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Abstract

The transport properties of cementitious composites such as concrete are im-

portant indicators of their durability, and are known to be heavily influenced by

mechanical loading. In the current work, we use meso-scale hygro-mechanical

modeling with a morphological 3D two phase mortar-aggregate model, in con-

junction with experimentally obtained properties, to investigate the coupling

between mechanical loading and damage and the permeability of the compos-

ite. The increase in permeability of a cylindrical test specimen at 28 % aggregate

fraction during a uniaxial displacement-controlled compression test at 85 % of

the peak load was measured using a gas permeameter. The mortar’s mechanical

behavior is assumed to follow the well-known compression damaged plasticity

(CDP) model with isotropic damage, at varying thresholds, and obtained from

different envelope curves. The damaged intrinsic permeability of the mortar

evolves according to a logarithmic matching law with progressive loading. We

fit the matching law parameters to the experimental result for the test specimen

by inverse identification using our meso-scale model. We then subject a series of

virtual composite specimens to quasi-static uniaxial compressive loading with

varying boundary conditions to obtain the simulated damage and strain evo-

lutions, and use the damage data and the previously identified parameters to
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determine the evolution of the macroscopic permeability tensor for the speci-

mens, using a network model. We conduct a full parameter study by varying

aggregate volume fraction, granulometric distribution, loading/boundary con-

ditions and ”matching law” parameters, as well as for different strain-damage

thresholds and uniaxial loading envelope curves. Based on this study, we pro-

pose Avrami equation-based upper and lower bounds for the evolution of the

damaged permeability of the composite.

Keywords: D. Fracture; D. Mechanical properties; D. Microstructure; D.

Physical properties

1. Introduction

It is now common knowledge that the transport properties of a cementitious

composite, i.e; permeability and chloride diffusion coefficient, are important

indicators of its durability. These composites are porous and basic, and the

characteristics of its pore network, dimensions and interconnectivity of the cap-

illarity porosity determine the transfer of aggressive species inside the matrix

[1, 2]. A perusal of the available literature on the subject reveals myriad studies,

mostly experimental, on the different factors influencing the permeability and

diffusivity of the undamaged composite, for example, mix parameters, moisture

content and environmental conditions such as sulphate attack [3]. As a gen-

eral rule of thumb, a reduction in volume, size, and inter-connection of pores

will reduce the permeability and diffusivity. A reduction in pore characteristics

can be achieved by selecting appropriate aggregates or cement paste proper-

ties. Reducing the amount of water relative to the cementitious material used

can lead to improved pore formation. However, while the transport properties

of the undamaged composite are associated with the overall porosity and the

size/stability of the voids in it, the transport properties of the same compos-

ite material under load, i.e. damaged concrete depends heavily on the cracks

present. The formation and propagation of cracks in such composite struc-

tures is one of the major factors influencing the transport properties and thus
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their durability. Cracks accelerate the penetration of water and the diffusion of

harmful ions, such as chloride, leading to damage and durability problems [10].

Therefore, predicting the behavior of the damaged composite using only the

data for the undamaged material is pointless and there is a clear need to study

the evolution of transport properties in cementitious composites with stress-

induced damage.

The relationship between the mechanical properties and the permeability of ce-

mentitious composites has been under investigation over the last few decades.

Choinska et al [4] investigated the coupled problem of mechanical damage in

concrete and its permeability and concluded that for low to intermediate levels

of stress, the permeability appears to increase drastically as the load approaches

the ultimate compressive strength (UCS) of the material. Samaha et al [5] con-

firmed the presence of micro-cracks during uniaxial compression loading up to

about 70 % of the UCS, but found that the transport properties were largely

unaffected. In this phase, the composite showed 15 to 20 % less resistance to

fluid and ion movement. Picandet et al [6] found that a load of 90 % of the

UCS created an inter-connected network of micro-cracks which increased the

gas permeability of concrete even after complete unloading. The permeabil-

ity measured to chlorides follows the same behavior for the loads over than of

80 % [7] or 90 % of the peak [8]. The repeat of a compression load between

60 and 80 % leads to an increase in the permeability as well by extension of

micro-cracking. One may conclude that the interconnection of the generated

micro-cracks during mechanical loading appears to be the driving factor for

changes in the transport properties of a cementitious composite. Picandet et al

[9] experimentally studied the effect of a crack on the gas and water permeabil-

ity of cementitious composites and found that both gas and water permeability

increased proportionally to the cube of the crack opening displacement. Djerbi

Tegguer et al [10] performed a single cycle of compressive loading for various

loads between 60 % and 90 % of the UCS. They reported that the damaged

permeability increased by a factor of 10 for an increase in damage by a factor of

2.5. They also noted that gas permeability was more sensitive to damage levels
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than the chloride diffusivity, a result that can be confirmed by [1].

The literature clearly corroborates the experimental observation that damage,

in other words, the creation and propagation of micro or macro-cracks, leads to

an increase in the value of the transport properties of a cementitious material.

However, studying the effect of progressive damage on the permeability during

continuous loading of a composite specimen experimentally, in the same manner

as [10], is no easy task, requiring a great amount of time and incurring signifi-

cant cost. This is where simulation-based investigation could potentially make

a difference, as once sufficiently accurate material models have been established

for the phenomena under consideration, and using the greatly advanced numer-

ical tools available today, one would greatly limit the time, effort and money

involved in a full-bore experimental investigation.

In addition to the above experimental studies, there have been simulation-based

studies on the damage-permeability coupling in cement-based materials [11].

Chatzigeorgiou et al [12] used a discrete lattice model to obtain this coupling.

However, most of the modeling investigations typically relate the intrinsic dam-

aged permeability with strain and isotropic damage for a homogeneous material

and do not take the heterogeneity of the composite into account, with the ex-

ception of the meso-macro multi-scale approach used by Jourdain et al [13]

who considered a single crack in a homogenized domain, by solving the macro-

scopic moisture transport equation. There is, in our opinion, a dearth of lit-

erature on modeling-based investigation that couples local damage (distributed

throughout the domain) and strain data with permeability for a cementitious

i.e.heterogeneous composite with multiple phases, under progressive load.

Cementitious composites are typically heterogeneous brittle materials that are

known to fracture through the formation, growth and coalescence of micro-

cracks [14]. Failure processes in concrete depend on the loading rate and are

significantly influenced by micro-inertia of the material adjacent to a propagat-

ing micro-crack and moisture in the capillary pores.

