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Abstract. Bitcoin was recently introduced as a peer-to-peer electronic
currency in order to facilitate transactions outside the traditional finan-
cial system. The core of Bitcoin, the Blockchain, is the history of the
transactions in the system maintained by all miners as a distributed
shared register. New blocks in the Blockchain contain the last transac-
tions in the system and are added by miners after a block mining pro-
cess that consists in solving a resource consuming proof-of-work (crypto-
graphic puzzle). The reward is a motivation for mining process but also
could be an incentive for attacks such as selfish mining. In this paper
we propose a solution for one of the major problems in Bitcoin : selfish
mining or block-withholding attack. This attack is conducted by adver-
sarial or selfish miners in order to either earn undue rewards or waste the
computational power of honest miners. Contrary to recent solutions, our
solution, ZeroBlock, prevents block-withholding using a technique free of
timestamp that can be forged. Moreover, we show that our solution is
compliant with nodes churn.

Keywords: Bitcoin; ZeroBlock ; block-withholding ; selfish-mining ; in-
tentional fork ; cryptocurrency

1 Introduction

In the last few years crypto-currencies [17,19,20,18,1,8,15] are in the center of the
research ranging from financial, political and social to computer science and pure
mathematics. Bitcoin [1] was one of the starters of this concentration of forces
towards creating a system where transactions between individuals can escape
the strict control of the banks and more generally of the financial markets.

Bitcoin was introduced as a pure peer-to-peer [1] electronic currency or
crypto-currency to aim at fully decentralizing electronic payment transactions.
Bitcoin allows to perform online payment transactions directly from one party
to another one “without” the interference of a financial institution as a “trusted
third party” [1]. It uses digital signatures to verify the bitcoin ownership 1 and

1 Capitalized “Bitcoin” refers to the protocol, while lower case “bitcoin” refers to the
coin.
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employs Blockchain in order to prevent double-spending attacks. Blockchain is
broadcast via a peer-to-peer network to achieve a consensus about the history
of the transactions in the system via a proof-of-work (cryptographic puzzle)
[13,2,12] performed by honest parties (miners that follow the protocol).

Bitcoin is still vulnerable to various attacks including double-spending [24],
selfish mining [9], Goldfinger [25], 51% attack [25] etc. In this paper we focus the
selfish mining attack. Recently, [4] provided a full description of incentives to
withhold or selfish mine in Bitcoin. That is, to force honest miners to waste their
computational power such that their public blocks become useless (as orphan
block), whereas the private chain of the selfish miners is accepted as a part of
the Blockchain. To this end, the selfish miners reveal selectively their private
blocks to make useless the blocks made by honest miners.

Our contribution In this paper, we introduce a new solution, ZeroBlock, which
prevents block withholding or selfish mining without using timestamp contrary
to the recent solution proposed by [23] that uses a forgeable timestamp based
idea. In our solution, if a selfish miner keeps a block private more than a mat
interval, its block will be rejected by honest miners.

Paper Roadmap The rest of this paper is organized as follows: Section 2 presents
an overview of Bitcoin, Section 2.5 presents how to generate a block and proof-
of-work process, in Section 2.6 we present block withholding attack or selfish
mining and then we describe the related efforts on this problem. In Section 4.1
we describe the important notations that we use in this paper and in Section 4
we present our ZeroBlock solution altogether with its correctness proof. Finally,
Section 6 concludes the paper.

2 Bitcoin Overview

Bitcoin is an electronic coin which works as a chain of digital signatures where
each owner transfers bitcoin to the next party after adding his signature (gener-
ated with his private key) along with the hash of previous transactions and the
public key of the next owner (i.e. the receiver). As a result, the final receiver is
able to verify the bitcoin ownership by verifying the signatures [1].

The key entity in Bitcoin is a public log that is a sequence of blocks, named
Blockchain, that maintains the history of transactions. The safety of Blockchain
is provided by a cryptographic puzzle, named proof-of-work (PoW), solved by
several nodes, named “miners”. Miners who can solve PoW are permitted to gen-
erate a new block to record transactions and receive some bitcoins as a reward.
This reward is used to further motivate miners to share their power resource
with the network and continue to mine.

In Bitcoin network two kinds of information are disseminated. The first one
are 2.1 Transactions : used to transfer coins in the network. The second one
are 2.2 Blocks. Blocks are inserted into a “public ledger” called 2.3 Blockchain.
Blockchains are employed to synchronize the state among all miners [3]. In the
sequel we detail the key notions in Bitcoin.
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2.1 Transactions

A transaction transfers the coins from one or multiple source account address to
destination account address, where each account address has a unique key. Each
address derives from the related public key and is employed to recognize the
related account. For transferring a bitcoin between two accounts, a transaction
must be generated including the destination account address and it must be
signed by the private key of the source account.

To calculate the balance of account addresses, the public ledger calculates
each transaction output (i.e. a numeric value of coins). Each transaction is rec-
ognized by using the hash of its serialized context.

When transactions are broadcast into the network, the “public ledger” will be
updated locally in each node. This copy eventually might be different in distinct
miners which may lead to inconsistencies. For example, consider a miner receives
a transaction that shows transferring some bitcoins from account “A”, whereas
this miner has not received the related transaction that shows these coins are
“available” for account “A”. In another situation, several transactions might
try to transfer the same coins more than one time. Such subversive behavior is
known as “double spending” [3].

