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ABSTRACT

This paper presents a new technique for hyperspectral images
classification based on simultaneous sparse approximation.
The proposed approach consists in formulating the problem as
a convex multi-objective optimization problem which incor-
porates a term favoring the simultaneous sparsity of the esti-
mated coefficients and a term enforcing a regularity constraint
along the rows of the coefficient matrix. We show that the
optimization problem can be solved efficiently using FISTA
(Fast Iterative Shrinkage-Thresholding Algorithm). This ap-
proach is applied to a wood wastes classification problem us-
ing NIR hyperspectral images.

Index Terms— Hyperspectral image classification, si-
multaneous sparse approximation, regularization constraint,
FISTA

1. INTRODUCTION

The sparse representation has been widely used in different
areas such as compression [1, 2], sparse modeling of sig-
nals and images [3] and pattern recognition [4]. Recently,
this framework has been also introduced in hyperspectral un-
mixing and spectral analysis [5], classification problems [6]
and hyperspectral image classification [7]. It consists in rep-
resenting a signal using a minimum number of vectors from
an overcomplete dictionary. Structured, group and simultane-
ous sparse models are extensions allowing to enforce certain
structural constraints. For instance, in the simultaneous case,
one seeks to reconstruct an observations matrix with elemen-
tary signals sharing the same sparsity profile. In the context of
classification, Turlach et al. [8] investigated a sparse represen-
tation for simultaneous variables selection using the Lasso al-
gorithm. In [9], the generalized fused Lasso algorithm is used
for diagnosis of Alzheimer’s disease established as a classifi-
cation task.

The present work is motivated by NIR hyperspectral im-
age classification of wood wastes. The goal is to determine
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two categories, namely: recyclable and not recyclable (pol-
luted). Wood wastes may contain various wood species with
different compositions and sources. Moreover, their spectra
share several common characteristics. In fact, only a few im-
perceptible peaks in the spectra can be used as distinctive fea-
tures, thus making good discrimination difficult to achieve.
Hence, a variables selection stage is necessary to select, from
the whole spectrum, the wavelengths that result in a maxi-
mum accuracy of spectra reconstruction while discriminating
the wood samples at best.

In our recent work [10], we proposed a features selection
algorithm based on the `0 norm, for classification issue. This
algorithm performs in two stages. First, using a greedy al-
gorithm, it computes a simultaneous sparse decomposition of
the observation matrix. Then, assuming that the columns of
this matrix have a meaningful ordering (i.e the spectra cor-
responding to the same group of wood appear in adjacent
columns), it applies a regularization constraint using `1 norm
along the coefficients matrix rows. In contrast, the approach
proposed in the present work deals with the sparsity constraint
and regularization jointly by substituting the `0 norm by the
`1 norm. This relaxation enforces the selection of the most
regular variables for the training phase. Moreover, we exploit
spatial informations of hyperspectral images of wood wastes
acquired according to the scheme depicted in Figure 1. In
such equipment, wood wastes samples are put on a conveyor
which moves along the y dimension. The spectra are captured
line by line, thus defining the x direction. This type of ap-
plication motivates the regularization applied along the rows
(corresponding to the x direction) of the hyperspectral image.
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Fig. 1. Hyperspectral images acquired by an industrial NIR
spectro-imager



In this context, it has been shown that combining spectral and
spatial information improves the classification performances
of hyperspectral data (detailed overview of these techniques
is provided in [11]).

The paper is organized as follows: Section 2 introduces
the general framework including the formulation of the simul-
taneous sparse fused Lasso problem and resolution scheme
using FISTA algorithm. The experiments conducted on real
hyperspectral images of wood wastes and classification re-
sults obtained using support vector machines (SVM) are pre-
sented in 3. Section 4 concludes the paper.

