
HAL Id: hal-01310088
https://hal.science/hal-01310088v3

Submitted on 30 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: ZeroBlock: Timestamp-Free
Prevention of Block-Withholding Attack in Bitcoin

Siamak Solat, Maria Potop-Butucaru

To cite this version:
Siamak Solat, Maria Potop-Butucaru. Brief Announcement: ZeroBlock: Timestamp-Free Prevention
of Block-Withholding Attack in Bitcoin. SSS 2017 - 19th International Symposium Stabilization,
Safety, and Security of Distributed Systems, Nov 2017, Boston, MA, United States. pp.356-360,
�10.1007/978-3-319-69084-1_25�. �hal-01310088v3�

https://hal.science/hal-01310088v3
https://hal.archives-ouvertes.fr

ZeroBlock: Timestamp-Free Prevention of
Block-Withholding Attack in Bitcoin

Siamak Solat
UPMC-CNRS, Sorbonne Universités,

LIP6, UMR 7606, Paris, France
firstname.lastname@lip6.fr

Maria Potop-Butucaru
UPMC-CNRS, Sorbonne Universités,

LIP6, UMR 7606, Paris, France
firstname.lastname@lip6.fr

Abstract—Bitcoin was recently introduced as a peer-to-peer
electronic currency in order to facilitate transactions outside the
traditional financial system. The core of Bitcoin, the Blockchain,
is the history of all transactions committed by the system. This
distributed ledger is similar to a distributed shared register where
miners write and read blocks. New blocks in the Blockchain
contain the last transactions in the system and are added by
miners after a block mining process that consists in solving a
difficult cryptographic puzzle. Although, the reward is the main
motivation for the mining process in Bitcoin, it also may be an
incentive for attacks such as selfish mining. In this paper we
propose and theoretically analyze a solution for one of the major
problems in Bitcoin : selfish mining or block-withholding attack.
This attack is conducted by adversarial miners in order to either
earn undue rewards or waste the computational power of honest
miners. Contrary to the best to date solution for preventing block-
withholding, [23], our solution, ZeroBlock, prevents this attack by
using a novel timestamp-free technique that exploits the Poisson
nature of the proof-of-work and the current knowledge on the
propagation of information in Bitcoin [3]. Note that previous
solutions are vulnerable to forgeable time-stamps. Additionally,
our solution is compliant with miners churn.

I. INTRODUCTION

In the last few years crypto-currencies [17], [19], [20],
[18], [1], [8], [15] are in the center of the research ranging
from financial, political and social to computer science and
pure mathematics. Bitcoin [1] was one of the starters of this
concentration of forces. It targeted the creation of a system
where transactions between individuals can escape the strict
control of the banks and financial markets.

Bitcoin was introduced as a pure peer-to-peer electronic
currency or crypto-currency. It aims at fully decentralization
of electronic transactions. Bitcoin allows to perform online
transactions directly from one party to another one “without”
the interference of a financial institution as a “trusted third
party” [1]. It uses digital signatures to verify the bitcoin own-
ership 1 and employs Blockchain in order to prevent double-
spending attacks. In this attack the same bitcoin can be spent
several times by a dishonest party. Blocks in the blockchain
are created via a proof-of-work (cryptographic puzzle) [13],
[2], [12], [42] performed by honest parties (miners that follow
the protocol). Blockchain is further broadcasted via a peer-to-

1Capitalized “Bitcoin” refers to the protocol, while lower case “bitcoin”
refers to the coin.

peer overlay in order to agree on a common history of the
transactions in the system.

Bitcoin is still vulnerable to various attacks including
double-spending [24], selfish mining [9], Goldfinger [25], 51%
attack [25] etc. In this paper we focus the selfish mining
attack. Recently, [4] provided a full description of incentives
to withhold or selfish mine in Bitcoin. That is, to force honest
miners to waste their computational power such that their
public blocks become useless (as orphan block), whereas the
private chain of the selfish miners is accepted as a part of the
Blockchain. To this end, the selfish miners reveal selectively
their private blocks to make useless the blocks made by honest
miners.

Our contribution. In this paper, we present and prove correct
a new solution, ZeroBlock, which prevents block withholding
or selfish mining. ZeroBlock scheme, contrary to the recent
solution proposed by [23], does not use forgeable timestamps.
Our solution builds on the following simple idea: if a selfish
miner keeps a block private more than a fixed interval of time,
its block will be rejected by all the honest miners. Zeroblock
scheme strives to reduce the probability of intentional forks
that are result of block-withholding attacks. With ZeroBlock
scheme a selfish mining pool cannot achieve more than its
expected reward. Only with a low probability, selfish min-
ing pool may create intentionally an unprofitable fork. We
accentuate “unprofitable”, because this fork does not lead to
more reward for selfish mining pool, but also reduces selfish
pool’s likelihood to earn unexpected reward regardless of to
its mining power. Thus, selfish mining pool is not incentivized
to create such fork if its purpose is to achieve more reward.
Furthermore, we prove that the maximum probability of such
intentional fork is very low (≈ 0.04) when selfish pool uses
its maximum hashing power. We further extend ZeroBlock in
order to be tolerant to miners churn.

Paper Roadmap. The rest of this paper is organized as
follows: Section II presents an overview of Bitcoin. Section
III presents block withholding attack or selfish mining and
briefly discuss the differences between an intentional and an
accidental attack. Section IV presents our ZeroBlock time-
stamp free algorithm. Section V, proves that when ZeroBlock
scheme is used a selfish mining pool cannot achieve more
than its expected reward. Only with a low probability, selfish
mining pool may create intentionally an unprofitable fork.

Section VI extends ZeroBlock algorithm in order to make it
compliant to miners churn. Finally, Section VII concludes the
paper.