2.2 Blocks

Achieving a “consensus” in a distributed system is not trivial. Bitcoin uses an un-
certain commitment of transactions and then tries to synchronize them at some
time intervals. It is done using Blocks that have been generated and broadcast
in the entire network [3]. Each block consists of several transactions. Each miner
when receives a new block, updates its local chain and then restores the uncertain
committed transactions since the last block. In this last block, all miners have
a consensus on the transactions.

2.3 Blockchain

A Blockchain is a chain of blocks in “chronological order”. Each block has a
parent block. The genesis block is the root. The most distant block from genesis
block is called the head of Blockchain [3].

2.4 Fork

If two miners create two blocks with the same preceding block, the chain is
forked into two branches. It might occur accidentally or intentionally. Since
the proof-of-work is a Poisson process, two blocks might be discovered by two
mining pools in a few seconds that causes an accidental fork. The probability of
an accidental fork is ≈ 1.69 [3] (almost every 60 blocks). Note that an accidental
fork occurs due to the nature and functionality of proof-of-work and it is not
related to block-withholding or selfish mining that is the target of our solution.
In case of intentional fork, a selfish miner previously has generated and kept
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a block privately and when another miner generates a new block over the same
preceding block and broadcasts to the network, then the selfish miner immedi-
ately propagates the private block to create an “intentional fork”. In case the
selfish miner can generate and keep more than one private block, it always will
be winner in the race of branches, because the longest chain will be accepted by
the network.

In other words, there is a Blockchain fork, when in a Blockchain there are
more than one head. In this situation, the miners do not have a consensus on a
unique head.

2.5 Block Generation and Proof-of-Work

A proof-of-work (PoW) is a cryptographic puzzle that is difficult to solve but
easy to verify. Bitcoin network uses Hashcash [2] proof-of-work system for block
generation such that a block is accepted by the network if miners perform proof-
of-work properly and successfully. The difficulty of PoW is adjustable regarding
to the hashing power of the network. Currently, the block generation rate is set
to one block per 10 minutes [32]. Note that since the success of solving proof-
of-work by a miner has very low probability, it is almost impossible to predict
which miner or mining pool will generate the next block.

When a new block is generated, it is broadcast in the entire network. If this
new block is accepted as head of Blockchain, other miners start to work on this
new block to extend the Blockchain. A competition between two new blocks
occurs when their preceding block is equal and also they are broadcast simul-
taneously. At this point Blockchain is forked. Since broadcasting a block takes
only a few seconds but the average time to discover a new block is around 10
minutes, thus, accidental fork occurs almost every 60 blocks [4,3] (see Section
2.4). In such situation, miners choose the first block which they receive and as a
result, the second block will be ignored by the network as an orphan block. Con-
sequently, miners that worked on the second block wasted their computational
power with no reward. Moreover, this leads to a fork on the Blockchain which
divides the Blockchain into two branches. When one of miners’ groups discovers
a new block, their branch will become a part of the Blockchain and the other
one will be ignored as orphan block.

2.6 Block-Withholding and Related Works

Block withholding attack was introduced as “Selfish mining” in [4] and also as
“Block Discarding Attack” in [26]. This attack relies on “block concealing” and
revealing only at a special time selected by some miners called selfish miners
or selfish mining pool. According to [4], these selfish miners can earn revenues
superior to a fair situation [27].

In block-withholding strategy, a selfish miner after solving proof-of-work and
finding a new block does not broadcast it in the entire network till a specific
time such that this leads to intentional forking the Blockchain. (see Section 2.4)
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In [28] authors extend the selfish mining strategy and provide an algorithm to
find optimal policies for selfish miners. [16] shows that expanding the Blockchain
by adding the newest block creates a simple model of “weak and non-unique”
Nash equilibrium [28]. [28] shows that these optimal policies compute the thresh-
old such that honest mining would be a “strict and unique” Nash equilibrium.
According to [29] miners are not motivated enough to propagate transactions.
Authors in [31] introduce a cooperative game theory analysis relying on interac-
tive mining pools.

According to [4,23], the selfish mining in Bitcoin network occurs as follows:
In case of generation of a new block by the honest miners, (1) if the size of
honest branch is longer than the selfish branch, then the selfish cartel tries to
set its private branch equal to the public branch. (2) If the selfish branch is
one block more than the public branch, then selfish miners publish their private
chain completely (3) If the selfish branch is more than one block longer than
the public branch, then the selfish miners publish only the head of their private
branch. In case of generation of a new block by selfish miners, they keep this new
block private and in case of a competition with the honest miners, they publish
their private branch to win the competition. According to [4], the success of
selfish miners in this competition is contingent on the parameters α (i.e. hashing
power of selfish miners) and γ (i.e. the hashing power of the honest miners who
work on the selfish branch). According to equation 1, if γ = 0, the threshold for
success of block-withholding behavior is α ≥ 33 % and if γ = 0.99, the threshold
is α ≥ 0.009 [23].