2. FUSED SPARSE LASSO ALGORITHM (FSLA)

2.1. Problem statement

Given an observation matrix Y ∈ CM×K and a dictionary
Φ ∈ CM×N (M < N ), the simultaneous sparse approxima-
tion problem consists in finding the solution X which mini-
mizes the following cost function:

J0(X) =
1

2
||Y −ΦX||2F s.t. ||X||0,2 6 s (1)

where s is the sparsity parameter. The coefficient matrix X =
[x1,x2, ...,xK ] is a sparse matrix where xi is the i-th col-
umn of X. The support of X corresponds to the set of active
atoms Γ such that: supp(X) = {1 ≤ i ≤ N |xi 6= 0} :=
||X||0,2, where xi stands for the transpose of the i-th row of
X. Here, we propose to relax the mixed `0/`2 constraint into
the tractable `1/`1 norm1. Moreover, we include a term pro-
moting the reconstruction of piecewise constant rows in the
coefficient matrix. So the new criterion is written as:

J1(X;λ1, λ2) =
1

2
||Y−ΦX||2F + λ1||X||1,1 + λ2||DX||1,1

(2)
where λ1, λ2 ≥ 0, ||X||1,1 is the mixed `1/`1-norm of X and
D is a finite difference operator applied along the rows of X:

||DX||1,1 :=

N∑
i=1

K−1∑
j=1

|Xi,j −Xi,j+1|. (3)

Thus we seek to find X that minimizes (2). This problem can
be seen as an extension of the 1D sparse fused Lasso problem
to the simultaneous case. The single measurement problem
was first studied and solved by Tibshirani in [12]. Here, we
propose to develop the multiple measurement version which
we solve using appropriate transformations combined to the
proximal gradient method FISTA [13].

1In fact, the `1/`2 mixed norm is more appropriate to preserve the simul-
taneous character of the problem. We already investigated this alternative.
The resulting algorithm will be presented in a future work.

2.2. Resolution scheme

The criterion (2) is rewritten as:

J1(X;λ1, λ2) = f(X) + g(X) + h(X) (4)

where

f(X) =
1

2
||Y −ΦX||2F (5)

g(X) = λ1||X||1,1 (6)
h(X) = λ2||DX||1,1 (7)

Equation (5) is the least-squares error in the cost function.
The non-smooth terms in (6) and (7) correspond to the spar-
sity and the fusion penalties, respectively. Due to these penal-
ties, solutions of (4) tend to be sparse and piecewise smooth,
i.e. two consecutive columns of X are similar.

Let x = vec(XT ) and y = vec(YT ). Then, we have:

f(X) =
1

2
||vec(YT )− vec(XTΦT )||22 (8)

=
1

2
||y − (Φ⊗ IK)x||22. (9)

where ⊗ stands for the Kronecker product. Using similar
tricks, we can write:

g(X) = λ1||x||1 (10)
h(X) = λ2||(IN ⊗D)x||1. (11)

where D is a matrix of finite differences of order 1 and dimen-
sion (K−1)×K. Finally, the cost function may be rewritten
in the following vector form:

J ′1(x;λ1, λ2) =
1

2
||y−Ax||22 + λ1||x||1 + λ2||Fx||1 (12)

with A = Φ⊗ IK and F = IN ⊗D.

2.3. FISTA algorithm solution

FISTA is an extension of the Nesterov’s gradient-based
method ISTA used to solve problems including smooth and
non-smooth terms. The advantage of FISTA is its global con-
vergence rate which is proven to be significantly better [13].
Denoting by k the FISTA iteration, the update of x is based
on the proximal regularization of the objective function at
the previous iteration x(k). So, considering the non-smooth
regularization term:

Ω(x) = λ1||x||1 + λ2||Fx||1 (13)

the update of vector x(k) is:

x(k+1) = arg min
x

(
Ω(x) +

L

2
||x− v(k)||22

)
(14)



where v(k) = x(k) − 1
L∇f(x(k)), f(x) = 1

2 ||y −Ax||22 and
∇f(x) is the gradient of f(x) with Lipschitz constant L > 0.
The optimization problem in (14) can be rewritten as follow:

x(k+1) = arg min
x

1

2
||x− v(k)||22 +

λ1

L
||x||1 +

λ2

L
||Fx||1

(15)
This problem is similar to the fused Lasso signal approxima-
tor (FLSA) problem [14]. The difference lies in the struc-
ture of the fused term. Indeed, in (15), the matrix F imposes
no regularity between the last and the first elements of two
successive rows in X. In fact, the expression in (15) can be
seen as a particular case of the generalized fused Lasso prob-
lem [9]. Besides, an in-depth examination of (15) reveals that
the problem is decomposable and, thus, may be solved for
each row i of the coefficient matrix X:

xi(k+1) = arg min
x

1
2 ||x− vi(k)||

2
2 + λ1

L ||x||1 + λ2

L ||Dx||1

V(k) = X(k) + 1
LΦT (Y −ΦX(k)).

(16)
for i = 1, . . . , N . Consequently, the optimization cost is sig-
nificantly reduced allowing its use for high dimensional prob-
lems. Moreover, the matrices ΦTY and ΦTΦ may be com-
puted once and stored, which also helps to reduce memory re-
quirements. For each i, the problem is solved using the FLSA
routine implemented in SLEP package2.

3. CLASSIFICATION OF HYPERSPECTRAL
IMAGES OF WOOD WASTES

3.1. Data processing

Different wood samples are labeled by experts according to
their groups. We distinguish two categories of wood wastes:
recyclable and not recyclable as presented in Table 1. First,
we extract the spectra corresponding to these samples using
a Nicolet 8700 FTIR spectrometer continuously purged with
ultrapure N2. The NIR reflectance spectra are recorded in the
range 3000-10000 cm−1. A gold mirror was used as reference
and the spectral resolution was 16 cm−1 with 100 scans co-
added for each spectrum. Then, the spectra are subsampled
by a factor 4 and we proceed to data pre-processing includ-
ing baseline removal and normalization. As a result, the 419
spectra from category 1 and 2 are grouped in the columns of
the data matrix Y ∈ R412×419.

3.2. Variables selection

Variables selection is performed using equation (16). The dic-
tionary Φ is composed of normalized Gaussian atoms. Each
gaussian has a width σ varying from 31 to 600 with step
31 cm−1. Their locations (centers) start at 3405 cm−1 and

2http://yelab.net/software/SLEP/

Table 1. Composition of the two categories of wood wastes
Category 1: To recyclable Category 2: To reject

Groups Name Groups Name
1.1 raw wood 2.1 MDF-HDF
1.2 painted solid wood 2.2 painted MDF-HDF
1.3 vanished solid wood 2.3 surfaced MDF-HDF
1.4 vanished plywood 2.4 raw fiber board
1.5 raw particle board 2.5 surfaced fiber board
1.6 surfaced particle board 2.6 solid wood metal salts
1.7 painted particle board - -
1.8 raw plywood - -
1.9 surfaced plywood - -

are separated by σ. We tested several values for both spar-
sity and regularization parameters. A good reconstruction
of the spectra with the desired sparsity level is obtained for
λ1 = λ2 = 100. This configuration produces 48 variables (i.e
set of active atoms Γ) that are presented in Figure 2. Some of
these variables exhibit low dispersion of intensity. They of-
ten correspond to the most discriminative variables. The pro-
posed approach leads to a good approximation of the spec-
tra. For instance, the reconstruction of two spectra from the
two categories are presented in Figure 3. Finally, the train-
ing is performed on the re-estimated coefficients (to reduce
the bias introduced by the `1 penalties) of the selected sub-
set of variables using the dictionary of active atoms ΦΓ and
λ1 = λ2 = 0. Hence, training model is obtained using
quadratic kernel SVM by learning the separating hyperplane.
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Fig. 2. Intensity dispersion of the 48 variables obtained using
the proposed FSLA
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Fig. 3. Reconstruction of spectra from the two categories us-
ing the selected coefficients. (a) Category 1; (b) Category 2