II. BITCOIN OVERVIEW

Bitcoin is an electronic coin which works as a chain of
digital signatures where each owner transfers bitcoins to the
next party after adding his signature (generated with his private
key) along with the hash of previous transactions and the
public key of the receiver. As a result, the final receiver is able
to verify the bitcoins ownership by verifying the signatures [1].

The key data structure in Bitcoin, called Blockchain, is
a public log that is a sequence of blocks that maintain a
linearized history of transactions. The safety of Blockchain
is ensured by a cryptographic puzzle, named proof-of-work
(PoW), solved by several nodes, named “miners”. Miners who
can solve PoW are permitted to generate a new block to
record transactions and receive some bitcoins as a reward. This
reward is used to further motivate miners to share their power
resource with the network and continue to mine.

In Bitcoin system builds on top of two key concepts. The
first one are Transactions : used to transfer coins in the
network. The second one are Blocks. Blocks are inserted
into the public ledger Blockchain. Blockchains are further
employed to synchronize the state among all miners [3] and
to provide to each participant in the system a common view
on the history of the transactions in the system. In the sequel
we detail these two key notions.

Transactions. A transaction transfers bitcoins from one or
multiple source account addresses to destination account ad-
dress. Each account address has a unique key. For transferring
a bitcoin between two accounts, a transaction is generated.
This transaction includes the destination account address and
it must be signed by the private key of the source account.
To calculate the balance of the accounts, the public ledger
calculates each transaction output (i.e. a numeric value of
coins). Each transaction is recognized by using the hash of
its serialized context.

When transactions are broadcasted into the network, the
public ledger will be updated locally by each miner. Without
additional care, this copy may be different at distinct miners
which may lead to inconsistencies. For example, consider that
a miner receives a transaction that shows the transfer of some
bitcoins from some account “A”, while the coins are not
“available” for this particular account. In a different situation,
several transactions may try to transfer the same coins more
than once. Such subversive behavior is known as “double
spending” [3]. In order to avoid that transactions appear into an
inconsistent order at different miners in the network they are
encapsulated in blocks that are further chained in a linearizable
Blockchain.

Blocks. When a miner receives a transaction it starts a min-
ing process in order to generate the block that will encapsulate
the transaction. Bitcoin network uses Hashcash [2] proof-of-
work system for block generation such that a block is accepted
by the network if miners perform proof-of-work properly and

successfully. A proof-of-work (PoW) is a cryptographic puzzle
that is difficult to solve but easy to verify. The difficulty
of PoW is adjustable regarding to the hashing power of the
network. Currently, the block generation rate is set to one
block per 10 minutes [32]. Note that since the success of
solving proof-of-work by a miner has very low probability,
it is almost impossible to predict which miner or mining pool
will generate the next block.

When a new block is generated, it is broadcasted in the
entire network. If this new block is accepted as head of
Blockchain, other miners start to work on this new block
to extend the Blockchain. A competition between two new
blocks may occur when their preceding block is equal and
they are broadcasted simultaneously. At this point Blockchain
may fork. Since broadcasting a block takes only a few seconds
but the average time to discover a new block is around 10
minutes, thus, accidental fork occurs almost every 60 blocks
[4], [3]. In such situation, miners choose the first block which
they receive and as a result, the second block will be ignored
by the network as an orphan block. Consequently, miners that
worked on the second block wasted their computational power
with no reward.

Blockchain and Forks in Bitcoin. A Blockchain is a chain
of blocks in “chronological order”. Each block has a parent
block. The genesis block is the root. The most distant block
from genesis block is called the head of Blockchain.

If two miners create two blocks with the same preceding
block, Blockchain is forked into two branches. This fork may
occur accidentally or intentionally.

Note that an accidental fork occurs due to the nature
and functionality of proof-of-work and it is not related to
some particular attack as block-withholding or selfish mining.
Since proof-of-work is a Poisson process, two blocks may
be discovered by two mining pools. The probability of an
accidental fork is ≈ 1.69 [3] .

In case of an intentional fork, a selfish miner generates and
keeps private a block until it estimates opportunistic to reveal
it. When a honest miner generates a new block with the same
preceding block as the one generated by the selfish miner,
the latter propagates its private block to create an “intentional
fork”. The selfish miner can generate more than one private
block in order to take the control of the Blockchain since the
longest chain will be the only one commonly accepted by the
honest miners in the network.

III. BLOCK-WITHHOLDING ATTACK

Block withholding attack was introduced as “Selfish mining
attack” in [4] and also as “Block Discarding Attack” in [26].
This attack relies on “block concealing” and revealing only
at a special time selected by selfish miners or selfish mining
pool. According to [4], these selfish miners can earn revenues
superior to a fair situation [27]. That is, the main purpose of
block-withholding by selfish mining pool is achieving more
rewards in comparison with its hashing power in the network.
Thus, selfish mining pool’s reward oversteps its mining power
in the network and it can increase its expected mining reward.

In block-withholding strategy, a selfish miner after solving
proof-of-work and finding a new block does not broadcasts
until a specific time.

In [28] authors extend the selfish mining strategy and
provide an algorithm to find optimal policies for selfish miners.
[16] shows that expanding the Blockchain by adding the
newest block creates a simple model of “weak and non-
unique” Nash equilibrium [28]. [28] shows that these optimal
policies compute the threshold such that honest mining would
be a “strict and unique” Nash equilibrium.

According to [4], [23], the selfish mining in Bitcoin
network occurs as follows: In case of generation of a new
block by the honest miners, (1) if the size of honest branch
is longer than the selfish branch, then the selfish cartel tries
to set its private branch equal to the public branch. (2) If
the selfish branch is one block more than the public branch,
then selfish miners publish their private chain completely (3)
If the selfish branch is more than one block longer than the
public branch, then the selfish miners publish only the head
of their private branch. In case of generation of a new block
by selfish miners, they keep this new block private and in
case of a competition with the honest miners, they publish
their private branch to win the competition. According to [4],
the success of selfish miners in this competition is contingent
on the parameters α (i.e. hashing power of selfish miners)
and γ (i.e. the hashing power of the honest miners who work
on the selfish branch). According to equation 1, if γ = 0, the
threshold for success of block-withholding behavior is α ≥
33 % and if γ = 0.99, the threshold is α ≥ 0.009 [23].