These phenomena demonstrate the involvement of multiple length scales at dif-

ferent levels in the mechanical response [15] as well as transport behavior of
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the composite. The smallest length scale is associated with the microstructure

(cement paste) composed of water, hydrates (mainly C-S-H, Portlandite CH

or Ettringite [16]) and anhydrous cement grains. The meso-scale is divided

into a sub-meso-scale where the mortar is considered to be constituted by sand

particles embedded in a homogeneous cement paste, and a meso-scale itself rep-

resenting concrete as a two or three phase composite material (mortar matrix

and aggregates with or without an Interfacial Transition Zone or ITZ [17]).

A realistic numerical simulation of material behavior must adequately represent

the influence of as many of these length scales as possible on the mechanical and

hygral response. Purely macroscopic models that do not consider the mesoscale

or microstructural interactions miss out on critical information on local variables

(like damage and strain) that renders them nearly useless in problems related

to durability. Lattice models have been successfully used [18, 19] but the results

obtained appear to be lattice geometry-dependent. On the other hand, meso-

scopic modeling with a regularized continuum description using a multi-phase

composite model along with matrix-inclusions interaction, in conjunction with

a regularized model for the bulk material, is a safe and effective approach for

characterizing the effects of the different length scales on the composite’s me-

chanical and transport behaviors. These models provide a good balance of low

computational effort and sufficient reliability. The recently contributed exact

solutions in [20, 21] for general heterogenous materials and by Barretta et al

[22, 23] for Functionally Graded Materials (FGMs) could be useful for compar-

ison with FE computations on the type of composites considered here.

Since mesoscopic modeling of the composite is ostensibly the way to go, a suffi-

ciently detailed morphological model for the mortar-aggregate composite is the

next step. The mortar phase may be described as a partially saturated open

porous medium with an isotropic permeability tensor under zero load. This

tensor can dramatically change when load is applied due to the strain/damage

dependence of the intrinsic permeability (as has been discussed in the earlier

paragraphs of this section). As far as the aggregate phase is concerned, one

needs to take into account their mineralogical nature, morphology, granulo-
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metric distribution and volume fraction. Depending on the type of aggregate

(siliceous, plastic, calcareous) ergo texture (rough/smooth) [24] one can expect

varying levels of bonding to the mortar phase [25], and have angular or rounded

shapes [26], and of course volume fraction and gradation [27, 28, 29] all of which

can significantly modify the stress distribution and thus the damage distribution

within the mortar phase [30] and thus contribute to wildly varying transport

parameters (e.g. permeability) of the whole composite.

The next aspect of the generation of meso-structures with random morpholo-

gies involves varying the shape, size distribution and volume fraction of the

chosen aggregate particles. The literature shows 2D representations with cir-

cles/polygons [31, 15, 32], 3D analyses with spherical representations [25, 33,

30, 34, 26], realistic particles [35, 26, 36] and even considered the phenomenon

of aggregate segregation due to elevated fluidity [26]. Finite Element mechani-

cal analysis of the created mesostructures could use conforming/non-conforming

meshes with tetrahedral [26] or cubic elements [37].

The mechanical constitutive behavior of the cement mortar (strain softening)

for the selected shape, size and fraction of the aggregate particles with type-

dependent interaction between the phases is the next important aspect since this

alone can cause significant variation in the results obtained. Depending on the

type of loading, either brittle failure or viscoelastic rate-dependent models are

typically used, with a few implementations focusing on quasi-static displacement

controlled loadings where plastic behavior may be observed. An additional step

involves selection of an appropriate strain-damage evolution curve. The pur-

pose of this phase then is to determine the strain and damage distribution in

the different phases of the composite under increasing/decreasing load.

The final, and equally critical phase of the meso-scale modeling, involves cou-

pling the obtained mechanical response with the transport parameters. Network

models do exist to calculate the permeability tensor for an undamaged compos-

ite [38, 26].

In the present publication, the authors combine an experimental investigation

of the mechanical and transport properties with meso-scale mechanical-hygral
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modeling to investigate the coupling between the two physical phenomena for

self-compacting concrete (SCC).

For the mechanical behavior under compressive loading, 3D FE analyses of

quasi-static compression tests are performed for virtual composite specimens at

different aggregate fractions using a rate-independent isotropic rate-independent

plastic damage (CDP) continuum model for the mechanical behavior of the ma-

trix (mortar) and an explicit morphological two-phase mesoscale model for the

composite with a random spherical packing of spheres with different diame-

ters (corresponding to the particular granulometric distribution and aggregate

fraction), along with corresponding conforming FE meshes for the final compos-

ite. The experimental compression curve was fitted with an analytical elasto-

plastic envelope curve to obtain the damage evolution for the mortar phase

under uniaxial compression with two different damage thresholds. mechanical-

hygral coupling for the mortar phase was achieved using a logarithmic matching

law. Finally a network model was used to compute the evolution of the damaged

permeability tensor of the composite under progressive loading. This model was

used in conjunction with the experimentally obtained damaged permeability for

a composite at 28 % aggregate fraction and the Simplex algorithm to iteratively

identify the parameters of the matching law in the previous step. Finally, a

complete parameter study has been conducted for various aggregate fractions

and granulometric distributions, and obtain a set of bounding curves for the

evolution of damaged permeability under progressive loading for the composite

using the Avrami equation.

For the experimental portion, the gas permeability is determined for a sample

of Self Consolidating Concrete with 28 % aggregate volume fraction, made with

Portland cement mixtures after one year of water curing, using both the sound

as well as the damaged sample. Cracks were obtained by applying a uniaxial

compressive load at 88 % of the ultimate compressive strength over a two hour

period. Damage is then experimentally determined by measuring the residual

strain and the decrease in the elastic modulus, the latter being measured using

an ultrasonic waves apparatus.
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The reason for loading our real and virtual composite specimens to more than

85 % of the UCS of the concrete phase, albeit debatable, is corroborated by the

observations of cracks in the concrete phase of several structures, both ancient

and modern. In addition, the peak load in our work is identical to that consid-

erd in the experimental investigation by Djerbi Tegguer et al [10].

The remainder of the paper is organized in the following manner: Section 2

details the experimental portion of our investigation, Section 3 explains the

morphological three-phase composite model used to describe the multi-phase

composite at the mesoscale. Section 4 explains the mechanical, hygral and

mechano-hygral constitutive model used for the individual phases as well as

the parameter-identification procedure, Section 5 lists and discusses the full set

of results obtained after identification and simulation. The paper ends with

concluding comments and suggestions for future work.