1− γ
3− 2γ

< α <
1

2
(1)

Eyal and Sirer [4] suggest a solution according to which γ is fixed to 0.5 and
consequently the threshold of successful block-withholding is α ≥ 0.25. Heilman
[23] introduces an approach named “Freshness Preferred” (FP). Using a random
beacons and timestamp, honest miners select more fresh blocks and the threshold
becomes α ≥ 0.32.

3 Motivation

The key purpose in our idea is reducing the probability of intentional forks as
much as possible that is the result of block-withholding. The main purpose of
block-withholding by selfish mining pool is achieving more rewards in compar-
ison with its hashing power in the network. Thus, selfish mining pool’s reward
oversteps its mining power in the network and it can increase its expected min-
ing reward. In Section 5, we describe all possible events and show that using
ZeroBlock idea a selfish mining pool cannot achieve more than its expected re-
ward. Only with a low probability, selfish mining pool might create intentionally
an unprofitable fork. We accentuate “unprofitable”, because this fork does not
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lead to more reward for selfish mining pool, but also reduces selfish pool’s likeli-
hood for earning expected reward regarding to its mining power in the network.
Thus, selfish mining pool is not incentive to create such fork if its purpose is
achieving more reward. Note that we also show that the maximum probability
of such intentional fork is very low (maximum ≈ 0.04) when selfish pool has its
maximum hashing power in the network. Thus, ZeroBlock idea can disappoint
selfish mining pool significantly when it indents to perform block-withholding
for achieving more reward.

Note that accidental fork is an inherit result of proof-of-work because of
its nature functionality that is a Poisson process and thus it is not the result of
block-withholding. Thus, for preventing accidental fork, proof-of-work might be
replaced by another alternative method with different functionality. Since proof-
of-work is a Poisson process, thus with a probability two blocks might be discov-
ered by two different pools at similar times. In Bitcoin network the probability
of an accidental fork is ≈ 1.69% [3]. Thus, we distinguish intentional fork and
accidental fork due to their different factors causing, “block-withholding” and
the “proof-of-work functionality”, respectively. We also specify that the purpose
of ZeroBlock idea is preventing block-withholding which leads to intentional
fork.

4 ZeroBlock

In this section we introduce a new solution, ZeroBlock2, to prevent block-withholding
or selfish mining in Bitcoin. The key of our solution is that each block must be
generated and received by the network within a mat interval (i.e. maximum
acceptable time for receiving a new block). Within a mati interval an honest
miner either receives or discovers a new block bi. Otherwise, it generates a spe-
cific block ζbi called Zeroblock. In the sequel we propose a detailed description
of the algorithm and the proof of its correctness.

The proof-of-work is a Poisson process [3] and causes blocks to be discov-
ered randomly and independently. In our idea, we consider a key concept in
Bitcoin network: “In Bitcoin protocol, difficulty of proof-of-work required to
discover a block is adjusted regarding to hashing power of the entire network
such that on average, one block is expected to be discovered every 10 min-
utes [32,33,34,35,36,37,38,39].” According to this fact and also the fact that
proof-of-work is a Poisson process [3], if a mining pool generates block bi at
the first minute of a mati and keeps the block private until the last minute of
mati and then broadcasts the block, we call such behavior as “permitted” block-
withholding. Since the mining pool broadcasts the block at the last minute of
mati, it does not lead to additional delay for block generation rate. The expected
delay for block discovering rate is set to: “one block per 10 minutes, on average
[32,33,34,35,36,37,38,39].” We use this delay setting for computing a mati. In
the rest of the paper, we show that even this type of block-withholding is not

2 “ZeroBlock” refers to the algorithm, while “Zeroblock” refers to a specific block.
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in favor of a selfish mining pool and it decreases the probability of receiving the
logical and expected reward of mining pool regarding to its hashing power in the
network such that this behavior is harmful for selfish mining pool if its purpose
is receiving more reward. However, we show that the maximum probability of
such block-withholding is at most ≈ 0 .04 . Thus, our idea does not lead to any
additional delay, since our solution is based on the Bitcoin protocol configuration
for block generation rate (i.e. that “one block per 10 minutes, on average.”)

The major part of proof-of-work is discovering a byte string, nonce, as the
answer of proof-of-work which is merged with block header. It results in a hash
value including a given number of leading zero, called as target. This target is in
proportion to the difficulty of proof-of-work such that a smaller value for target
increases the difficulty.

In Bitcoin protocol, according to hashing of the network, difficulty of proof-of-
work is adjusted such that on average, one block per 10 minutes is expected to be
discovered in whole of the network. In Bitcoin protocol, difficulty of proof-of-work
is updated every 2016 blocks. It means that regarding to this adjustment (i.e. one
block per 10 minutes) 2016 blocks, on average, is expected to be generated in 14
days, such that if 2016 blocks are discovered in a shorter time, difficulty of proof-
of-work will be increased and if they are generated in a longer time, difficulty of
proof-of-work will be decreased. This results in fixing block generation rate i.e.
one block per 10 minutes.

Note: In this paper, when we say “block” bi, it means a “standard block” that
is discovered by solving the proof-of-work, whereas for generation of a Zeroblock
ζbi miners do not need to solve proof-of-work and so its generation does not take
a significant time period. Thus, in our algorithm, Zeroblocks are not counted at
time of adjusting difficulty target.