1− γ
3− 2γ

< α <
1

2
(1)

Eyal and Sirer [4] suggest a solution according to which γ
is fixed to 0.5 and consequently the threshold of successful
block-withholding is α ≥ 0.25. Heilman [23] introduces an
approach named “Freshness Preferred” (FP). Using random
beacons and timestamps, honest miners select more fresh
blocks and the threshold becomes α ≥ 0.32.

The rest of the paper is organized as follows. In Section
IV we detail our ZeroBlock scheme that targets to reduce the
probability of intentional forks that may result after block-
withholding attacks appear in the network. In Section V we
prove that using ZeroBlock idea a selfish mining pool cannot
achieve more than its expected reward. Only with a low
probability, selfish mining pool may create intentionally an
unprofitable fork. We accentuate “unprofitable”, because this
fork does not lead to more reward for selfish mining pool.
Thus, selfish mining pool is not incentivized to create such
fork. Furthermore, we prove that the maximum probability of
such intentional fork is very low (maximum ≈ 0.04) when
selfish pool uses its maximum hashing power. Furthermore,
we extend the ZeroBlock in order to make it resilient to miners
churn.

IV. ZEROBLOCK ALGORITHM

In this section we introduce a new solution, ZeroBlock (see
Algorithm 1) to prevent block-withholding or selfish mining in
Bitcoin. The key idea of our solution is that each block must
be generated and received by the network within a maximum
acceptable time for receiving a new block interval, mat (see
equation 7 below). Within a mat interval a honest miner
receives or discovers a new block. Otherwise, it generates
a dummy block. The computation of each mat interval is
done locally by each miner based on the following Bitcoin
parameters: the expected delay for a block mining and the
information propagation time in the Bitcoin network. The
former parameter is discussed in details below while the latter
has been extensively studied in [3] where the authors shown
that a published block is received by the whole network within
60 seconds (see Figure 5 in the appendix).

Expected delay for a block mining in Bitcoin depends
mainly on the difficulty of proof-of-work. The major part of
proof-of-work consists in discovering a byte string, nonce.
As pointed out in [3] proof-of-work in Bitcoin is a Poisson
process and causes blocks to be discovered randomly and
independently. Moreover, as advocated in [32], [33], [34],
[35], [36], [37], [38], [39] in Bitcoin, the difficulty of proof-
of-work required to discover a block is periodically adjusted
such that, on average, one block is expected to be discovered
every 10 minutes. Hence, the difficulty of proof-of-work is
updated every 2016 blocks. It means that regarding to this
adjustment (i.e. one block per 10 minutes) 2016 blocks, on
average, is expected to be generated in 14 days. If 2016 blocks
are discovered in a shorter time, the difficulty of proof-of-work
will be increased and if they are generated in a longer time,
difficulty of proof-of-work will be decreased.

In more details, miners for each input of proof-of-work (i.e.
a random nonce) calculate a hash value. This hash is a number
between 0 and a maximum value of a 256-bit number. The
miner has discovered the answer of proof-of-work, if and only
if this hash is below the target.

The proof-of-work works as follows:

if H(pb+ nonce) < T then (2)

proof-of-work succeeded

where pb is representing the hash of the previous block,
nonce is the answer of proof-of-work that must be found by
miners , T is target, ’+’ is concatenation operation and H is
the hash function.

Each mining pool can estimate the difficulty of proof-of-
work using equation 3.

D =
maxTarget

T
(3)

where D is the difficulty of proof-of-work, T is current
target and maxTarget is maximum possible value for target
that is (216 - 1)2208 ≈ 2224. Since the hash function produces

uniformly a random value between 0 and 2256 − 1 thus, the
probability that a given nonce value would be the answer of
proof-of-work is as follows (equation 4):

Prob(nonce is answer) =

target

2256
=

2224

D × 2256
≈ 1

D × 232
(4)

The number of hashes to discover a block is D × 232 in
expectation. If a mining pool can calculate hashes at a rate
php (we call this as pool’s hashing power), then the expected
time (or average time) avt in which this pool can discover a
block is as follows (equation 5):

avtpool =
D × 232

php
(5)

When we replace php by hashing power of the network,
nethp, we can use equation 4 for the entire network as follows
(equation 6):

avtnet =
D × 232

nethp
(6)

According to the relation between time, difficulty of proof-
of-work, hashing power of the network in equation 6, Bitcoin
network adjusts D such that regarding to hashing power of the
network, the average time for block generation rate remains
10 minutes.

To calculate the the maximum acceptable time for receiving
a new block, mat, we use equation 7 below:

mat = avtnet + ipt (7)

where avtnet is given by the equation 6 and ipt is the
information propagation time in Bitcoin network as estimated
in [3].

A. Zeroblock Algorithm parameters and notations

The ZeroBlock algorithm (Algorithm 1) uses the following
parameters and definitions:

• ipt : information propagation time in Bitcoin network
that is an average delay for propagation a block into
the network. This average delay has been estimated by
simulation in [3] (see also Figure 1 in the Appendix).

• avt : block generation rate that has been set by Bitcoin
protocol according to which the difficulty of proof-of-
work is adjusted regarding to the hashing power of the
network using equation 6.

• mat : maximum acceptable time for receiving a new block
that is computed by equation 7. During a mat interval if
a miner cannot solve the proof-of-work, it has to generate
a dummy Zeroblock.

• unpermitted block-withholding : occurs when a selfish
mining pool discovers a new block and keeps the block
private after the end of the current mat interval.