Table 2. Classification error rates for four different noise levels
Reg. parameter SNR = -5 dB SNR = 0 dB SNR = 5 dB SNR = 10 dB

Type I error Type II error Type I error Type II error Type I error Type II error Type I error Type II error
λ2 = 0 34.73% 35.40% 20.37% 25.58% 6.27% 19.37% 0.61% 8.71%
λ2 = 1 24.37% 25.39% 8.88% 13.62% 0.52% 3.99% 0.35% 0.09%
λ2 = 2 18.54% 24.37% 5.48% 9.36% 3.05% 1.85% 0.35% 0.00%
λ2 = 3 17.67% 18.87% 4.26% 3.89% 1.22% 0.37% 0.61% 0.00%
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Fig. 4. Image reconstruction results for SNR = 0 dB. Black and red colors for category 1 and 2, respectively. (a) Ground truth;
(b) λ2 = 0; (c) λ2 = 1; (d) λ2 = 2; (e) λ2 = 3; (f) λ2 = 10
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Fig. 5. Total classification error rate (in %) versus λ2 for dif-
ferent values of SNR

3.3. Hyperspectral image classification

The acquisition process of hyperspectral images is composed
of a conveyor on which the wood wastes samples progress at
a speed of 3 m/s, a focused illumination system and an acqui-
sition cabin which extracts the NIR spectra of samples row
by row at a resolution of 12 mm. The experiments presented
here consist in simulating this type of applications using real-
world wood spectra. We start with an image of resolution
28 × 225 pixels representing wood samples, as depicted in
Figure 4(a). The three-dimensional hyperspectral data cube
S is then generated by affecting to each active pixel (black or
red) a real spectrum from our database. As a result, the size
of the data cube is is 28× 225× 412. Finally, S is perturbed
by an additive white Gaussian noiseN such that the SNR de-
fined by SNR := ‖S‖2F /‖N‖2F is varying between −5 and
10 dB.

The proposed algorithm is applied to the noisy hyperspec-

tral cube slice by slice3. The aim is to study how the spatial
regularization influences the classifier performances. Thus,
the coefficients are estimated using the dictionary ΦΓ with
parameters λ1 = 0 (the variables are already selected) and λ2

varying from 0 to 8 for each slice successively. Thereafter, the
classification is carried out on the resulting decomposition us-
ing the training model. Classification error rates are reported
in Table 2 for three values of SNR. For each test we compute
the true negative rate (Type I error) and the false positive rate
(Type II error).

The classification error rates obtained confirm the impor-
tance of using joint spectral and spatial regularization. In-
deed, for SNR ≥ 0 dB, the classification error is less than
5% when λ2 = 3. At low SNR, the value of the regulariza-
tion parameter λ2 has to be increased in order to achieve a
minimum classification error as shown in Figure 5. We note
in particular that the total classification error decreases sig-
nificantly for the four tests for λ2 between 0.5 and 5.5. The
images obtained from the labeled coefficients are presented
in Figure 4 for some values of λ2. When no regularization is
applied (λ2 = 0), we observe the salt-and-pepper appearance
resulting from classification errors. Here, the best reconstruc-
tion is obtained for λ2 = 3.

4. CONCLUSION

In this paper, we presented a sparse simultaneous fused Lasso
algorithm for hyperspectral image classification. It is based
on the minimization of a multi-objective convex cost func-
tion including, in particular, a sparse and a piecewise constant

3The size of each slice is 412× 225.



regularization constraints. Using a FISTA iteration, we have
shown that the criterion may be solved efficiently thanks to
the fused Lasso signal approximator (FLSA), applied on each
row of the coefficient matrix. The resulting algorithm has a
low computational cost suitable for large-scale problems. The
proposed approach is used for wood wastes NIR spectra vari-
ables selection. Then, spatial information of hyperspectral
images is exploited to increase classification performances.
Results in terms of classification error rates show the effec-
tiveness of the proposed algorithm.
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