2. Materials and Experimental Techniques

2.1. Materials and mixtures

The mortar phase [33, 34] used in this work is composed of Portland cement

CEM I 52.5 N (according to European standard EN 197-1), sand S with grain

size 0/4 mm and density 2600 kg/m3, siliceous gravel with grain size 6.3/10

mm and density 2660 kg/m3, and a water to cement ratio w/c = 0.368. Fluid

Optima 224 based high range water reducer (HRWR) with density 1.05 ± 0.02

gm/cm3 (at 20◦C) and pH : 4.70 ± 1.00 was used in order to enhance the flow

ability of the mixtures (super-plasticizer). The overall composition is given in

Table 1.

The portland cement CEM I 52.5 N used has the mineralogical composition

shown in Table 2.

2.2. Mechanical loading

A standard displacement-controlled uniaxial compression test was performed

on a cylindrical specimen of mortar (figure 1) with dimensions φ110×h50 mm to
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Constituent kg/m3 of fresh concrete

Cement CEM I 52.5 330

Sand S(0− 4) 780

Aggregate 760

Limestone powder 240

Water 210

Super-plasticizer (HRWR) 2.8

Table 1: Composition of the mixed concrete

CaO SiO2 Al2O
3 Fe2O

3 MgO K2O Na2O SO3

64.53 % 20.12 % 5.03 % 3.12 % 0.98 % 0.98 % 0.16 % 3.34 %

Table 2: Mineralogical composition of the CEM I 52.5 N used in this study given in % of

weight content

first obtain the Ultimate Compressive Strength (UCS) of the mortar phase, and

this was then used in conjunction with the CEB-FIP Model Code 2010 as well

as the envelope curve proposed by [39] to plot the entire uniaxial compression

curve and thus obtain the elastic constitutive and damage parameters for the

mortar. This procedure allows us to avoid the usual problems associated with

using the experimental compression test for the complete stress-strain curve.

The mechanical properties are shown in Table 3, (ρ=density, Y=Young’s mod-

ulus, UCS = Ultimate Compressive Strength, and ν = Poisson’s ratio).

In order to induce internal damage in the specimens, repeated compressive

Phase ρ (gm/cm3) UCS (MPa) Y (GPa) ν Permeability (mm−2)

Mortar 2.2 43.6 31.2 0.3 10−16

Table 3: Mechanical and transport properties of the mortar phase

loads were applied using a programmable load-controlled hydraulic press on

cylindrical specimens of concrete at 28 % aggregate volume fraction with di-

mensions φ110× h220 mm. After 360 days of curing, the cylindrical specimens
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were loaded in uniaxial compression up to 35 %, 60 % and 88 % of the UCS

(measured after 1 year). Three cycles were used up to a load of 35 % of the UCS

for measuring the static modulus of elasticity Yc. A single cycle was applied at

60 % and 88 % of the UCS and the 88 % UCS load was sustained for different

durations up to a period of 2 hours to allow for crack propagation. Loading and

unloading were force (stress) controlled at 0.6 MPa/s. The longitudinal strain

in each cylinder was measured using an extensometer cell equipped with three

linear variable displacement transducers (LVDT), with a range within 0.5 mm

and an accuracy of 1 μm (see figure 1). The transducers were laid over each

120◦ interval to take into account any asymmetric longitudinal strain. These

displacements were recorded during the loading and unloading phases until the

recovery was negligible. The average longitudinal displacement was then calcu-

lated using the three LVDT measurements.

Figure 1: Experimental Set-up for the uniaxial compression test on φ110×h220 mm specimen

of concrete at 28 % aggregate volume fraction.

2.3. Gas permeability measurement

The gas used for the permeability measurement in this work is helium. The

procedure used by the authors is identical to that used by Djerbi Tegguer et al

in [10]. The apparent permeability was measured using a Cembureau constant
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head permeameter. Permeability measurements were made in an air-conditioned

room (20±2◦C and RH 50±5 %). Three concrete cylindrical samples of 50 mm

thickness were cut from the central portion of the previous cylinders for testing

and placed in a triaxial cell and injection pressure was applied below. The

setup for performing gas permeability measurements was designed to work as a

constant head permeameter under different gas pressures, with the possibility

of changing the head value and measuring the gas inflow and outflow (Figure 2)

[40, 41]. Each disc was tested with five different pressures: 0.1, 0.2, 0.3, 0.4 and

Figure 2: Experimental Set-up for the gas permeability measurement on φ110 × h50 mm

specimen of concrete at 28 % aggregate volume fraction.

0.5 MPa. After initiating the percolation of helium through a specimen at a

given applied pressure, sufficient time (ranging from 30 minutes to several hours)

was provided to establish steady state flow before an actual measurement could

be taken. This condition was verified by taking two measurements separated

by a 15 min time interval. When the two values differed by less than 3 %,

steady state flow was assumed. For each pressure differential, we calculated

the apparent coefficient of permeability KA (m2) using the Hagen-Poiseuille

relationship for laminar flow of a compressible viscous fluid through a porous

material:

KA =
2QμLPatm

A(P 2
i − P 2

atm)
(1)
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In order to determine the damaged intrinsic permeability Kint, we measured KA

at different pressures and plot these against the inverse of the mean pressures

Pm = (Pi + Patm)/2. Using Klinkenberg’s relationship:

Kint = Kint(1 +
β

Pm
) (2)

the ordinate-intercept of this plot yields the intrinsic permeability Kint.

3. Morphological model of concrete at the mesoscale level

An explicit morphological model was previously developed by the authors

for representing concrete at the mesoscale, considering the concrete specimen

as a two (or three-phase) composite material:

In this material the matrix phase consists of the cement mortar, while the in-

clusions phase consists of the aggregate grains, and the third (optional) phase

is the interfacial transition zone (ITZ) for the cement paste, with a variety of

contact conditions possible between the three phases. Full details on the model

and techniques used are available in [26].

Using our previous work, we have used a random packing of spheres conforming

Figure 3: Typical 3D mesostructure and FE mesh with tetrahedral elements for virtual cylin-

drical specimen φ110× 50 mm with spherical and polytopic aggregates
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to the experimental granulometric distribution of the composite specimen (ta-

ble 4) and volume fraction representing rounded aggregates (D̃ represents the

effective aggregate diameter). In addition, two different specimen geometries

have been modeled, cubic and cylindrical. The typical FE meshes generated

for the composite mesostructures for the two virtual specimens (with spherical

aggregates) are shown in figure 3.