• Dummy Zeroblock : is generated locally by miners. It
includes the index of mat interval and the hash of previ-
ous block. It is generated by honest miners to prevent
unpermitted block-withholding. Note that our solution
uses standard Bitcoin blocks discovered by solving the
proof-of-work and dummy blocks that are generated by
the Zeroblock algorithm for which miners do not need
to solve any proof-of-work. The dummy Zeroblocks
time generation is therefore ignored when adjusting the
difficulty of the proof-of-work.

• orphan block : a block that has been discovered but is
then rejected by the network.

• genesis block : the first block of a Blockchain on which
all miners have a consensus.

• correct chain : a chain whose blocks have been discov-
ered and inserted correctly according to the described
protocol.

• creative miner : a miner that in a mat interval can solve
proof-of-work and then generates a new block.

B. ZeroBlock Algorithm Detailed Description

In this section, we describe the ZeroBlock algorithm shown
as Algorithm 1. Each miner, µ, that executes Algorithm 1
performs the following steps:

• (lines 1 to 11) initialization: where mat0 and scounter()
(seconds counter) are set to 0.

• (line 4) miner µ initiates its local chain by Genesis block.
• (line 5) FlagNewBlock is set to False.
• In (line 12) miner µ starts an infinite loop.
• In (line 13) miner µ checks (FlagNewBlock = False)

(that means it verifies if there is no new block) and also
(matindex 6= 0). For the first time, mat0 = 0 and thus
the second condition is not satisfied.

• In (line 17) miner µ increases index and then in (line
18) invokes refresh() function that performs equation 8.

matindex = matindex−1 + (avtnet + ipt) (8)

• (line 19) While miner µ has time to discover and broad-
cast a new block (scounter() ≤ matindex) in (line 20)
checks its input to know if there is a new block received
from the network.

• (line 21) If yes, in (line 23) miner µ verifies the answer
of PoW for the new block.

• (line 24) If PoW has been done correctly, µ replaces the
local chain by the new chain and in (line 26) updates the
value of FlagNewBlock = True and in (line 27) leaves
the while loop and goes to (line 13) and then since
FlagNewBlock = True goes to (line 17).

• If there is no new block in its input and scounter() is
below avtnet, then miner µ tries to solve PoW in (line
33).

• If miner can solve PoW, then it generates a new block in
(line 35) and broadcasts it in (line 36).

Algorithm 1 ZeroBlock algorithm
1: index← 0 . index of mat
2: mat[index]← 0 . mat at the beginning is set to zero
3: avtnet ← block generation average time . according to equation (6)
4: localChain← Genesis
5: FlagNewBlock← False
6: nonce← 0
7: HPrB← 0 . hash of previous block
8: T← target
9: newChain← Null

10: ansPoW← 0 . answer of PoW
11: scounter()← 0 . scounter() is a seconds counter
12: while (True) do
13: if (FlagNewBlock = False) AND (mat[index] 6= 0) then
14: dummy Zeroblock← SHF(getHead(localChain)) + SHF(“FixedStringZB”) + index
15: localChain← join(dummy Zeroblock,localChain)
16: end if
17: index← index + 1
18: refresh(mat[index])
19: while (scounter() ≤ mat[index]) do
20: newChain← checkInput()
21: if (newChain 6= Null) then
22: HPrB← SHF(getHead(localChain))
23: if (FHF(HPrB,newChain.ansPoW) ≤ T) then . proof-of-work is done
24: localChain← newChain
25: newChain← Null
26: FlagNewBlock← True
27: Break
28: end if
29: end if
30: if (scounter() < avtnet) then
31: if (FlagNewBlock = False) then
32: HPrB← SHF(getHead(localChain))
33: if (FHF(HPrB , nonce) ≤ T) then . proof-of-work succeeded
34: ansPoW← nonce
35: localChain← join(GenerateBlock(),localChain)
36: BroadcastBlock(localChain,ansPoW)
37: FlagNewBlock← True
38: nonce← 0
39: Break
40: end if
41: nonce← nonce + 1
42: end if
43: end if
44: end while
45: end while

• In case the given nonce is not the answer of PoW (the
condition of (line 33) is incorrect), miner µ increases the
nonce (in line 41) and goes back to (line 19).

• If scounter() is more than matindex, immediately miner
µ generates a dummy Zeroblock in (line 14) and then
adds the dummy Zeroblock to its local chain (line 15).

• Then, miner µ refreshes index and value of mat in (lines
17 and 18).

• If a dummy Zeroblock is generated, miner µ rejects a
selfish block in (line 23) because the answer of proof-
of-work for selfish block is not the correct nonce, since
it does not include the hash of the dummy Zeroblock.
Then miner µ goes to (line 30) and repeats the algorithm
as described above.

V. ZEROBLOCK ALGORITHM RESILIENCE TO
BLOCK-WITHHOLDING ATTACK

First we prove that honest miners never accept chains
infected with unpermitted block withholding. Then we prove
that selfish miners are not incentivized to withhold blocks or
not follows the Zeroblock algorithm.

Lemma. Honest miners, regardless of their percentage in the
network, never accept chains infected with unpermitted block-
withholding.

Proof. In a mati interval, a honest miner either generates
or receives a new block bi, otherwise it generates a dummy
Zeroblock ζbi.

An unpermitted block-withholding occurs if a selfish miner
discovers a new block bsi but keeps the block private after
end of mati. At this point, to prevent unpermitted block-
withholding , honest miners generate a dummy Zeroblock ζbi
including the hash of previous block, since they have not
received new block bsi which is discovered by a selfish miner
in mati interval.

