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Big Data Meets Telcos: A Proactive Caching
Perspective

Ejder Bastug, Mehdi Bennis, Engin Zeydan, Manhal Abdel Kader, Alper Karatepe, Ahmet Salih Er, and
Meérouane Debbah

Abstract: Mobile cellular networks are becoming increasingly com-
plex to manage while classical deployment/optimization techniques
and current solutions (i.e., cell densification, acquiring more spec-
trum, etc.) are cost-ineffective and thus seen as stopgaps. This calls
for development of novel approaches that leverage recent advances
in storage/memory, context-awareness, edge/cloud computing, and
falls into framework of big data. However, the big data by itself is
yet another complex phenomena to handle and comes with its no-
torious 4V: velocity, voracity, volume and variety. In this work, we
address these issues in optimization of 5G wireless networks via the
notion of proactive caching at the base stations. In particular, we
investigate the gains of proactive caching in terms of backhaul of-
floadings and request satisfactions, while tackling the large-amount
of available data for content popularity estimation. In order to es-
timate the content popularity, we first collect users’ mobile traffic
data from a Turkish telecom operator from several base stations in
hours of time interval. Then, an analysis is carried out locally on a
big data platform and the gains of proactive caching at the base sta-
tions are investigated via numerical simulations. It turns out that
several gains are possible depending on the level of available infor-
mation and storage size. For instance, with 10% of content ratings
and 15.4 Gbyte of storage size (87% of total catalog size), proactive
caching achieves 100% of request satisfaction and offloads 98% of
the backhaul when considering 16 base stations.

Index Terms: Proactive caching, content popularity estimation, big
data, machine learning, 5G cellular networks.

I. INTRODUCTION

HE unprecedented increase in data traffic demand driven

by mobile video, online social media and over-the-top
(OTT) applications are compelling mobile operators to look
for innovative ways to manage their increasingly complex net-
works. This explosion of traffic stemming from diverse do-
main (e.g., healthcare, machine-to-machine communication,
connected cars, user-generated content, smart metering, to men-
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tion a few) have different characteristics (e.g., structured/non-
structured) and is commonly referred to as Big Data [1]. While
big data come with "big blessings" there are formidable chal-
lenges in dealing with large-scale data sets due to the sheer vol-
ume and dimensionality of the data. A fundamental challenge
of big data analytics is to shift through large volumes of data in
order to discover hidden patterns for actionable decision mak-
ing. Indeed, the era of collecting and storing data in remote
standalone servers where decision making is done offline has
dawned. Rather, telecom operators are exploring decentralized
and flexible network architectures whereby predictive resource
management play a crucial role leveraging recent advances in
storage/memory, context-awareness and edge/cloud computing
[2-4]. In the realm of wireless, big data brings to network
planning a variety of new information sets that can be inter-
connected to achieve a better understanding of users and net-
works (e.g., location, user velocity, social geodata, etc.). More-
over, public data from social networks such as Twitter and Face-
book provides additional side information about the life of the
network, which can be further exploited. The associated ben-
efits are a higher accuracy of user location information or the
ability to easily identify and predict user clustering, for example
for special events. Undoubtedly, the huge potential associated
with big data has sparked a flurry of research interest from in-
dustry, government and academics (see [5] for a recent survey),
and will continue to do so in the coming years.

At the same time, mobile cellular networks are evolving to-
wards the next generation of 5G wireless communication, in
which ultra-dense networks, millimetre wave communications,
massive multiple-input multiple-output (massive-MIMO), edge
caching, device-to-device communications play a pivotal role
(see [6] and references therein). Unlike the base station-centric
architecture paradigm assuming dumb terminals and in which
network optimization is carried out in a reactive way, 5G net-
works will be truly disruptive in terms of being user-centric,
context-aware and proactive/anticipatory in nature. While con-
tinued evolution in spectral efficiency is expected, the maturity
of air interfaces of current systems (LTE-Advanced) mean that
no major improvements of spectral efficiency can be anticipated.
Additional measures like the brute force expansion of wireless
infrastructure (number of cells) and the licensing of more spec-
trum are prohibitively expensive. Thus, innovative solutions are
called upon.

