
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