When mati interval is finished (line 19), honest miners
leave the while loop and go to the (line 12). Since two
conditions in (line 12) are satisfied, they generate a Zeroblock
ζbi. This is due to the fact that a new block bi has been
received (thus FlagNewBlock = False) and mati 6= 0 (because,
in (line 12), mati has been updated according to equation 8).
A selfish miner (which here is a creative miner) has kept a
new block bsi after the end of mati (see Figure 1 that shows
a similar situation in which bs3 that is discovered in mat3 by
a selfish mining pool, smp, has been kept private after the end
of mat3). Thus, the block bsi will not be accepted by honest
miners, because they have generated a dummy Zeroblock ζbi
at the end of mati. Therefore, proof-of-work must be restarted
from beginning for discovering the next block, i.e. bi+1, such
that its proof-of-work includes the recent ζbi. At this point, bsi
is not acceptable since its proof-of-work has not been solved
based on ζbi.

In other words,

∀ mat∆ :

If (∆ 6= 0) then
∃ (bδ ∨ ζbδ), δ ≥ ∆

else
∃ gb

Thus,

∀ mat∆ :
bδ ∈ X , If (δ < ∆)

where ∆ is the index of a mat, δ is the index of blocks,
X is the set of selfish blocks, b is a standard blocks, ζb is
a dummy Zeroblock, and gb is the genesis block. As shown
in Figure 1, where block bs3 belongs to selfish mining pool in
mat4, it is rejected by honest miners, since δ < ∆, where δ
= 3 and ∆ = 4.

In the following, we prove that selfish miners are not
incentivized to withhold blocks or to not follow correctly the
dummy Zeroblocks generation. In the following, we describe
all possible events in a maximum acceptable time for receiving
a new block interval. To simplify, we consider that the network
consists of two mining pool types, including: two honest
mining pools (hmp1 and hmp2) and a selfish mining pool
(smp). We also assume that at time t = 0 all mining pools
have a consensus on the first block, genesis block.

a) Event 1 - In a mati interval, neither honest nor
selfish pools discover a new block: In this situation, a dummy
Zeroblock ζbi will be generated at the end of mati interval by
all honest pools. We recall that dummy Zeroblock generation
time is negligible. Consequently, the hash of this dummy
Zeroblock will be used for discovering the next block. It means
that the answer of proof-of-work (nonce) for discovering the
next block depends on this dummy Zeroblock (since hash
of previous blocks is used in proof-of-work and thus affects
its answer). As a result, if a selfish mining pool does not
generate this dummy Zeroblock, then it will not be able to
find the correct answer of proof-of-work for next block (since
all honest mining pools at time of verifying answer of proof-
of-work will reject any nonce that has not been earned from
hash of this dummy Zeroblock.) (see Figure 1, Part (a).)

b) Event 2 - In a mati, the first pool which discovers
a new block is the honest mining pool: In this case, it
immediately broadcasts the discovered block to the entire
network and then starts to discover the next block. Then,
other pools receive this new block within ipt time interval
(i.e. information propagation time in Bitcoin network which is
simulated and estimated in [3].) Thus, other mining pools after
receiving and verifying this new block starts to discover the
next block. As a result, the block creator will begin to discover
the next block a little sooner than the rest of the network. The
maximum of this time is ipt. This might be considered as
a time reward for the block creator that increases the miners’
motivation to be the first one who discovers a new block. This
time advantage dedicated to block creator is not unfair since
creator mining pool is the first one who discovered the new
block and for this it is fair to receive a time reward. However,

Figure 1. smp: selfish mining pool, hmp1: first honest mining pool, hmp2: second honest mining pool. Part (a) represents event 1: In mat1, neither honest
nor selfish pools discover a new block. Part (b) represents event 2: In mat2, the first pool which discovers a new block is the honest mining pool. Part (c)
represents event 3: In mat3, the first pool which discovers a new block is selfish mining pool, then at point γ when honest pool discovers block bh4 selfish
pool broadcasts bs3 to create an intentional fork, but thanks to dummy Zeroblock ζb3 it will be rejected by honest pools since it does not include the hash of
dummy Zeroblock ζb3.

Figure 2. The selfish pool, smp, discovers a new block bsi at the point α and keeps the block privately till point β when an honest pool, hmp1, generates
block bhi . At this point, selfish pool broadcasts bsi to create an intentional fork. The maximum probability of this event is (≈ 0 .04).

this time difference according to simulations in [3] is less than
one minute (see Figure 1, Part (b)).

c) Event 3 - In a mati, the first pool which discovers
a new block is selfish mining pool: In this case, selfish pool
keeps the block private until the end of mati interval and does
not broadcast its block. We assume that by this time, honest
mining pools could not discover a new block. Thus, honest
pools generate a dummy Zeroblock ζbi and restart to find the
answer of proof-of-work based on hash of ζbi. Consequently,
the next new block is acceptable by honest pools if its proof-
of-work has been solved base on ζbi. As a result, this selfish
block will be rejected by honest pools. (see Figure 1, Part (c),
point γ.)

d) Event 4 - In a mati, the first pool which discovers
a new block is the selfish mining pool (bsi at the point α in
Figure 2): In this case, selfish pool decides to keep the block
private until the end of mati. At the point β (see Figure 2)
an honest mining pool discovers a new block, bsi . As soon as
honest pool broadcasts the block bhi , selfish pool broadcasts
block bsi to create an accidental fork. Thus, a part of network
receives bsi and works on this block and another part works

on bhi . As a result, with a probability one of bsi or bhi will
be winner block and another one is ignored as orphan block
and eventually the winner block creator (smp or hmp1) will
receive the respective reward. Whereas, if selfish pool at point
α had broadcast its block, bsi , it had received the reward as
the first block creator without any rival with probability of
100%. Consequently, selfish pool with delay in broadcasting
its block, bsi , caused to reducing probability of earning the
reward. An action which is in contrast to the main purpose of
block-withholding that is achieving more reward. We called
this event as unprofitable block-withholding. As a result, the
selfish mining pool is not incentivized to reduce its chance for
receiving the reward.