In this work, based on the motivations and issues above,
we are intent to propose a proactive caching architecture for
optimization of 5G wireless networks where we exploit large
amount of available data with the help of big data analytics and
machine learning tools. In other words, we investigate the gains

1229-2370/15/$10.00 © 2015 KICS



of proactive caching both in terms of backhaul offloadings and
request satisfactions, where machine learning tools are used to
model and predict the spatio-temporal user behaviour for proac-
tive cache decision. By caching strategic contents at the edge
of network, namely at the base stations, network resources are
utilized more efficiently and users’ experience is further im-
proved. However, the estimation of content popularity tied with
spatio-temporal behaviour of users is a very complex problem
due to the high dimensional aspects of data, data sparsity and
lack of measurements. In this regard, we present a platform to
parallelize the computation and execution of the content pre-
diction algorithms for cache decision at the base stations. As
a real-world case study, a large amount of data collected from
a Turkish telecom operator, one of the largest mobile operator
in Turkey with 16.2 million of active subscribers, is examined
for various caching scenarios. Particularly, the traces of mobile
users’ activities are collected from several base stations in hours
of time interval and are analysed inside the network under the
privacy concerns and regulations. The analysis is carried out on
a big data platform and caching at the base stations has been
investigated for further improvements of users’ experience and
backhaul offloadings.

A. Prior Work and Our Contribution

The use of big data in mobile computing research has been
investigated recently such as in [7]. The idea of caching at
the edge of wireless network has also been studied in various
works [8—14], including proactive caching for 5G wireless net-
works [2]. In detail, a proactive caching procedure using perfect
knowledge of content popularity is studied in [8]. A caching
architecture (namely FemtoCaching) relying on cache-enabled
user devices and small base stations is introduced in [9]. The
caching problem as a many-to-many matching game is formu-
lated in [11] and caching gains are characterized numerically.
Deployment aspects of cache-enabled base stations via stochas-
tic geometry tools is investigated in [10] where the outage prob-
ability is derived as a function of signal-to-interference-plus-
noise ratio (SINR), base station density and storage size. For
optimal cache allocations, an approximation framework based
on a well-known facility location problem is given in [12]. The
impact of unknown content popularity on cache decision is char-
acterized in [14]. The advantage of multicast transmission to-
gether with caching at the base station is investigated in [13].
We refer our readers to [15] for a recent survey and more com-
prehensive details.

Compared to the works mentioned above, our main contribu-
tion in this work is to make tighter connections of big data phe-
nomena with caching in 5G wireless networks, by proposing a
proactive caching architecture where statistical machine learn-
ing tools are exploited for content popularity estimation. Com-
bined with a large-scale real-world case study, this is perhaps
the first attempt on this direction and highlights a huge potential
of big data for 5G wireless networks.

The rest of paper is organized as follows. Our network
model for proactive caching is detailed in Section II. A prac-
tical case study of content popularity estimation on a big data
platform is presented in Section III, including a characteriza-
tion of users’ traffic pattern. Subsequently, numerical results for
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cache-enabled base stations and relevant discussions are carried
out in Section IV. We finally conclude in Section V and draw
our future directions in the same section.

II. NETWORK MODEL

Suppose a network deployment of M small base stations
(SBSs) from the set M = {1,..., M} and N user terminals
(UTs) from the set N' = {1,..., N}. Each SBS m has access
to the broadband Internet connection via a wired backhaul link
with capacity C,,, Mbyte/s, and is able to provide this broad-
band service to its users via a wireless link with total capacity of
C]. Mbyte/s. Due to the motivation that the backhaul capacity
is generally limited in densely deployed SBSs scenarios [6], we
further consider that Cy,, < CJ,. Also, assume that each user
n € N is connected to only one SBS and is served via unicast
sessions'. In particular, we assume that UTs request contents
(i.e., videos, files, news, etc.) from a library F = {1,...,F},
where each content f in this library has a size of L(f) Mbyte
and bitrate requirement of B(f) Mbyte/s, with

Lpax = }nea;__({L(f)} <o 2

and
Bmin = ?g_r}!{B(f)} >0 (3)
)

Brax = &neaé{B(f)} < 0.