All mesostructures have been obtained using the computational geometric

Size range (mm) D̃ (mm) Weight (g) V/Vtotal

< 12.5 13 57 0.002

10− 12.5 11.25 127 0.0935

8− 10 9 127 0.1084

5− 8 6.5 127 0.0742

> 5 4 127 0.000279

Table 4: Granulometric distribution of aggregates in concrete specimen

modeling algorithms described in detail in [26] and programmed in MATLAB

[42].

4. Constitutive Models

4.1. Phase I: Mortar

4.1.1. Mechanical behavior

The main task in failure description is the recognition of damage patterns.

Concrete Damage Plasticity (CDP) is a popular constitutive model that was in-

troduced by Kachanov [43] and further developed by Rabotnov[44] and Jankoviak

et al [45]. the model has been used in this paper, as in the authors’ previous

work [26], for describing the elasto-plastic mechanical behavior of the mortar

phase. This model uses the concept of isotropic damaged elasticity in combina-

tion with isotropic tensile and compressive plasticity to represent the inelastic

behaviour of the mortar.
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In this model, the primary mode of failure in compressive loading is crushing

while crack propagation is the primary mode of failure in tension, and the con-

stitutive equation of mortar with scalar isotropic damage d takes the following

form:

σ = (1− d)D0 : (ε− ε0) = (1− d)σ̄ (3)

where σ̄ is the effective stress tensor. The Abaqus implementation uses a for-

mulation intended to alleviate the mesh dependency of the results that can arise

from strain localisation effects. This requires the explicit definition of a charac-

teristic length based on the element geometry and associated with an integration

point, as well as the definition of the post-peak tensile strength of the material

as a function of the local cracking displacement.

The scalar (isotropic) damage variable d (d = dt in tension and dc in com-

Figure 4: Constitutive Behavior of Cement Mortar under uniaxial (a) compressive (b) tensile

loading.

pressive loading respectively) is related to the equivalent plastic strain and the

effective stress tensor :

d = d(σ̄, ε̃pl) (4)

Also, damage states in tension and compression are characterized independently

by the equivalent plastic strains in tension and compression, ε̃plt and ε̃plc respec-
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tively. In terms of effective stresses, the yield function takes the form:

F (σ̄, ε̃pl) =
1

1− α

(
q̄ − 3αp̄+ β(ε̃pl)ˆ̄σmax + γ ˆ̄σmax

)− σ̄c(ε̃
pl) (5)

Failure via crack propagation (tension) and/or crushing (compression) is repre-

sented by increasing values of ε̃plt and ε̃plc respectively, which control the evolu-

tion of the yield surface as well as the degradation of the elastic stiffness of the

mortar.

The concrete damaged plasticity model assumes nonassociated potential plastic

flow. The fundamental group of the constitutive parameters consists of 4 val-

ues, which identify the shape of the flow potential surface and the yield surface.

Considering the Drucker-Prager model for the flow function:

G =
√
(Rc −mRt tanβ)2 + q̄2 − p̄ tanβ (6)

where Rt and Rc are the uniaxial tensile and compressive strengths of concrete

respectively. β is the dilation angle measured in the p−q plane at high confining

pressure, m is an eccentricity of the plastic potential surface, p̄ = − 1
3 trace(σ̄)

and q̄ =
√

3
2 (σ̄ + p̄) : (σ̄ + p̄).

Standard values of β = 35◦, m = 0.1 were assumed in this study. Rc (i.e. the

UCS of the mortar) was experimentally identified as described in the previous

section. Rt was determined from Rc and the CEB-FIP relationship.

4.1.2. Damage evolution with strain and strain-softening behavior

Traditional damage modeling approaches assume either an onset of damage

at the peak of the compression curve or an absence of plastic strains (i.e. pure

elastic-damage models). Experimental research, both our own as well as that

in the literature reviewed, clearly indicates the presence of micro-cracks in the

mortar phase around 70-80 % of the UCS [5, 10]. To this end, we consider the

total strain at 70 % of the UCS as our damage threshold.

The next step is determining the damage evolution under uniaxial loading be-

yond this threshold. In order to experimentally obtain the damage evolution,

one would need to perform a series of loading-unloading cycles after the thresh-

old, but this approach is problematic, especially after the peak of the loading

15



curve, and has not been used in this work. This is simply because the spec-

imen typically loses its structural integrity during unloading (after the peak)

and thus further loading cannot be continued, although other authors, notably

Djerbi Tegguer et al [10] have succeeded in circumventing this issue. The lit-

erature indicates very little research on possible damage thresholds and, more

importantly, damage evolutions with load/strain for mortar under uniaxial com-

pression, with the exception of Mazars’ seminal work [46, 47, 48], however this

is a purely elastic-damage model that does not allow for plastic strains.

In order to obtain the damage evolution under compressive loading for our mor-

tar beyond our chosen threshold, we decided to fit the experimentally obtained

mortar behaviour under uniaxial compression, i.e. the envelope curve gener-

ated by the CEB-FIP model with our experimental data, to the envelope curve

presented by [39] with this damage threshold using three control points (figure

5):

1. the elastic limit f0,

2. the peak point of the experimental (CEB-FIP) curve (εc, fc) and

3. a third operating point (εop, fop) to represent the post-peak softening be-

havior

using the following relations:

Ac =
fc − εelYm

Ym(εcexp(εel/εc − 1)− εel)
(7)

Bc =
fopεcexp(εel/εc − 1)− εopfcexp(εel/εc(1− εu/εel))

Emor ∗ (εcexp(εel/εc − 1)− εopexp(εel/εc(1− εu/εel)))
(8)

Cc =
fc − fop

Ym(εcexp(εel/εc − 1)− εopexp(εel/εc(1− εu/εel)))
(9)

This yields the damage evolution with inelastic strain in the following equation

(the isotropic damage variable d = 0 below the damage threshold 0.7fc):

d(0.7fc ≤ σ ≤ fc) = 1− (1−Ac)
εel
ε

−Acexp

(
εel − ε

εc

)

d(σ > fc) = 1− Bc

ε
− Ccexp

(
εel − ε

εc

)
(10)
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Figure 5: Three-point fitting the Sima-Roca enveloppe curve to an experimental compression

test

The obtained ε − d evolution (for the chosen threshold) is shown in figure 6.