In the following we calculate the maximum probability of
event 4, when the selfish mining pool has maximum possible
percentage of hashing power of the network. Regarding to 51%
attack, the selfish pool can have at most 49% of total hashing
power of the network, because otherwise selfish mining pool
can get control of the network.

Recall that the proof-of-work is a Poisson process and also

the difficulty of proof-of-work is adjusted regarding to hashing
power of the network such that the expected time to discover
the next block is 10 minutes. Thus, the probability that ρ
blocks to be discovered in a time interval in which we expect
the network discovers λ blocks, is given by equation 8.

Prob(ρ|λ) =
e−λ.λρ

ρ!
(9)

For example, the probability of discovering one, two, three,
four and five blocks in 10 minutes, in descending order, is as
follows:

Prob(ρ = 1|1) = e−1 ≈ 0.3679

Prob(ρ = 2|1) =
e−1

2!
≈ 0.1839

Prob(ρ = 3|1) =
e−1

3!
≈ 0.0613

Prob(ρ = 4|1) =
e−1

4!
≈ 0.0153

Prob(ρ = 5|1) =
e−1

5!
≈ 0

where: the expected number of blocks to be discovered in 10
minutes is λ = 1.

The maximum probability that in 10 minutes two blocks are
discovered such that the first one is generated by selfish mining
pool with the hashing power of sp = 0 .49 and the second one
is generated by honest mining pool with the hashing power of
hp = 0 .51 is as follows:

Maximum Possible Probability (Event 4) =

=
(
sp.e−sp

)(
hp.e−hp

)
× sp

≈ 0 .3 × 0 .3 × 0 .49 ≈ 0 .04

Note that as we mentioned above if event 4 occurs, selfish
pool reduces its likelihood for receiving the respective reward.
Even if the purpose of selfish pool is only the network
sabotage, it has to deplete its limited computational resource
for achieving an event that in the best case for the selfish pool
has a low probability (at most ≈ 0 .04). This leads to reduce
selfish pool’s motivation to perform such behavior. Note that
this probability is for the case the selfish pool has its maximum
possible hashing power (i.e. 49% of total hashing power of the
network) regarding to 51% attack.

VI. ZEROBLOCK ALGORITHM EXTENSION TO DYNAMIC
MINERS

In the following we show how Algorithm 1 can be extended
to environments where miners can join at any time. First, we
describe a simple mechanism that assumes that a new miner
that joins the system has the ability to communicate with all
the other miners in the network. When a new miner joins
the network it broadcasts a message including its address to
announce its entrance. The other miners respond with the last

η η percentage ψ ψ percentage P

4750 95% 250 5% ≈ 0.9994%
4250 85% 750 15% ≈ 0.9785%
3750 75% 1250 25% ≈ 0.8862%
3250 65% 1750 35% ≈ 0.7063%

Table I
THE PROBABILITY THAT AT LEAST HALF PLUS ONE NODES FROM THE SET
OF SELECTED NODS, σ ARE HONEST. IN EACH EXAMPLE, THE NETWORK

INCLUDES η honest NODS AND ψ selfish (adversarial) NODES. WE USE
PRACTICAL VALUES FOR THE SIZE OF THE NETWORK, n, AND THE

NUMBER OF SELECTED NODES FOR CONNECTION, σ. WE THUS SET n AND
σ TO 5000 [41] AND 8 [3], RESPECTIVELY.

version of their local chain. Then, the new miner compares
the received chains and selects the chain belonging to the
majority. Thus, if half plus one miners of the network are
honest, the honest chain will be chosen by the new miner and
it will further mine the correct chain. Then, the new miner,
similar to other miners, will perform the protocol as described
in Algorithm 1. According to this process, each miner is able
to leave and re-join the network infinitely.

Note that the above describe process uses as hypothesis
that a new miner connects to the entire network. However, in
current Bitcoin protocol a new node connects to only a subset
of nodes in the network (usually 8 randomly selected nodes).
If we assume a situation in which a new node connects to a
subset of nodes, then the new node achieves the correct chain
with probability P as follows:

P(h ≥ [σ/2] + 1) =

[σ/2]∑
i=1

P(h = [σ/2] + i)

=

[σ/2]∑
i=1

(
η

[σ/2]+i

)(
ψ

σ−([σ/2]+i)

)(
n
σ

)
where n is the network size, σ is the number of selected

nodes to connect, η is the number of honest nodes in the
entire network, ψ is the number of selfish nodes in the entire
network and h is the number of honest nodes in the set of
selected nodes.

Table I shows some numerical examples in different sit-
uations, each of which includes η honest nods and ψ selfish
(adversarial) nodes. We use practical values for the size of the
network, n, and the number of selected nodes for connection,
σ. We thus set n and σ to 5000 [41] and 8 [3], respectively.

In the following, we say two chains C1 and C2 are homoge-
neous, if and only if both of them belong to the honest pools
or both of them belong to the adversarial pools. Otherwise
chains are called inhomogeneous.

Note that since all honest chains are equal to each other,
thus the new node is able to distinguish a set of homogeneous
chains. We propose if a new node receives a set of inhomo-
geneous nodes, then it must retry to connect to σ nodes till
the new node receives a set of homogeneous nodes. In this
case, the new node eventually achieves a set of chains that
belong to the adversary if and only if all σ chains are not
correct chain. Thus, the adversarial cartels size needs to be

increased significantly such that with a good probability all
σ chains would not be correct chains. Assume a situation in
which only one chain is correct chain and the rest are not.
Then, the new node will retry to connect again to σ nodes,
whilst if the new node consider the majority chains, then it
will accept the adversarial chain.