The users’ content requests in fact follow a Zipf-like distribution
Pr(f),Vf € F givenas [17]:

&)

where

i=1
The parameter « in (5) describes the steepness of the distribu-
tion. This kind of power laws is used to characterize many real-
world phenomena, such as the distribution of files in the web-
proxies [17] and the traffic dynamics of cellular devices [18].
Higher values of « corresponds to a steeper distribution, mean-
ing that a small subset of contents are highly popular than the
rest of the catalog (namely users have very similar interests).
On the other hand, the lower values describe a more uniform be-
haviour with almost equal popularity of contents (namely users
have more distinct interests). The parameter « can take differ-
ent values depending on users’ behaviour and SBSs deployment
strategies (i.e., home, enterprise, urban and rural environments),
and its practical value in our experimental setup will be given in
the subsequent sections.

Given such a global content popularity in the decreasing or-
dered case, the content popularity matrix of the m-th SBS at
time ¢ is specifically described by P™(¢) € RY*¥ where each

LThe unicast service model can also be extended to the multicast case. See
[13,16] for studies in this direction.
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Fig. 1: An illustration of the network model.
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cache-enabled base stations store the strategic contents predicted on the big data platform.

entry P;";(t) corresponds to the probability that the n-th user
requests the f-th content. In fact, the matrix P™ () is the local
content popularity distribution observed at the base station m at
time ¢, whereas the Zipf distribution Pr(f),Vf € F is used
to characterize the global content popularity distribution of all
contents in (decreasing) sorted order.

In this scenario, we consider that each SBS has a finite storage
capacity of .S,,, and proactively caches selected contents from
the library F during peak-off hours. By doing so, the bottle-
necks caused by the limited-backhaul are avoided during the de-
livery of users’ content requests in peak hours. The amount of
satisfied requests and backhaul load are of paramount impor-
tance and are defined as follows. Suppose that D number of
contents are requested during the duration of 7" seconds, and are
represented by the set D = {1, ..., D}. Assume that the delivery
of content is started immediately when the request d € D arrives
to the SBS. Then, the request d is called satisfied if the rate of
content delivery is equal or higher than the bitrate of the content
in the end of service, such as:

L(fa)
' (fa) — 7(fa)

where fy describes the requested content, L(fy) and B(f;) are
the size and bitrate of the content, 7(f;) is the arrival time of
the content request and 7’(f;) the end time delivery.? Defining
the condition in (6) stems from the fact that, if the delivery rate
is not equal nor higher than the bitrate of the requested content,
the interruption during the playback (or download) occurs thus
users would have less quality-of-experience (QoE)>. Therefore,
the situations where this condition holds are more desirable for
better QoE. In (6), note also that the end time of delivery for

> B(fa) (6)

20ne can also consider/exploit future information (i.e., start time of requests,
end time of content delivery) in the context of proactive resource allocation (see
[19] for instance).

31n practice, a video content has typically a bitrate requirement ranging from
1.5 to 68 Mbit/s [20].

request d, denoted by 7/(d), highly depends on the load of the
system, capacities of the backhaul and wireless links as well as
availability of contents at the base stations. Given this definition
of satisfied requests and related explanations, the users’ aver-
age request satisfaction ratio is then defined for the set of all
requests, that is:

_1 L)
D)=5 2 1 {T%fd) )

deD

> B(fd)} )

where 1 {...} is the indicator function which takes 1 if the state-
ment holds and 0 otherwise. Now, denoting R;(t) Mbyte/s as
the instantaneous rate of backhaul for the request d at time ¢,
with R4(t) < C,,, Ym € M, the average backhaul load is then
expressed as:

7' (fa)
1 1
pD)=5> T 72 Ry(t). ®)
deD t=7(fa)

Here, the outer sum is over the set of all requests whereas the
inner sum gives the total amount of information passed over the
backhul for request d which is at most equal to the length of
requested file L(f;). The instantaneous rate of backhul for re-
quest d, denoted by R4(t), heavily depends on the load of the
system, capacity of the backhaul link and cached contents at the
base stations.

In fact, by pre-fetching the contents at the SBSs, the access
delays to the contents are minimized especially during the peak
hours, thus yielding higher satisfaction ratio and less backhaul
load. To elaborate this, now consider the cache decision matrix
of SBSs as X (¢) € {0, 1}M*F where the entry z,, ;(t) takes 1
if the f-th content is cached at the m-th SBS at time ¢, and 0 oth-
erwise. Then, the backhaul offloading problem under a specific



request satisfaction constraint is formally given as follows:

O ©
subject to  Lmin < L(f4) < Luax, Vd € D, (9a)
Buin < B(fa) < Bmax, vd € D, (9b)
Ry(t) < Cp, Vt,Vd € D,Ym € M, (9¢c)
Ri(t)<C!, Vt,¥Yd € D,Ym € M, (9d)
> L(H)Tmf(t) < Sy VEYMEM, (9e)
fer
S> Pt =1, Vt,¥Ym e M, (9f)
neN feF
Tm,r(t) € {0,1}, Vt,VfeF,¥YmeM, 9g)
Nmin < 1(D), (%h)

where R/,(t) Mbyte/s describes the instantaneous rate of wire-
less link for request d and 7y, represents the minimum target
satisfaction ratio. In particular, the constraints (9a) and (9b) are
to bound the length and bitrate of contents in the catalog for fea-
sible solution, the constraints (9¢) and (9d) are the backhaul and
wireless link capacity constraints, (9¢) holds for storage capac-
ity for caching, (9f) is to ensure the content popularity matrix as
a probability measure, (9g) denotes the binary decision variables
of caching, and finally the expression in (9h) is the satisfaction
ratio constraint for QoE.

In order to tackle this problem, the cache decision matrix
X(t) and the content popularity matrix estimation P (¢) have
to be optimized jointly. However, solving the problem (9) is
very challenging as:

i) the storage capacity of SBSs, the backhaul and wireless link
capacities are limited.

ii) the catalog size and number of users with unknown ratings*
are very large in practice.

iii) the optimal uncoded’ cache decision for a given demand is
non-tractable [8,9, 12].

iv) the SBSs have to track, learn and estimate the sparse content
popularity/rating matrix SBSs P™(¢) while making the cache
decision.

In order to overcome these issues, we restrict ourselves to
the fact that cache decision is made during peak-off hours, thus
X(t) remains static during the content delivery in peak hours
and is represented by X. Additionally, the content popularity
matrix is stationary during 7' time slots and identical among the
base stations, thus P™ (¢) is represented by P.

After these considerations, we now suppose that the problem
can be decomposed into two parts in which the content popu-
larity matrix P is first estimated, then is used in the caching
decision X accordingly. In fact, if sufficient amount of users’
ratings are available at the SBSs, we can construct a k-rank ap-
proximate popularity matrix P ~ NTF, by jointly learning the
factor matrices N € R 7N and F € R ™F that minimizes the

4The term "rating" refers to the empirical value of content popularity/proba-
bility and is interchangeable throughout the paper.

51n the information theoretical sense, the caching decision can be categorized
into "coding" and "uncoded" groups (see [21] for example).
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following cost function:

2
minimize > (nl'€ — Py) -+ u(|INIE + [FIZ) (10)
P;;eP

where the summation is done over the corresponding user/con-
tent rating pairs P;; in the training set P. The vectors n; and
f; here describe the i-th and j-th columns of N and F matri-
ces respectively, and ||.||% represents the Frobenius norm. The
parameter p is used to provide a balance between the regulariza-
tion and fitting the training data. Therein, high correspondence
between the user factor matrix IN and content factor matrix F
leads to a better estimate of P. In fact, the problem (10) is a
regularized least square problem where the matrix factorization
is embedded in the formulation. Despite various approaches,
the matrix factorization methods are commonly used to solve
this kind of problems and has many applications such as in rec-
ommendation systems (i.e., Netflix video recommendation). In
our case detailed in the following sections, we have used regu-
larized sparse singular value decomposition (SVD) to solve the
problem algorithmically which exploits the least square nature
of the problem. The overview of these approaches, sometimes
called collaborative filtering (CF) tools, can be found in [22,23].
When the estimation of content popularity matrix P is obtained,
the caching decision X can be made in this scenario accordingly.

In practice, the estimation of P in (10) can be done by col-
lecting/analysing large amount of available data on a big-data
platform of the network operator, and strategic/popular contents
from this estimation can be stored at the cache-enabled base
stations whose cache decisions are represented by X. By doing
this, the backhaul offloading problem in (9) is minimized and
higher satisfactions are achieved. Our network model including
such an infrastructure is illustrated in Fig. 1. In the following, as
a case study, we detail our big data platform and present users’
traffic characteristics by analysing large amount of data on this
platform. The processed data will be used to estimate the con-
tent popularity matrix P which is essentially required for the
cache decision X and will be detailed in the upcoming sections.