The ”fitted” stress-strain relation that we will use for the 3D mesocale model

Figure 6: Damage evolution with the strain at 70 % as damage threshold
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is then given by:

σ(ε ≤ εel) = Ymε

σ(εel ≤ ε ≤ εc) = Ym

[
εel(1−Ac) +Acεexp

(
εel − ε

εc

)]

σ(ε ≥ εc) = Ym

[
Bc + Ccεexp

(
εel − ε

εc

)]
(11)

for compression, and:

σ(ε ≤ εel) = Ymε

σ(ε ≥ εc) = Ym

[
εtexp

(
α
εel − εt

εt

)]
(12)

under tension.

The alternative to using the approach in this subsection would be to use the

actual experimental load-displacement curve with progressive unloading for a

series of increments after the damage threshold. This is almost never realistic

with a cementitious composite, and the semi-analytical-experimental method

used here has been validated in the literature reviewed [39].

4.1.3. Transport properties (hygral behavior)

Moisture transport within the composite specimen may be elegantly de-

scribed by combining the law of conservation of mass and Darcy’s equation as

follows:

div(q) = Ṡ =
∂S

∂Pc

∂Pc

∂t
= div

(
K

krel(S)

μlφ
.∇Pc

)
(13)

where q is the moisture flux, K is the intrinsic isothermal permeability tensor

of the mortar, krel is the relative permeability, S is the degree of saturation,

Pc is the capillary suction pressure, φ is the porosity and μl is the viscosity of

water.

Van Genuchten’s closed-form expression [49] may be used to obtain the relative

permeability as follows:

krel(S) =
√
S[1− (1− Sb)

1
b ] (14)
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This means that the distribution of relative humidity in the porous phases will

have a drastic effect on the permeability levels. For this work we will assume

that the individual phases are homogenous and isotropic with a uniform relative

humidity hr of 50 %, i.e. partially saturated. This means that any moisture

transport would have to be considered to be at steady state.

Returning to (13), we can write the equation for flow through the macroscopic

material (composite specimen) in the following fashion:

Q = − ρ

μ
K.G (15)

where Q = macroscopic moisture flux, and G = macroscpic pressure gradient

Q =
1

V

∫
V

q(x)dV , G =
1

V

∫
V

∇P (x)dV (16)

obtained by averaging over the heterogenous material domain.

This basically means the moisture transport alters the distribution of both S

and hr within the specimen until steady-state is established.

The traditional practice is applying uniform pressure boundary conditions on the

boundary allowing us to calculate the 9 components of the macroscopic perme-

ability tensor K by solving (15) using the method of finite elements. However,

this method is not very practical for specimens with multiple heterogenities

and that do not have very straightforward geometries, not to mention time-

consuming. In the last subsection, we will outline a numerical approach that

does not require FE evaluations.

4.1.4. Mechano-hygral coupling under load

In the composite under load, there exists a strong mechano-hygral as well

as hygro-mechanical coupling. For the first, the distribution of S generates a

capillary pressure Pc(S) throughout the porous phase(s) that in turns creates

a hydrostatic pressure distribution inside the composite. Returning to Van

Genuchten’s closed-form expression for the capillary pressure Pc [49] we have:

Pc(S) = a(S−b − 1)(1−
1
b ) (17)
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The Laplace and Kelvin equations may then be combined to show the relation

between the relative humidity hr and the capillary suction pressure Pc, as given

in the following equation [50].

Pc(hr) =
ρRT log(hr)

Mw
(18)

This pressure must ordinarily be taken into account during the FE simulation

of the mechanical response of the composite specimen. However, we make two

assumptions: only the mortar phase is porous and sufficiently saturated, so

that we can neglect the effect of capillary pressure during the simulation of

mechanical behavior. Taking this into account, however, is fairly straightforward

using a homogenization coefficient.

This means that the FE simulation for the composite under load is carried out

according to the first two subsections in this section, without considering the

effect of capillary suction pressure on the mortar phase. Once the required FE

simulation has been completed, we now have the simulated damage (d) values

for every single finite element in each phase, at various loading points of interest

throughout the test.

Since only the mortar phase is damageable in this paper, we then link the

calculated damage value for an element of mortar with the subsequent increase

in permeability. We return to the primary contributions in this area as given

in the introductory section. Following [11], we consider a logarithmic matching

law between the empirical relationship of Picandet et al [6] for damage in the

pre-peak region of the compression curve of the mortar phase:

Kmor
l (d) = K0

(
1 + αdβ +

1

2
αd2β +

1

6
αd3β

)
(19)

and Poiseuille’s law for flow through a crack of roughness ζ and opening [U ]

gives the crack permeability as:

Kck =
ζ[U ]2

12
(20)

The idea then is to represent the ”diffuse” damage variable d by an effective

crack. This means mapping the damage band (diffuse description) to a strong
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discontinuity [11, 13], allowing us to represent the permeability of damaged mor-

tar by:

Kmor
p (ε) =

ζ

12
[U ]

2
.
[U ]

λlc
=

ζ

12λlc
[U(ε)]

3
(21)

where λlc is the width of the damage band corresponding to the strong dis-

continuity [U ] of the effective crack opening or amplitude of the discontinuity

appearing within the material when it is completely degraded locally (damage

d ≈ 1). This can be related to the strain ε and damage threshold εT (strain at

70 % of the peak):

[U(ε)] = (ε− εT )λlc (22)

The Picandet relationship tends to hold well for relatively low values of isotropic

Figure 7: Logarithmic matching law between Picandet’s empirical relation (pre-peak) and

Poiseuille’s effective crack-based relation (post-peak) for the mortar phase

damage d while Poiseuille’s relationship with the effective crack assumption

gives a good estimate of damaged mortar permeability for values of d close to 1.

Similarly to [11] then, we consider a logarithmic weighted relationship between

the two estimates giving:

log(Kmor(ε, d)) = (1− d) log(Kmor
l (d)) + d log(Kmor

p (ε)) (23)
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The obtained weighted relationship, shown in figure 7, allows us to move to

the last phase of the mesoscale model: estimating the macroscopic permeability

tensor for the heterogenous composite.

4.1.5. Numerical estimation of the macroscopic permeability tensor

In order to calculate the damaged macroscopic permeability tensor KD,

we have followed our previous aproach in [26], and represented the specimen

by a series of inter-connected cylinders of identical diameter, using however,

a conforming mesh - in fact the very same FE mesh used for the mechanical

analysis - rather than a non-conforming mesh that ignores the heterogenities

which was used in our previous work. Admittedly, this will introduce some

degree of mesh-dependence in the results obtained when comparing the results

obtained during different mechanical analyses, but will significantly save on

computational time and effort since the element-wise ε− d results may directly

be used to estimate damaged permeability values without a costly interpolation

or Diffuse Approximation [51].