Thus, we calculate the probability that all σ chains are
homogeneous and correct and then the probability that all σ
chains are homogeneous and are not correct chain, respec-
tively, as follows:

P(hcorr) = P(h = σ) =

(
η
σ

)(
n
σ

)
P(hnotc) = P(h = 0) =

(
ψ
σ

)(
n
σ

)
and then, we calculate the probability that all σ chains are

homogeneous regardless of chains type as follows:

P(hom) = P(h = σ or h = 0) =

(
η
σ

)
+
(
ψ
σ

)(
n
σ

)
We define R as the number of trials for connection to σ

nodes to achieve a set of homogeneous chains. Thus, the
probability that after m trials 2 the new node achieves a set of
homogeneous and correct chains is as follows:

P(R = m | ∀ci ∈ SC, ci is correct chain) =(
1− P(hom)

)m

× P(hcorr)

where, SC is the set of received chains, ci is a chain ∈ SC
and i ∈ N such that 1 ≤ i ≤ σ.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we introduced a new timestamp-free solution
to prevent block-withholding or selfish mining. The key idea
of our solution, Zeroblock algorithm, is that each block must
be generated and received by the network within a maximum
acceptable time for receiving a new block interval that is
locally estimated by each miner. Within this interval, mat,
a honest miner has to receive or to discover a new block.
Otherwise, it generates a dummy block that does not need
any proof-of-work computation. The computation of each mat
interval is done locally by each miner based on the following
Bitcoin parameters: the expected delay for a block mining
(estimated based on the Poisson nature of the proof-of-work)
and the information propagation time in the Bitcoin network
(that has been previously estimated in [3]). We prove that our
Zeroblock algorithm is resilient to withholding attack. That
is, we demonstrated that if a selfish miner wants to keep
its blocks private more than the duration of a mat interval,
then the selfish block will be rejected by the honest miners.
Moreover we prove that selfish miners are not incentivized to
ignore dummy Zeroblock or to generate too many of them.

2When m = 1 it means that the new tried to connect to σ nodes previously
but it has not achieved a set of homogeneous chains.

Furthermore, we demonstrated that our solution is compliant
to nodes churn. That is, nodes that freshly enter the system
are able to retrieve the correct chain provided that a majority
of nodes are honest.

Note that Zeroblock scheme is not a solution to acciden-
tal forks since these forks are not the result of a block-
withholding attack. Contrary to intentional forks, accidental
ones are the result of the Poisson nature of proof-of-work in
Bitcoin. Therefore, with non zero probability two blocks may
be discovered by two different pools at almost same times.
In Bitcoin network the probability of an accidental fork is
≈ 1.69% [3]. In order to solve this problem an alternative to
proof-of-work should be find.

A criticism to our Zeroblock algorithm can be the fact that
the blockchain may include too many sequences of dummy
Zeroblocks. This can be easily solved as follows. Each honest
miner after receiving and accepting a new standard block
bi removes all Zeroblocks between bi and previous standard
block (see Figure 3).

ZeroBlock solution is a step further in solving one of the
major problems in Bitcoin and can be used also as an altcoin,
(a term refers to a cryptocurrency based on the Blockchain
technology [30]) or in conjunction with other cryptocurrencies.

REFERENCES

[1] Nakamoto, Satoshi. “Bitcoin: A peer-to-peer electronic cash system.”
Consulted 1.2012 (2008): 28

[2] Back, Adam. “Hashcash-a denial of service counter-measure.” (2002)
[3] Decker, Christian, and Roger Wattenhofer. “Information propagation

in the bitcoin network.” Peer-to-Peer Computing (P2P), 2013 IEEE
Thirteenth International Conference on. IEEE, 2013

[4] Eyal, Ittay, and Emin Gün Sirer. “Majority is not enough: Bitcoin mining
is vulnerable.” Financial Cryptography and Data Security. Springer
Berlin Heidelberg, 2014. 436-454

[5] Garay, Juan, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin
backbone protocol: Analysis and applications.” Advances in Cryptology-
EUROCRYPT 2015. Springer Berlin Heidelberg, 2015. 281-310

[6] Courtois, Nicolas T., and Lear Bahack. “On subversive miner strategies
and block withholding attack in bitcoin digital currency.” arXiv preprint
arXiv:1402.1718 (2014)

[7] Miers, Ian, et al. “Zerocoin: Anonymous distributed e-cash from bit-
coin.” Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013

[8] Bonneau, Joseph, et al. “Mixcoin: Anonymity for Bitcoin with account-
able mixes.” Financial Cryptography and Data Security. Springer Berlin
Heidelberg, 2014. 486-504

[9] Eyal, Ittay. “The miner’s dilemma.” Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015

[10] Bastiaan, Martijn. “Preventing the 51%-Attack: a Stochastic Analysis
of Two Phase Proof of Work in Bitcoin.” Availab le at http://referaat.
cs. utwente. nl/conference/22/paper/7473/preventingthe-51-attack-a-
stochastic-analysis-of-two-phase-proof-of-work-in-bitcoin. pdf. 2015

[11] Gervais, Arthur, et al. “Is Bitcoin a decentralized currency?.” IACR
Cryptology ePrint Archive 2013 (2013): 829

[12] Reid, Fergal, and Martin Harrigan. An analysis of anonymity in the
bitcoin system. Springer New York, 2013

[13] Dwork, Cynthia, and Moni Naor. “Pricing via processing or combatting
junk mail.” Advances in Cryptology—CRYPTO’92. Springer Berlin
Heidelberg, 1993

[14] Androulaki, Elli, et al. “Evaluating user privacy in bitcoin.” Financial
Cryptography and Data Security. Springer Berlin Heidelberg, 2013. 34-
51

[15] Miers, Ian, et al. “Zerocoin: Anonymous distributed e-cash from bit-
coin.” Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013

Figure 3. This Figure demonstrates a situation when between standard blocks bi and bi−n−1 there are some Zeroblocks from ζbi−1 to ζbi−n that will be
removed after accepting standard block bi by honest node. Note that even after removing Zeroblocks from the Blockchain, the standard block bi still includes
the hash of Zeroblocks (ζbi−1, ..., ζbi−n) and thus in the future, all of honest nodes are able to understand that between bi and bi−n−1 there have been
Zeroblocks.