III. BIG DATA PLATFORM

The big data platform used in this work runs in the operator’s
core network. As mentioned before, the purpose of this plat-
form is to store users’ traffic data and extract useful information
which are going to be used for content popularity estimation.
In a nutshell, the operator’s network consists of several districts
with more than 10 regional core areas throughout Turkey. The
average total traffic over all regional areas consists of approx-
imately over 15 billion packets in uplink direction and over 20
billion packets in the downlink direction daily. This corresponds
to approximately over 80 TByte of total data flowing in uplink
and downlink daily in a mobile operator’s core network. The
data usage behaviour results in exponential increase in data traf-
fic of a mobile operator. For example, in 2012, the approximate
total data traffic was over 7 TByte in both uplink and downlink
daily traffic.

The streaming traces which will be detailed in the sequel, are
obtained from one of the operator’s core network region, in-
cludes the mobile traffic from many base stations, and are cap-
tured by a server on a high speed link of 200 Mbit/sec at peak
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hours. In order to capture Internet traffic data by the server in
this platform, a procedure is initialized by mirroring real-world
Gn interface data. After mirroring stage of Gn interface, net-
work traffic is transferred into the server on the platform. For
our analysis, we have collected traffic of approximately 7 hours
starting from 12 pm to 7 pm on Saturday 21’st of March 2015.
This traffic is processed on the big data platform which is essen-
tially based on Hadoop.

A. Hadoop platform

Among the available platforms, Hadoop stands out as the
most notable one as it is an open source solution [24]. It is made
up of a storage module, namely Hadoop Distributed File Sys-
tem (HDFS) and a computation module, namely MapReduce.
Whereas HDFS can have centralized or distributed implemen-
tations, MapReduce inherently has a distributed structure that
enables it to execute jobs in parallel on multiple nodes.

As stated in previous subsection, the accuracy and precision
of the proposed mechanism was tested in operator’s network.
A data processing platform was implemented through using
Cloudera’s Distribution Including Apache Hadoop (CDH4) [25]
version on four nodes including one cluster name node, with
computations powers corresponding to each node with INTEL
Xeon CPU E5-2670 running @2.6 GHz, 32 Core CPU, 132
GByte RAM, 20 TByte hard disk. This platform is used to ex-
tract the useful information from raw data which is described as
follows.

B. Data extraction process

First, the raw data is parsed using Wireshark command line
utility tshark [26] in order to extract the relevant fields of CELL-
ID (or service area code (SAC) in our case, in order to uniquely
identify a service area within a location area’), LAC, Hypertext
Transfer Protocol (HTTP) request-uniform resource identifier
(URI), tunnel endpoint identifier (TEID)® and TEID-DATA for
data and control plane packets respectively, and FRAME TIME
indicating arrival time of packets. The HTTP Request-URI is
a Uniform Resource Identifier that identifies the resource upon
which to apply the request. The control packets contain the in-
formation elements that carry the information required for future
data packets. It contains cell identification ID (CELL-ID), LAC
and TEID-DATA fields. The data packets contain HTTP-URI
and TEID fields.

In the next step, after obtaining those relevant fields from
both control and data packets, the extracted data is transferred
into HDFS for further analysis. In HDFS, there can be done
many data analytics performed over the collected data using

SGn is an interface between Serving GPRS Support Node (SGCN) and Gate-
way GPRS Support Node (GGSN). Network packets sent from a user terminal
to the packet data network (PDN), e.g. internet, pass through SGCN and GGSN
where GPRS Tunneling Protocol (GTP) constitutes the main protocol in network
packets flowing through Gn interface.

"The service area identified by SAC is an area of one or more base stations,
and belongs to a location area which is uniquely identified by location area code
(LAC). Typically, tens or even hundreds of base stations operates in a given
location area.

8 A TEID uniquely identifies a tunnel endpoint on the receiving end of the GTP
tunnel. A local TEID value is assigned at the receiving end of a GTP tunnel in
order to send messages through the tunnel.

Hive Query language (QL) [27]. For example, in order to calcu-
late the HTTP Request-URIs at specific location, the HTTP-URI
can be joined with CELL-ID-LAC fields over the same TEID
and TEID-DATA fields for data and control packets respectively.
In our analysis, due to the limitations on observable number of
rows of HTTP-URI fields with a corresponding CELL-ID-LAC
fields after mapping, we have proceeded with HTTP Request-
URIs and TEID mappings.