4.1 Key notations

The ZeroBlock algorithm (Algorithm 1) uses the following notations:

– ipt : information propagation time in Bitcoin network that is an average
delay for propagation a block into the network. This average delay has been
simulated before in [3].

– avt : block generation rate that has been set by Bitcoin protocol according
to which the difficulty of proof-of-work is adjusted regarding to the hashing
power of the network using equation 5.

– mat : maximum acceptable time for receiving a new block that is computed
by equation 6. During a mati if a miner cannot solve the proof-of-work, it
has to generate a Zeroblock ζbi.

– intentional fork : it occurs due to block-withholding when a selfish pool keeps
its discovered blocks private instead of publishing block in the network.
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– accidental fork : since the proof-of-work is a Poisson process, two blocks
might be discovered by two mining pools in a few seconds that causes an
accidental fork. The probability of an accidental fork is ≈ 1.69 [3] (almost
every 60 blocks). Note that an accidental fork occurs due to the nature and
functionality of proof-of-work and it is not related to block-withholding or
selfish mining that is the target of our solution.

– unpermitted block-withholding : it occurs when a selfish mining pool discov-
ers a new block bsi and keeps the block private after end of mati.

– unprofitable block-withholding : it occurs when a selfish mining pool discov-
ers a new block bsi and keeps the block private until discovering another new
block bhi by an honest miner before end of mati. Then, selfish miner broad-
casts bsi to create an intentional fork. We demonstrate that in this event,
selfish miner reduces its likelihood to receive the respective reward accord-
ing to its hashing power in the network. We also show that such event, in
best case for selfish miner, has a low probability (maximum ≈ 0 .04 ).

– Zeroblock : is a dummy block including the index of mati and the hash
of previous block. It is generated by honest miners to prevent unpermitted
block-withholding. (see Algorithm 1)

– orphan block : a block that has been discovered but is then rejected by the
network.

– genesis block : the first block of a Blockchain on which all miners have a
consensus.

– correct chain : a chain whose blocks have been discovered and inserted cor-
rectly according to the described protocol.

– creative miner : a miner that in a mati can solve proof-of-work and then
discover a new block bi.

4.2 Relation: Time, Difficulty, Hash rate

The proof-of-work in Bitcoin network has a difficulty level that is a measure
of how difficult it is to discover a block. The proof-of-work is a cryptographic
puzzle to find a hash value below a given target. In fact, in Bitcoin protocol the
difficulty of proof-of-work is adjusted by choosing this target that is a 256-bit
number. More precisely, miners for each input of proof-of-work (i.e. a random
nonce) calculate a hash value. This hash is a number “between 0 and maximum
value of a 256-bit number.” The miner has discovered the answer of proof-of-
work, if and only if this hash is below the target. For achieving more stability,
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the proof-of-work is adjusted such that the network produces, on average, one
block every 10 minutes. This is the adjustment which we use in ZeroBlock idea.

The proof-of-work works as follows:

if H(pb+ nonce) < T then (2)

proof-of-work succeeded

where pb is representing hash of previous block, nonce is the answer of proof-
of-work that must be found by miners , T is target, ’+’ is concatenation operation
and H is the hash function.

Each mining pool can estimate the difficulty of proof-of-work using equation
3.

D =
maxTarget

T
(3)

where D is the difficulty of proof-of-work, T is current target and maxTarget
is maximum possible value for target that is (216 - 1)2208 ≈ 2224. Since the hash
function produces uniformly a random value between 0 and 2256 − 1 thus, the
probability that a given nonce value would be the answer of proof-of-work is as
follows (equation 4):

Prob(nonce is answer) =
target

2256
=

2224

D × 2256
≈ 1

D × 232
(4)

Thus, the number of hashes to discover a block is D × 232 , in expectation.
So, a mining pool which can calculate hashes at a rate php (we call this as pool’s
hashing power), then the expected time (or average time) avt in which this pool
can discover a block is as follows (equation 5):

avtpool =
D × 232

php
(5)

When, we replace php by hashing power of the network, nethp, we can use
equation 4 for the entire network as follows (equation 6):

avtnet =
D × 232

nethp
(6)

According to this relation between triple parameters (time, difficulty of proof-
of-work, hashing power of the network) in equation 6, Bitcoin network adjusts D
such that regarding to hashing power of the network, the average time for block
generation rate remains 10 minutes [32,33,34,35,36,37,38,39] (see Figure 1 [40]).
Thus, in this case we set avtnet to 10 minutes or 600 seconds.
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Fig. 1. This figure represents the relation between block generation time and difficulty
of proof-of work such that using equation 6 when 2016 blocks are generated in less
than 600 seconds (10 minutes), the difficulty is increased and if they are discovered in
more than 10 minutes, then difficulty is decreased.

Acceptable Time for Receiving a New Block. Bitcoin network employs a
multi-hop broadcast to propagate a discovered block in the entire network. This
leads to a few delay till the whole of network receives a new block. This delay time
recently has been simulated and estimated by Decker and Wattenhofer [3]. Figure
2 shows their result for block propagation delay in the entire Bitcoin network.
To see this simulation in more details we invite reader to discover [3]. Decker and
Wattenhofer’s simulation [3] to estimate block propagation delay in the entire
Bitcoin network shows that before 60 seconds the whole of network receives
a published discovered block. We call this delay ipt (information propagation
time).