[16] Kroll, Joshua A., Ian C. Davey, and Edward W. Felten. “The economics
of Bitcoin mining, or Bitcoin in the presence of adversaries.” Proceed-
ings of WEIS. Vol. 2013. 2013

[17] Fugger, Ryan. Money as IOUs in social trust networks and a proposal
for a decentralized currency network protocol. Hypertext document.
Available electronically at www.ripple. sourceforge. net(2004)

[18] Yang, Beverly, and Hector Garcia-Molina. “PPay: micropayments for
peer-to-peer systems.” Proceedings of the 10th ACM conference on
Computer and communications security. ACM, 2003

[19] Saito, Kenji. i-WAT: the internet WAT system–an architecture for
maintaining trust and facilitating peer-to-peer barter relationships. Diss.
PhD thesis, Graduate School of Media and Governance, Keio University,
2006

[20] Vishnumurthy, Vivek, Sangeeth Chandrakumar, and Emin Gun Sirer.
“Karma: A secure economic framework for peer-to-peer resource shar-
ing.” Workshop on Economics of Peer-to-Peer Systems. Vol. 35. 2003

[21] Douceur, John R. “The sybil attack.” Peer-to-peer Systems. Springer
Berlin Heidelberg, 2002. 251-260

[22] Ben Sasson, Eli, et al. “Zerocash: Decentralized anonymous payments
from Bitcoin.” Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 2014

[23] Heilman, Ethan. “One weird trick to stop selfish miners: Fresh bitcoins,
a solution for the honest miner.” (2014)

[24] Decker, Christian and Seider, Jochen and Wattenhofer, Roger. “Bitcoin
meets strong consistency.” Proceedings of the 17th International Con-
ference on Distributed Computing and Networking, Singapore, 2016.

[25] Kroll, Joshua A., Ian C. Davey, and Edward W. Felten. “The economics
of Bitcoin mining, or Bitcoin in the presence of adversaries.” Proceed-
ings of WEIS. Vol. 2013. 2013

[26] Bahack, Lear. “Theoretical Bitcoin Attacks with less than Half of the
Computational Power (draft).” arXiv preprint arXiv:1312.7013 (2013)

[27] Luu, Loi, et al. “On power splitting games in distributed computation:
The case of bitcoin pooled mining.” Computer Security Foundations
Symposium (CSF), 2015 IEEE 28th. IEEE, 2015

[28] Sapirshtein, Ayelet, Yonatan Sompolinsky, and Aviv Zohar. “Optimal
selfish mining strategies in Bitcoin.” arXiv preprint arXiv:1507.06183
(2015)

[29] Babaioff, Moshe, et al. “On bitcoin and red balloons.” Proceedings of
the 13th ACM conference on electronic commerce. ACM, 2012

[30] Bonneau, Joseph, et al. “Sok: Research perspectives and challenges for
bitcoin and cryptocurrencies.” 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015

[31] Lewenberg, Yoad, et al. “Bitcoin mining pools: A cooperative game
theoretic analysis.” Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2015

[32] Eyal, Ittay, et al. “Bitcoin-NG: A scalable Blockchain protocol.” 13th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 16). 2016.

[33] ODwyer, Karl J., and David Malone. “Bitcoin mining and its energy
footprint.” Irish Signals and Systems Conference 2014 and 2014 China-
Ireland International Conference on Information and Communications
Technologies (ISSC 2014/CIICT 2014). 25th IET. IET, 2013.

[34] Taylor, Michael Bedford. “Bitcoin and the age of bespoke silicon.”
Proceedings of the 2013 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems. IEEE Press, 2013.

[35] Kraft, Daniel. “Difficulty control for Blockchain-based consensus sys-
tems.” Peer-to-Peer Networking and Applications 9.2 (2016): 397-413.

[36] Möser, Malte, and Rainer Böhme. “Trends, tips, tolls: A longitudinal
study of Bitcoin transaction fees.” International Conference on Financial
Cryptography and Data Security. Springer Berlin Heidelberg, 2015.

[37] Hayes, Adam. “What factors give cryptocurrencies their value: An
empirical analysis.” Available at SSRN 2579445 (2015).

[38] Alqassem, Israa, and Davor Svetinovic. “Towards reference architecture
for cryptocurrencies: Bitcoin architectural analysis.” Internet of Things
(iThings), 2014 IEEE International Conference on, and Green Comput-
ing and Communications (GreenCom), IEEE and Cyber, Physical and
Social Computing (CPSCom), IEEE. IEEE, 2014.

[39] Wang, Luqin, and Yong Liu. “Exploring Miner Evolution in Bitcoin
Network.” International Conference on Passive and Active Network
Measurement. Springer International Publishing, 2015.

[40] https://bitcoinwisdom.com/assets/difficulty/bitcoin-
difficulty.png?1476276622

[41] https://bitnodes.21.co/
[42] Solat, Siamak. “Security of Electronic Payment Systems: A Compre-

hensive Survey.” arXiv preprint arXiv:1701.04556 (2017)

Figure 4. This figure represents the relation between block generation time and difficulty of proof-of work such that using equation 6 when 2016 blocks are
generated in less than 600 seconds (10 minutes), the difficulty is increased and if they are discovered in more than 10 minutes, then difficulty is decreased.[40]

Figure 5. Decker and Wattenhofer’s simulation [3] to estimate block propagation delay in the entire Bitcoin network shows that before 60 seconds the whole
of network receives a published discovered block. We call this delay ipt (information propagation time)