From HDFS, a temporary table named traces-table-temp is
constructed using Hive QL. The traces-table-temp has HTTP
Request-URI, FRAME TIME and TEID fields. After construct-
ing this table, the sizes of each HTTP Request-URI request is
calculated using a separate URI-size calculator program that
uses HTTPClient API [28] in order to obtain the final table
called traces-table with fields of SIZE, HTTP Request-URIs,
FRAME TIME and TEID. This table has approximately over
420.000 of 4 millions HTTP Request-URI’s with SIZE field re-
turned as not zero or null due to unavailability of HTTP response
for some requests. Note that in a given session with a specific
TEID, there can be multiple HTTP Request-URIs. Each TEID
belongs to specific user. Each user can also have multiple TEIDs
with multiple HTTP Request-URIs. The steps of data extraction
process on the platform is summarized in Fig. 2. Note that the
data extraction process is specific to our scenario for proactive
caching. However, similar studies in terms of usage of big data
platform and exploitation of big data analytics for telecom oper-
ators can be found in [29-34].

Location/Session Fields
CELLID, SAC, LAC, TEID & N\ traces-table-temp

3) Match |HTTP URI FRAMETIME TEID
Fields
HDFS & MapReduce /
4) Calculate

Content Sizes

SIZE
Control Packets traces-table

Content Request Field
HTTP URI
Request Time Field
FRAME TIME
2) Extract
Relevant Fields

D D D D HTTP URI FRAME TIME TEID SIZE

Data Packets *
1) Collect 5) Store
Raw Data Processed Data

_ 3

database

traffic

mirroring cluster computing

Fig. 2: An overview of the data extraction process on the big
data platform.

C. Traffic Characteristics

Based on information available in traces-table, the global
content popularity distribution (namely HTTP-URI popularity
distribution) in a decreasing ranked order is plotted in Fig. 3a.
According to this available experimental data, we observe that
the popularity behaviour of contents follows a Zipf law with
steepness parameter o = 1.36.” Therein, the Zipf curve is cal-
culated in the least square sense from the collected traces and the
parameter « is then found by evaluating the slope of the curve.
On the other hand, cumulative size of ranked contents is given in

9The value of steepness parameter o can change depending on the scenario.
For instance, the steepness parameter of content popularities in YouTube catalog
varies from 1.5 to 2.5 [35,36].
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Fig. 3: Behaviour of content popularity distribution.

Fig. 3b. The cumulative size up to 41-th most-popular contents
has 0.1 GByte of size, whereas a dramatical increase appears
afterwards. This basically shows that most of the requested con-
tents in our traces has low content sizes and contents with larger
sizes are relatively less requested.

We would like to note that a detailed characterization of the
traffic for caching is left for future work. Indeed, characteriza-
tion of the traffic in web proxies which are placed in the interme-
diate level of network [17], a specific video content catalog in a
campus network [37], mobile traffic of users in Mexico [38] can
be found in the literature. Compared to these works, we focus on
the characterization traffic of mobile users collected from base
stations in a large regional area and exploit this information for
proactive caching (i.e., content popularity distribution, cumula-
tive size distribution). Based on information available in traces-
table, we in the following simulate a scenario of cache-enabled
base stations.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The list of parameters for numerical setup is given in Table
1. For ease of analysis, the storage, backhaul, and wireless link
capacities of small cells are assumed to be identical within each
other.

Table 1: List of simulation parameters.

Parameter Description Value
T Time slots 6 hours 47 minutes
D Number of requests 422529
F Number of contents 16419
M Number of small cells 16
Lmin Min. size of a content 1 Byte
Lmax Max. size of a content 6.024 GByte
B(f) Bitrate of content f 4 Mbyte/s
> Cm Total backhaul link capacity 3.8 Mbyte/s
> >on Cry | Total wireless link capacity 120 Mbyte/s

In the simulations, all of D number of requests are taken from
the processed data (namely traces-table), spanning over a time
duration of 6 hours 47 minutes. The arrival times of each request
(FRAME TIME), requested content (HTTP-URI) and content
size (SIZE) are taken from the same table. Then, these requests
are associated to M base stations pseudo-randomly. In order to
solve the backhaul offloading problem in (9), the content popu-
larity matrix P and caching strategy X are evaluated separately.
In particular, the following two methods are used for construct-
ing the content popularity matrix P:

o Ground Truth: The content popularity matrix P is constructed
from all available information in traces-table instead of solving
the problem in (10). Note that the rows of P represent base
stations and columns are contents. The rating density of this
matrix is 6.42%.

o Collaborative Filtering: For the estimation of content pop-
ularity matrix P, the problem in (10) is attempted by first
choosing 10% of ratings from traces-table uniformly at random.
Then, these ratings are used in the training stage of the algorithm
and missing entries/ratings of P are estimated. Particularly, the
regularized SVD from the CF methods [23, 39] is used in the
algorithmic part.