To calculate a mat (i.e. the maximum acceptable time for receiving a new
block) we add this delay to avtnet as follows: (equation 7)

mat = avtnet + ipt (7)

4.3 ZeroBlock Algorithm

In this section, we describe the ZeroBlock algorithm line by line according to the
Algorithm 1. More in details, each miner, µ, that executes Algorithm 1 performs
the following steps:

– (lines 1 to 11) initialization: where mat0 and scounter() (seconds counter)
are set to 0.

– (line 4) miner µ initiates its local chain by Genesis block.

– (line 5) FlagNewBlock is set to False.
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Fig. 2. Decker and Wattenhofer’s simulation [3] to estimate block propagation delay in
the entire Bitcoin network shows that before 60 seconds the whole of network receives
a published discovered block. We call this delay ipt (information propagation time)

– In (line 12) miner µ starts an infinite loop.

– In (line 13) miner µ checks (FlagNewBlock = False) (that means verifying
if there is not a new block) and also (matindex 6= 0). For the first time,
mat0 = 0 and thus the second condition is not satisfied.

– In (line 17) miner µ increases index and then in (line 18) invokes refresh()
function that performs equation 8.

matindex = matindex−1 + (avtnet + ipt) (8)

– (line 19) While miner µ has time to discover and broadcast a new block
(scounter() ≤ matindex) in (line 20) checks its input to know if there is a
new block received from the network.

– (line 21) If yes, in (line 23) miner µ verifies the answer of PoW for the new
block.

– (line 24) If PoW has been done correctly, µ replaces the local chain by the
new chain and in (line 26) updates the value of FlagNewBlock = True and in
(line 27) leaves the while loop and goes to (line 13) and then since FlagNew-
Block = True goes to (line 17).
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– If there is no new block in its input and scounter() is below avtnet, then
miner µ tries to solve PoW in (line 33).

– If miner can solve PoW, then it generates a new block in (line 35) and broad-
casts it in (line 36).

– In case the given nonce is not answer of PoW (the condition of (line 33) is
incorrect), miner µ increases the nonce (in line 41) and goes back to (line 19).

– If scounter() is more than matindex, immediately miner µ generates a Zer-
oblock in (line 14) and then adds Zeroblock to its local chain (line 15).

– Then, miner µ refreshes index and value of mat in (lines 17 and 18).

– If a Zeroblock is generated, miner µ rejects a selfish block in (line 23) because
the answer of proof-of-work for selfish block is not the correct nonce, since it
does not include the hash of Zeroblock. then miner µ goes to (line 30) and
repeat the algorithm as described above.

4.4 Correctness of Algorithm 1

Theorem 1. Honest miners, regardless of their percentage in the network, never
accept chains infected with unpermitted block-withholding.

Proof. In a mati interval, an honest miner either generates or receives a new
block bi, otherwise it generates a Zeroblock ζbi.

An unpermitted block-withholding occurs if a selfish miner discovers a new
block bsi but keeps the block private after end of mati. At this point, to prevent
unpermitted block-withholding , honest miners generate a Zeroblock ζbi including
the hash of previous block, since they have not received new block bsi which is
discovered by a selfish miner in mati interval.

When mati interval is finished (line 19), honest miners leave the while loop
and go to the (line 12). Since two conditions in (line 12) are satisfied, they
generate a Zeroblock ζbi. This is due to the fact that a new block bi has been
received (thus FlagNewBlock = False) and mati 6= 0 (because, in (line 12), mati
has been updated according to equation 8). A selfish miner (which here is a
creative miner) has kept a new block bsi after end of mati (see Figure 3 that
shows a similar situation in which bs3 that is discovered in mat3 by a selfish
mining pool, smp, has been kept private after end of mat3). Thus, the block bsi
will not be accepted by honest miners, because they have generated a Zeroblock
ζbi at the end ofmati. Therefore, proof-of-work must be restarted from beginning
for discovering the next block, i.e. bi+1, such that its proof-of-work includes the
recent ζbi. At this point, bsi is not acceptable since its proof-of-work has not been
solved based on ζbi.

In other word,
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Algorithm 1 ZeroBlock algorithm

1: index← 0 . index of mat
2: mat[index]← 0 . mat at the beginning is set to zero
3: avtnet ← block generation average time . according to equation (6)
4: localChain← Genesis
5: FlagNewBlock← False
6: nonce← 0
7: HPrB← 0 . hash of previous block
8: T← target
9: newChain← Null