Based on the previous work, the directional damaged permeability tensor kD
v

of the vth cylinder with length Lf (which varies throughout the mortar phase

depending on the FE element sizes) and inclined at angles θ and φ (figure 8) is

Figure 8: Orientation angles θ and φ for the vth ’cylinder’
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then given by the Poiseuille formula for 1D flow:

kD
v = kmor(ε, d)ēv ⊗ ēv = kvij(ε, d, θ, φ)ēi ⊗ ēj where kvij(θ, φ) =

kmor(ε, d)

⎡
⎢⎢⎢⎣

cos2(θ)cos2(φ) cos2(θ)cos(φ) − 1
2sin(2θ)cos(φ)

cos2(θ)cos(φ) cos2(θ)sin2(φ) − 1
2sin(θ)sin(2φ)

− 1
2sin(2θ)cos(φ) − 1

2sin(θ)sin(2φ) sin2(θ)

⎤
⎥⎥⎥⎦ (24)

Percolation of each cylinder is then taken into account by monitoring the lo-

cation of its endpoints using the level set functions [52, 53] of the aggregate

shapes in order to associate the cylinder in question with either the intrinsic

permeability of the mortar or that of the aggregates. For cylinders that are

completely located within a single phase, its permeability is assumed to be the

mean damaged permeability of the two connected finite elements.

Finally, we obtain the macroscopic tensor by assembling all the individual con-

tributions.

4.2. Phase II: Aggregates

The inclusions or aggregates in concrete may be silicious, calcareous, plastic

or vegetal in origin, with corresponding matrix-inclusion contact criteria. For

example, calcareous aggregates generally are in perfect contact with the mortar

and plastic aggregates have a frictionless sliding contact with the mortar.

The traditional approach is to assume linear-elastic-brittle behavior for the ag-

gregates in the mechanical model. Aggregates may also be assumed to have

negligibly low permeability as our previous research has showed, even though

taking these into account with our approach is extremely simple [26].

4.3. Phase III: Interfacial Transition Zone

In the general case, we need to consider the effect of a third phase, called

ITZ, as an extension of the first phase embedding the aggregates. In this par-

ticular study, just as in [26], the ITZ has been assumed to have no influence

on the overall compressive behavior of the concrete specimen [25, 54] or on the

homogenized transport properties [54]. This is validated by [55] where we note
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that even though the ITZ plays a role in the crack propagation paths, there is

no real effect on the increase in the overall macroscopic damaged permeability.

The explanation for this is found in some detail in [54], the presence of a zone

with higher porosity (i.e. ITZ) around the aggregates modifies the structure

of the paste farther away from the aggregates and leads to a decrease in the

porosity of the bulk paste so as to respect the moisture conservation.

In other words, the structure of the bulk paste of the mortar phase is differ-

ent from that of the paste with the same w/c ratio but without a granular

skeleton. There is thus only a slight effect of ITZ on the overall uniaxial com-

pressive behavior of mortar as well as on its diffusivity (transport behavior),

since the decrease of the porosity in the bulk paste, in effect, counterbalances

the increased porosity in the ITZ. In other words, the ITZ phase only alters the

crack patterns (damage is concentrated in this zone instead of away from it), so

the net change in calculated permeability is negligible. This is clear when we

consider the nature of the network mode. the calculated macroscopic perme-

ability involves a ”summation”/assembly of the contribution of individual crack

patterns (damaged elements) and the net contribution of two different patterns

could well be identical, as in the total amount of ”damage”, leading thus to

negligible differences in the calculated permeability.

5. Results and Discussion

5.1. Mechanical Behavior of the composite

Virtual cylindrical composite specimens φ110 × h50 mm were generated at

various aggregate volume fractions 10 %,20 %,24 %, 28 % and 30 % for the ex-

perimental granulometric distribution, and for a uniform granulometric distri-

bution (D50 or the median effective diameter of the experimental distribution)

at 28 % volume fraction using the algorithms mentioned in section 3. These

were then meshed using the GMSH algorithm [56] to obtain corresponding FE

meshes, as seen in section 2. The material behavior followed the envelope curve

fitted to the experimental compression test and the damage evolution followed
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section 4.1.2. Using a Drucker Prager yield criterion in ABAQUS, FE simula-

tions were performed for two different boundary conditions at the bottom face

for the various virtual composite specimens.

The displacement-based compression test was controlled at a speed of 0.25 μm/s

and was carried out until failure of the specimen or excessive element distortion.

Three different mesostructures with different random aggregate arrangements

were studied at 28 % volume fraction and the variation of the simulated UCS

was found to be ≤ 1 MPa thus allowing us to use a single mesostructure per

aggregate volume fraction for the various FE mechanical simulations.

The first main step then was to identify the appropriate boundary conditions

on the bottom face so as to accurately represent the experimental conditions

during the FE simulation. Figure 9 and 11 show that this has an extremely

significant effect on the simulation results obtained for the mechanical behavior

of the specimen.

Comparing the simulated UCS of the specimen at 28 % with the experimen-

Boundary condition UCS (MPa) Yc (GPa)

Built-in 53.3986 42.386

Simply supported 33.2310 40.740

Table 5: Comparison of simulated UCS for specimen at 28 % fraction using the two boundary

conditions

tally obtained value of 52.8 MPa (table 5), we see that the built-in conditions

better represent the loading conditions. This is clearly because the specimen

was compressed on a non-lubricated steel plate, thus the coefficient of friction

was sufficient to prevent non-vertical displacement at the bottom face. In addi-

tion, during the experimental compression of the specimen at 28 %, we observed

that the damage was localized towards the exterior of the specimen (figure 10):

similar to what was obtained with the built-in boundary conditions (figure 11),

rather than spread out over the entire section. Hence, we retain the built-in

boundary conditions for the bottom face for the remaining sets of results.
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Figure 9: Effect of boundary conditions on bottom face of virtual specimen on the compression

curve during a uniaxial compression test on φ110 × h50 cylindrical concrete specimen at 28

% aggregate volume fraction

Figure 10: Damage distribution inside experimental specimen after removal
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Figure 11: Comparison of two different boundary conditions on bottom face of virtual speci-

men during uniaxial compression at 28 % aggregate volume fraction on damage distribution

inside specimen (sectional view)
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Next, we performed the FE simulations for the 4 different aggregate fractions

(figure 12), and as we expect, the UCS appears to increase with increasing frac-

tion from 10 to 20 %, but from 20 % to 30 % (classical aggregate fractions for

industrial concretes) the evolution is not monotonic and we observe a reduc-

tion in UCS for aggregate fractions in the neighborhood of 24 % (figure 13),

a phenomenon that we have seen previously [26] and has also been observed

experimentally [29].