After constructing the content popularity matrix P based on
these above methods, the cache decision (modelled by the ma-
trix X) is made by storing the most-popular contents greedily
at the SBSs until no storage space remains (see [8] for the de-
tails). Having these contents cached proactively at the SBSs
at ¢ = 0, the requests are then served until all of the contents
are delivered. The performance metrics request satisfaction and
backhaul load are calculated accordingly.

The evolution of users’ request satisfaction with respect to the
storage size is given Fig. 4a. The storage size is given in terms of
percentage where 100% of storage size represents the sum of all
size of contents in the catalog (17.7 GByte). From zero storage
(0%) to full storage (100%), we can seen that the users’ request
satisfaction increases monotonically and goes up to 100%, both
in ground truth and collaborative filtering approaches. However,
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there is a performance gap between the ground truth and CF
until 87% of storage size, which is due to the estimation errors.
For instance, with 40% of storage size, the ground truth achieves
92% of satisfaction whereas the CF has value of 69%.

The evolution of backhaul load/usage with respect to the stor-
age size of SBSs is given in Fig. 4b. As the storage size of SBSs
increases, we see that both approaches reduces backhaul usage
(namely higher offloading gains). For example, with 87% of
storage size for caching, both approaches offload 98% of back-
haul usage. The performance of ground truth is evidently higher
than the CF as all of the available information is taken into con-
sideration for caching. We also note that there is a dramatical
decrease of backhaul usage in both approaches after a specific
storage size. In fact, most of the previous works on caching as-
sume a content catalog with identical content sizes. In our case,
we are dealing with real traces in the numerical setup where the
size of contents differs from content to content, as discussed in
the previous section (see Fig. 3b). According to this scenario,
on the one hand, caching a highly popular content with very
small size might not reduce the backhaul usage dramatically.
On the other hand, caching a popular content with very high size
can dramatically reduce the backhaul usage. Therefore, as the
CF approach used here is solely based on content popularity, it
fails to capture these content size aspects on the backhaul usage,
which in turn results in higher storage requirements to achieve
the same performance as in the ground truth. This shows the
importance of size distribution of popular contents.

We have so far compared the performance gains of these ap-
proaches with 10% of rating density in CF. In fact, as the rat-
ing density of CF for training increases, we expect to have less
estimation error, thus resulting closer satisfaction gains to the
ground truth. To show this, the change of root-mean-square er-
ror (RMSE) with respect to the training rating density is given
in Fig. 5. Therein, we define the error as the root-mean-square
of difference between users’ content satisfaction of the ground
truth and CF approaches over all possible storage sizes. Clearly,
as observed in Fig. 5, the performance of CF is improved by
increasing the rating density, thus confirming our intuitions.

0.14

0.12

0.1

RMSE

8-10"2

6-10"2

0 20 40 60 80 100

Training Density (%)

Fig. 5: Evolution of RMSE with respect to the training density.

V. CONCLUSIONS

In this work, we have studied a proactive caching approach
for 5G wireless networks by exploiting large amount of avail-
able data and employing machine learning tools. In particular,
an experimental setup for data collection/extraction process has
been demonstrated on a big data platform and machine learn-
ing tools (CF in particular) have been applied to predict the
content popularity distribution. Depending on the rating den-
sity and storage size, the numerical results showed that several
caching gains are possible in terms of users’ request satisfac-
tions and backhaul offloadings. An interesting future direction
of this work is to conduct a more detailed characterization of
the traffic which captures different spatio-temporal content ac-
cess patterns. In order to estimate the content access patterns
for cache decision, the development of novel machine learning
algorithms is yet another interesting direction. Finally, design
of new deterministic/randomized cache decision algorithms are
required and should not be purely based on content popularity
and storing most popular contents, so that higher backhaul of-
floading can be achieved while satisfying users’ requests.
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