10: ansPoW← 0 . answer of PoW
11: scounter()← 0 . scounter() is a seconds counter
12: while (True) do
13: if (FlagNewBlock = False) AND (mat[index] 6= 0) then
14: Zeroblock← SHF(getHead(localChain)) + SHF(“FixedStringZB”) + index
15: localChain← join(Zeroblock,localChain)
16: end if
17: index← index + 1
18: refresh(mat[index])
19: while (scounter() ≤ mat[index]) do
20: newChain← checkInput()
21: if (newChain 6= Null) then
22: HPrB← SHF(getHead(localChain))
23: if (FHF(HPrB,newChain.ansPoW) ≤ T ) then . proof-of-work is done
24: localChain← newChain
25: newChain← Null
26: FlagNewBlock← True
27: Break
28: end if
29: end if
30: if (scounter() < avtnet) then
31: if (FlagNewBlock = False) then
32: HPrB← SHF(getHead(localChain))
33: if (FHF(HPrB , nonce) ≤ T ) then . proof-of-work succeeded
34: ansPoW← nonce
35: localChain← join(GenerateBlock(),localChain)
36: BroadcastBlock(localChain,ansPoW)
37: FlagNewBlock← True
38: nonce← 0
39: Break
40: end if
41: nonce← nonce + 1
42: end if
43: end if
44: end while
45: end while
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∀ mat∆ :
If (∆ 6= 0) then

∃ (bδ ∨ ζbδ), δ ≥ ∆
else

∃ gb
Thus,

∀ mat∆ :
bδ ∈ X , If (δ < ∆)

where ∆ is index of a mat, δ is index of blocks, X is set of selfish blocks,
b is standard blocks, ζb is Zeroblock, and gb is genesis block. As we can see
this result in Figure 3, where block bs3 belongs to selfish mining pool in mat4 is
rejected by honest miners, since δ < ∆, where δ = 3 and ∆ = 4.

Theorem 2. In a dynamic network, if at least
[n+ 2

2

]
miners are honest, then

when an honest miner joins the network, it can distinguish the correct chain
which belongs to honest miners, when n is size of the network.

Proof. When a new miner joins the network and broadcasts a message including
its address to announce its entrance, other miners respond with the last version
of their local chain. Then, the new miner compares the received chains and
selects the chain belonging to the majority of network. Thus, if half plus one
miners of the network are honest, the honest chain will be chosen by new miner
and it works on the correct chain. Then, the new miner, similar to other miners,
will perform the protocol as described in algorithm 1. According to this process,
each miner is able to leave and re-join the network infinitely.

Note 1. Our hypothesis for theorem 2 is that a new miner connects to the entire
network. But in current Bitcoin protocol, the new node connects to only a subset
of nodes in the network (normally 8 randomly selected nodes). However, if we
assume a situation in which a new node connects to a subset of nodes, then the
new node achieves the correct chain with probability P as follows:

P(at least half plus one nodes from set of selected nods are honest)

= P(h ≥ [σ/2] + 1) =

[σ/2]∑
i=1

P(h = [σ/2] + i) =

[σ/2]∑
i=1

(
η

[σ/2]+i

)(
ψ

σ−([σ/2]+i)

)(
n
σ

)
where n = network size, σ = number of selected nodes to connect, η =

number of honest nodes in the entire network, ψ = number of selfish nodes in
the entire network and h is number of honest nodes in set of selected nodes.

Table 1 shows some numerical examples in different situations, each of which
includes η honest nods and ψ selfish (adversarial) nodes. We try to use a practi-
cal value for size of the network, n, and number of selected nodes for connection,
σ. We thus set n and σ to 5000 [41] and 8 [3], respectively.
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η η percentage ψ ψ percentage P

4750 95% 250 5% ≈ 0.9994%

4250 85% 750 15% ≈ 0.9785%

3750 75% 1250 25% ≈ 0.8862%

3250 65% 1750 35% ≈ 0.7063%
Table 1. The probability that at least half plus one nodes from set of selected nods, σ
are honest. In each example, the network includes η honest nods and ψ selfish (adver-
sarial) nodes. We try to use a practical value for size of the network, n, and number of
selected nodes for connection, σ. We thus set n and σ to 5000 [41] and 8 [3], respectively.

definition 1. We say chains C1 and C2 are homogeneous, if and only if both of
them belongs to the honest pools or both of them belongs to the adversarial
pools.

definition 2. We say chains C1 and C2 are inhomogeneous, if and only if one of
them belongs to the honest pools and the other one belongs to the adversarial
pools.

Note 2. Since, all honest chains are equal to each other, thus the new node
is able to distinguish a set of homogeneous chains. We propose if a new node
receives a set of inhomogeneous nodes, then it must retry to connect to σ nodes
till the new node receives a set of homogeneous nodes. In this case, the new
node eventually achieves a set of chains belongs to adversary if and only if
all σ chains are not correct chain. Thus, the adversarial cartels size needs to
be increased significantly such that with a good probability all σ chains would
not be correct chain. Assume a situation in which only one chain is correct
chain and the rest are not. Then, the new node will retry to connect again to σ
nodes, whilst if the new node consider the majority chains, then it will accept
the adversarial chain.

Thus, we calculate the probability that all σ chains are homogeneous and
correct chain and then the probability that all σ chains are homogeneous and
are not correct chain, respectively, as follows:

P(hcorr) = P(h = σ) =

(
η
σ

)(
n
σ

) P(h = 0) = P(hnotc) =

(
ψ
σ

)(
n
σ

)
and then, we calculate probability that all σ chains are homogeneous regard-

less of chains type as follows:

P(hom) = P(h = σ or h = 0) =

(
η
σ

)
+
(
ψ
σ

)(
n
σ

)
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Then, we define R as the number of retries for connection to σ nodes to
achieve a set of homogeneous chains. Thus, the probability that after m retries3

the new node achieves a set of homogeneous and correct chains is as follows:

P(R = m | ∀ci ∈ SC, ci is correct chain) =

(
1− P(hom)

)m

× P(hcorr)

where, SC is set of received chains, ci is a chain ∈ SC and i ∈ N such that
1 ≤ i ≤ σ.