As expected from experimental observations made in the literature (e.g. [57]),

and can be easily verified by calculating the Mori-Tanaka homogenized modulus

for the composite [26], the Young’s modulus increases in almost linear fashion

with the aggregate fraction since the aggregates have a higher rigidity compared

to mortar.

The typical evolution of damage distribution on the external surfaces of the

Figure 12: Effect of aggregate volume fraction on the compressive behavior during a uniaxial

compression test on φ110× h50 mm concrete specimen

cylindrical specimen at 28 % is shown in figure 14. Finally, figure 15 shows that

changing the aggregate granulometric distribution at the same volume fraction

has a significant influence on the mechanical response. The figure compares the

simulation results obtained for two virtual specimens at 28 %, the first with the
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Figure 13: Effect of aggregate volume fraction on the UCS and Young’s modulus of a φ110×h50

mm specimen undergoing uniaxial compression

Figure 14: Damage distribution on the external surfaces at various points on the simulated

uniaxial compression curve for the specimen at 28 % aggregate fraction
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experimental granulometric distribution and the second with a uniform distri-

bution, i.e. every aggregate having the same diameter = the median aggregate

diameter of the experimental distribution.

Figure 15: Effect of granulometric distribution on the compressive behavior during a uniaxial

compression test on φ110× h50 mm cylindrical concrete specimen at 28 % aggregate volume

fraction

5.2. Identification of the matching law parameters using the experimental results

Before we can use the relations in section 4.1.3 to associate the damage

values at different points in the mortar phase of the composite with damaged

permeability values, we need to identify the two Picandet (α, β) and/or two

Poiseuille parameters (damage band width λlc and crack roughness ζ) respec-

tively. Depending on the damage values and the number of experimental points

available, we can identify anywhere between 1 and 4 parameters. For the iden-

tification problem to be well-posed, we ideally need 4 experimental points, 2 in

the pre-peak region and 2 in the post-peak region. However, regardless of the

number of points, the identification procedure would remain the same, and only

the uniqueness of the solution obtained would be in question.

In the current work, we have obtained a single experimental point with the in-

crease in damaged permeability KD/Ku measured at 3.75 for the experimental

φ110× 20 mm specimen at 28 % aggregate fraction, and loaded at 88 % of the
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UCS, with the damage value measured at 0.1 by the acoustic emission technique.

For low damage values in the pre-peak region of the loading curve, the Picandet

relationship typically yields a good estimate of the damaged permeability [11]

allowing us to obtain the locus of all solutions for p ≡ (α, β) by solving the

inverse problem:

p = Argminp∈SJ(p) = Argminp∈S

∣∣∣∣ tr(KD(p, ε))

tr(KD(p, 0))
− 3.75

∣∣∣∣
where S = {p ∈ R2

+} (25)

where Argmin referes to the value of the argument for which the function re-

turns a minimum value.

The curve in the inset of figure 16 is the locus obtained, with 5 example solu-

Figure 16: Identification of the Picandet parameters using the experimentally obtained dam-

aged permeability at 88 % of the UCS for cylndrical concrete specimen at 28 % aggregate

fraction

tions shown.

β(α) = 2× 10−5α4 + 1.9× 10−3α3 + 5.68× 10−2α2 − 0.8459α+ 7.2263 (26)

We obtained this solution by solving the inverse problem in (25) using the

Nelder-Mead Simplex method [58] programmed in MATLAB. This algorithm

31



is popular for inverse problems with a significant computational effort per ob-

jective function evaluation since it does not require gradients/Hessian calcu-

lations. It is a heuristic derivative-free response surface optimization method

that uses the concept of a simplex, a special polytope of (N + 1) vertices in

N dimensions (p1..pN+1) ordered according to the value of the objective func-

tion/identification error J .

J(V̄1) ≤ J(V̄2) ≤ ... ≤ J(V̄N+1) (27)

It then extrapolates the value of J i measured at each test point V̄ i, in order to

find a new test point V̄N+2 and to replace ONE of the old N+1 test points with

the new one, and repeat till convergence. We typically replace the worst point

with a point reflected through the centroid V̄0 = (
∑N

1 V̄i)/N of the remaining

N points. The identification algorithm does NOT change with the number of

experimental points, although the problem needs at least 2 for a unique solu-

tion. Similarly, 2 additional points in the post-peak damaged state would allow

us to identify all parameters in the matching law of section 4.1.3.

For each of these 5 identified solutions, we plot the simulated evolution of dam-

aged permeability for the composite specimen in the main figure 16, for which

we assume fairly standard values for the post-peak progression, i.e. Poiseuille

parameters λlc = 0.04 and crack roughness ζ = 1 (from [11])

5.3. Evolution of permeability with progressive damage

Now that we have 5 sets of Picandet parameters to represent the hygro-

mechanical coupling for our concrete (at low damage levels) we then use the

same set of Poiseuille parameters as in the previous section to complete the

matching law and one of the sample identified solutions for the Picandet pa-

rameters α = 18.19, β = 1.97 for our particular mortar, and simulate the per-

meability evolution throughout the load-damage progression, by calculating the

macroscopic tensor using the calculated damage values from the first subsection.

This was done for each of the 5 different virtual composite specimens, as well as

assuming the two different boundary conditions and two different granulometric
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distributions for the specimen at 28 % aggregate fraction. Finally we considered

the two possible damage thresholds for the mortar phase. The results of the

Figure 17: Evolution of damaged permeability at different aggregate volume fractions

mesoscale simulation are shown in figures 17, 18 and 19 respectively. It is clear

that the damage distribution in the mortar phase is responsible for the surge

in permeability, beginning near around 50-60 % of the peak of the compression

curve and then rapidly increasing as the mortar phase progressively undergoes

complete deterioration. We note that the increase in permeability, while still in

the order of a few thousand, still pales somewhat in comparison to the increase

in permeability for a pure mortar specimen (section 4.1.3). This is because

the presence of aggregates in the composite limits the propagation of damage

throughout the specimen.

Increasing aggregate fraction does not have a clearly monotonic effect on the

damaged permeability at every single point, this is because the local damage

distributions in the mortar phase are highly nonlinear. We may state that the

28 % specimen sustains more damage than the 10 % specimen allowing for an
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Figure 18: Evolution of damaged permeability for different granulometric distributions at 28

% aggregate volume fraction

overall increase in permeability values. But the simulation shows that direct

qualitative observations are difficult to draw merely from these curves (figure

17).

The uniform granulometric distribution sustains more localized damage com-

pared to the experimental distribution and this may explain the slight increase

in damaged permeability. As far as the boundary conditions are concerned,

this result should hardly be surprising, given that the simply supported bound-

ary conditions cause a more gradual increase in damage levels compared to the

built-in conditions on the bottom face. This is because the built-in conditions

yield damage localized close to the exterior of the specimen while the simply

supported conditions lead to a more ”diffuse” distribution of damage in the

interior. Next, we see the effect of two different damage thresholds (figure 20)

for the mortar phase for the concrete specimen at 28 % aggregate fraction, the

first at 70 % and the second at the peak load (for the mortar phase in uniax-

ial compression). This again, is completely expected since the delayed onset
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Figure 19: Effect of bottom face boundary conditions of the permeability evolution curve

Figure 20: Effect of damage threshold on the permeability evolution curve at 28 % aggregate

fraction
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of damage will subsequently delay the surge in permeability. The two curves

eventually meet around the same values when the material is near completely

damaged. Lastly, we show the three diagonal elements of the macroscopic per-

meability tensor during the mechanical loading (figure 21). The undamaged

tensor is isotropic (as expected), however mechanical damage marks the on-

set of anisotropy. However, this anisotropy appears to reduce as the specimen

accumulates additional damage until complete rupture.

Figure 21: Anisotropy of damaged permeability tensor under progressive load

5.4. Fitting upper and lower bounds to the permeability evolution under progres-

sive load using the Avrami equation

Since we are now clearly able to simulate the permeability increase in dam-

aged concrete at various aggregate fractions (not to mention granulometric dis-

tributions) and at any point on the loading curve, a logical last step would then

be to fit a mathematical relation for the upper and lower bounds of (KD(ε).

While polynomial fits are an easy approach, the very shape of the curves we

have obtained leads us to consider the Avrami equation [59] that is common in

problems related to crystallization kinetics, initially developed by Kolmogorov

[60]. The Avrami equation has also been applied to cementitious composites by

[61].

To this end, we first construct the convex hull of the points in Avrami coordi-

nate space, followed by two different fits, the first a traditional linear fit for the
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bounding envelope curves:

log

[
− log

(
1− KD

Kmax
D

)]
= A1 +A2 log

(
ε

εpeak

)
(28)

and the second a ”modified” quadratic/quadric curve fit for the same curves.

Figure 22: Fitting the traditional Avrami equation to the bounding curves generated by the

convex hull

log

[
− log

(
1− KD

Kmax
D

)]
= A1 +A2 log

(
ε

εpeak

)
+A3 log

(
ε

εpeak

)2

+ ... (29)

The results of the fitting are shown in figures 22 and 23. While it appears that

the modified Avrami equation seems to yield a better fit to the simulated solu-

tions we have obtained, the upper bounding curve in figure 23 is not monotonic.

Since we expect a purely monotonic increase in permeability with accumulated

damage, we retain the first of these and, in figure 24, we plot the upper and

lower bounding curves over the evolution curves plotted previously in figure 17.

The equation of the upper bounding curve in figure 24 is:

KD

(
ε

εpeak

)
= 8.5347×

[
1− exp

(
−0.8825

(
ε

εpeak

)3.9511
)]

(30)

5.5. Overall comments

We see that all the factors contribute significantly to the surge in damaged

permeability for a composite specimen under loading. The simulation results
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Figure 23: Modified higher-order Avrami bounding curves generated by the convex hull,

unacceptable due to the non monotonic evolution

Figure 24: Bounding envelope curves shown with the permeability evolution at different ag-

gregate fractions
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we have obtained, allow us, as we have seen, to define bounding envelope curves

for the multiphase composite specimen’s permeability with progressive damage

under uniaxial compression for an aggregate fractions between 10 % and 30

%. This particular law is clearly valid only for a composite using the same

aggregates and mortar phase as we have used in the experimental investigation,

but the approach remains the same regardless of the individual details, the

number of phases contributing to the different hygro-mechanical phenomena,

and of course, the number of experimental points available.

The greater the number of experimental points, the greater the reliability of

these envelope bounding curves. In addition, the use of a conforming mesh, while

greatly reducing computational effort, could throw in some mesh dependence

but cannot completely alter the trend of the curves obtained.

Conclusions

The transport properties of cementitious composites are important indica-

tors of their durability and are greatly influenced by damage progression during

mechanical loading. In this work, we have used our previously developed mor-

phological 3D matrix-inclusion-ITZ model for a cementitious composite at the

mesoscale and used this model to perform a series of virtual mechanical tests

on a cylindrical composite specimen followed by a permeability calculation to

determine mechanical-transport coupling during compressive loading.

We identified the relevant model mechanical and hygral parameters from a sin-

gle set of experimentally obtained mechanical and permeability results for both

the mortar phase as well as the composite. We then subjected a series of vir-

tual composite specimens at different aggregate fractions and granulometric dis-

tributions to quasi-static uniaxial compressive loading with varying boundary

conditions and damage thresholds, to obtain the simulated damage and strain

evolutions, and determined the macroscopic permeability tensor for the speci-

mens using a network model with the simulated damage data and previously

identified hygral paramaters. The result of the parameter study is a pair of
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upper and lower bounding curves for the evolution of damaged permeability at

different loading points for which we used the Avrami equation.

Some obvious weaknesses of the particular results obtained in this paper, rather

than of the protocol itself, are a lack of additional experimental points for the

composite on both sides of the loading curve, as well as the use of a conforming

mesh instead of a non conforming mesh to reduce computational effort. These

weaknesses do not in any way alter the methodology of the protocol or its ap-

plication to cementitious and other damageable composite materials in general.

A clear extension of both the principles as well as the network model used here

is the mesoscale investigation of chloride diffusion during damage progression

under mechanical loading. One may eventually use portions of the approach to

model other durability indicators such as carbonation and potentially lixiviation

at the microscale, under degradation due to loading.
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