5 Eventualities

In this section, we describe all possible events in a mati interval (maximum
acceptable time for receiving a new block). To simplify, we consider that the
network consists of two mining pool types, including: two honest mining pools
(hmp1 and hmp2) and a selfish mining pool (smp). We also assume that at time
t = 0 all mining pools have a consensus on the first block, genesis block.

event 1. In a mati, neither honest nor selfish pools discover a new block. Thus,
in such a situation, a Zeroblock ζbi will be generated at the end of mati inter-
val by all honest pools. We remind that Zeroblock generation has no resource
consumption for a miner (that means proof-of-work is not needed to generate a
Zeroblock ζbi and thus its generation time in negligible.) Consequently, hash of
this Zeroblock will be used for discovering the next block. It means that answer
of proof-of-work (nonce) for discovering the next block is depended on this Zer-
oblock (since hash of previous block is used in proof-of-work and thus affects its
answer.) As a result, if a selfish mining pool does not generate this Zeroblock,
then it will not be able to find the correct answer of proof-of-work for next block
(since all honest mining pools at time of verifying answer of proof-of-work will
reject any nonce that has not been earned from hash of this Zeroblock.) (see
Figure 3, Part (a).)

event 2. In a mati, the first pool which discovers a new block is honest mining
pool. Thus, it immediately broadcasts discovered block to the entire network
and then starts to discovering the next block. Then, other pools receive this
new block within ipt time interval (i.e. information propagation time in Bitcoin
network which is simulated and estimated in [3].) Thus, other mining pools after
receiving and verifying this new block starts to discovering the next block. As a
result, the block creator will begin to discovering the next block a little sooner
than the rest of network. The maximum of this time is ipt. This is because of a few
delay for information propagation in Bitcoin network. This might be considered
as a time reward for the block creator that increases the miners’ motivation to
be the first one who discovers a new block. Thus, this few advantage for time

3 When m = 1 it means that the new node one time has tried to connect to σ nodes
previously but it has not achieved a set of homogeneous chains.
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dedicated to block creator is not unfair since creator mining pool is the first one
who discovered new block and for this it receives a few time reward. However,
this time difference according to simulations in [3] is less than one minute. (see
Figure 3, Part (b).)

event 3. In a mati, the first pool which discovers a new block is selfish mining
pool. Then, selfish pool keeps the block private until end of mati and does not
broadcast its block. We assume that by this time, honest mining pools could not
discover a new block. Thus, honest pools generate a Zeroblock ζbi and restart to
find the answer of proof-of-work based on hash of this Zeroblock. Consequently,
the next new block is acceptable by honest pools if its proof-of-work has been
solved base on this Zeroblock. As a result, this selfish block will be rejected by
honest pools. (see Figure 3, Part (c), point γ.)

event 4. In a mati, the first pool which discovers a new block is selfish mining
pool (bsi at the point α in Figure 4). Then, selfish pool decides to keep the block
private until end of mati. At the point β (see Figure 4) an honest mining pool
discovers a new block, bsi . As soon as honest pool broadcasts the block bhi , selfish
pool broadcasts block bsi to create an accidental fork. Thus, a part of network
receives bsi and works on this block and a portion of the network works on bhi .
As a result, with a probability one of bsi or bhi will be winner block and another
one is ignored as orphan block and eventually the winner block creator (smp or
hmp1) will receive the respective reward. Whereas, if selfish pool at point α had
broadcast its block, bsi , it had received the reward as the first block creator with-
out any rival with probability of 100%. Consequently, selfish pool with delay in
broadcasting its block, bsi , caused to reducing probability of earning the reward.
An action which is in contrast to the main purpose of block-withholding that is
“achieving more reward”. We call this event as “unprofitable block-withholding”.
As a result, the selfish mining pool is not incentive to reduce its chance for re-
ceiving the reward. However, we calculate the maximum probability of event 4,
when the selfish mining pool has maximum possible percentage of hashing power
of the network. Regarding to 51% attack, the selfish pool at most can have 49%
of total hashing power of the network, because otherwise selfish mining pool can
get control of the network.

Maximum Probability of event 4. The proof-of-work is a Poisson process and
also the difficulty of proof-of-work is adjusted regarding to hashing power of the
network such that the expected time to discover the next block is 10 minutes
[32,33,34,35,36,37,38,39]. Thus, the probability that ρ blocks to be discovered in
a time interval in which we expect the network discovers λ blocks, is equal to
equation 8.

Prob(ρ|λ) =
e−λ.λρ

ρ!
(9)

For example, if we want to calculate the probability of discovering one, two,
three and four blocks in 10 minutes, in descending order, is as follows:
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Prob(ρ = 1|1) = e−1 ≈ 0.36

Prob(ρ = 2|1) =
e−1

2!
≈ 0.18

Prob(ρ = 3|1) =
e−1

3!
≈ 0.06

Prob(ρ = 4|1) =
e−1

4!
≈ 0.01

Prob(ρ ≥ 5|1) =
e−1

5!
≈ 0

where: the expected number of blocks to be discovered in 10 minutes is λ = 1.

Fig. 3. smp: selfish mining pool, hmp1: first honest mining pool, hmp2: second honest
mining pool. Part (a) represents event 1 : In mat1, neither honest nor selfish pools
discover a new block. Part (b) represents event 2 : In mat2, the first pool which discovers
a new block is honest mining pool. Part (c) represents event 3 : In mat3, the first pool
which discovers a new block is selfish mining pool, then at point γ when honest pool
discovers block bh4 selfish pool broadcasts bs3 to create an intentional fork, but thanks
to Zeroblock ζb3 it will be rejected by honest pools since it does not consist of hash of
Zeroblock ζb3.
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Fig. 4. The selfish pool, smp, discovers a new block bsi at the point α and keeps the
block privately till point β at which an honest pool, hmp1, generates block bhi . at this
point, selfish pool broadcasts bsi to create an intentional fork. The maximum proba-
bility of this event has been calculated above, (≈ 0 .04 ). Also as we described, such
block-withholding is unprofitable and reduces the probability of receiving the respec-
tive selfish pool’s rewards. The result that decreases the motivation of selfish mining
pool for such selfish behavior.

And the maximum probability that in 10 minutes two blocks are discovered
such that the first one is generated by selfish mining pool with the hashing power
of sp = 0 .49 and the second one is generated by honest mining pool with the
hashing power of hp = 0 .51 is as follows:

Maximum Possible Probability (event 4 ) =
(
sp.e−sp

)(
hp.e−hp

)
× sp

≈ 0 .3 × 0 .3 × 0 .49 ≈ 0 .04

Note that as we mentioned above if event 4 occurs, selfish pool reduces
its likelihood for receiving the respective reward. This an “unprofitable block-
withholding” (see event 4.) Even if the purpose of selfish pool is only a sabotage,
it has to deplete its limited computational resource for achieving an event that
in best case for the selfish pool has a low probability (at most ≈ 0 .04 ). This
leads to reduce selfish pool’s motivation to perform such behavior. Note that this
probability is for the case the selfish pool has its maximum possible hashing
power (i.e. 49% of total hashing power of the network) regarding to 51% attack.

5.1 Keynote

– Each honest miner after receiving and accepting a new standard block bi
removes all Zeroblocks between bi and previous standard block (see Figure
5).

– Note that use of mat time interval does not increase the selfish miner’s
motivation to keep the honest blocks. For example, if a selfish miner keeps
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Fig. 5. This Figure demonstrates a situation when between standard blocks bi and
bi−n−1 there are some Zeroblocks from ζbi−1 to ζbi−n that will be removed after
accepting standard block bi by honest node. Note that even after removing Zer-
oblocks from the Blockchain, the standard block bi still includes the hash of Zeroblocks
(ζbi−1, ..., ζbi−n) and thus in the future, all of honest nodes are able to understand that
between bi and bi−n−1 there have been Zeroblocks.

an honest block to expire it, this is not because of using mat time interval.
Because, without using mat in the algorithm (like standard Bitcoin protocol)
a selfish miner might do this sabotage behavior (means that keeping new
honest block “forever”) since this miner is “selfish” and motivated to prevent
publishing the blocks which do not belong to selfish mining pool.

– Note that it is not possible to generate a Zeroblock anytime, anywhere and
in any number. To understand better how to generate a Zeroblock, we invite
reader to discover algorithm 1 line 12, along with Figure 3.

– Since, there is no need for proof-of-work to generate a Zeroblock, thus ζb is
not counted for updating the difficulty of proof-of-work. It means that if, for
example, the difficulty of proof-of-work is updated every 2016 blocks, in this
case only the standard blocks will be counted. As a result, our idea does not
affect the difficulty target.

– The timestamps are unreliable and forgeable and thus in our algorithm no
timestamp is inserted in the blocks and hence our solution is a timestamp-
free idea contrary to the recent solution proposed by [23].

6 Conclusion

In this paper, we introduced a new timestamp-free solution to prevent block-
withholding or selfish mining as one of the most important problems of the
Bitcoin network. We demonstrated that if a selfish miner wants to keep its
block bsi private more than mati interval, that is the average time in which the
whole of network is expected to discover a new block regarding to the hashing
power of the network, then selfish block will be rejected by the honest miners.
Also, since the result of selfish mining is intentional fork, thus our approach
reduces significantly forking the Blockchain by preventing “unpermitted block-
withholding”. Furthermore, we demonstrated that our solution is compliant to
nodes churn. That is, nodes that freshly enter the system are able to retrieve the
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“correct chain” provided that a majority of nodes are honest. Our idea does not
lead to any additional delay, since our solution is based on the Bitcoin protocol
configuration for block generation rate that on average is “one block per 10
minutes (i.e. avtnet”). ZeroBlock solution is a step further in solving one of the
major problems in Bitcoin and can be used also as an altcoin, (a term refers to a
cryptocurrency based on the Blockchain technology [30]) or in conjunction with
other cryptocurrencies.
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