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Abstract

We propose a new definition for the gradient field of a discrete image, defined on a twice

finer grid. The differentiation process from the image to its gradient field is viewed as the

inverse operation of linear integration, and the proposed mapping is nonlinear. Then, we

define the total variation of an image as the ℓ1 norm of its gradient field amplitude. This new

definition of the total variation yields sharp edges and has better isotropy than the classical

definition.

1 Introduction

In their seminal paper, Rudin, Osher, and Fatemi [1] introduced the total variation (TV) regu-

larization functional for imaging problems. Since then, a variety of papers has demonstrated

the effectiveness of TV minimization to recover sharp images, by preserving strong discontinu-

ities, while removing noise and other artifacts [2–4]. TV minimization also appears in clustering

and segmentation problems, by virtue of the co-area formula [5,6]. Numerical minimization of

the TV has long been challenging, but recent advances in large-scale convex nonsmooth opti-

mization, with e�cient primal–dual splitting schemes and alternating directions methods, have

made the implementation of TV minimization relatively easy and e�cient [3, 7–13]. Yet, the

rigorous definition of the TV for discrete images has received little attention. For continuously

defined two-dimensional functions, the TV is simply the L1 norm of the gradient amplitude.

But for discrete images, it is a nontrivial task to properly define the gradient using finite differ-

ences, as is well known in the community of computer graphics and visualization [14,15]. The

classical, so called “isotropic” definition of the discrete TV, is actually far from being isotropic,

but it performs reasonably well in practice. In this paper, we propose a new definition of the

discrete TV, which corrects some drawbacks of the classical definition and yields sharper edges

and structures. The key idea is to associate, in a nonlinear way, an image with a gradient field

on a twice finer grid. The TV of the image is then simply the ℓ1 norm of this gradient field

amplitude.

In Sect. 2, we review the classical definitions of the discrete TV and their properties. In

Sect. 3, we introduce our new definition of the TV in the dual domain and in Sect. 4, we study
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the equivalent formulation in the primal domain. An algorithm to solve problems regularized

with the proposed TV is presented in Sect. 5. The good performances of the proposed TV on

some test imaging problems are demonstrated in Sect. 6.

2 Classical Definitions of the Discrete TV and their Properties

A function s(t1,t2) defined in the plane R
2, under some regularity assumptions, has a gradient

field ∇s(t1,t2) =
�
∂s
∂t1

(t1,t2),
∂s
∂t2

(t1,t2)
�
, defined in R

2 as well. We can then define the TV of

s as the L1,2 norm of the gradient: TV(s) =
∫

R2 |∇s(t1,t2)| dt1dt2, where |(a,b)| is a shorthand

notation for the 2-norm
√
a2 + b2. The TV has the desirable property of being isotropic, or

rotation-invariant: a rotation of s in the plane does not change the value of its TV.

A (grayscale) discrete image x of size N1 × N2 has its pixel values x[n1,n2] defined at the

locations (n1,n2) in the domain Ω = {1, . . . ,N1}×{1, . . . ,N2}, where n1 and n2 are the row and

column indices, respectively, and the pixel with index (1,1) is at the top left image corner. The

pixel values are supposed to be between 0 (black) and 1 (white). The challenge is then to define

the discrete TV of x , using only its pixel values, while retaining the mathematical properties of

the continuous TV. The so-called anisotropic TV is defined as

TVa(x) =

N1
∑

n1=1

N2
∑

n2=1

�
x[n1 + 1,n2] − x[n1,n2]

�
+

�
x[n1,n2 + 1] − x[n1,n2]

�
, (1)

assuming Neumann (symmetric) boundary conditions: a finite difference across a boundary, like

x[N1 + 1,n2] − x[N1,n2], is assumed to be zero. The anisotropic TV is well known to be a poor

definition of the discrete TV, as it yields metrication artifacts: its minimization favors horizontal

and vertical structures, because oblique structures make the TV value larger as it should be.

Therefore, one usually uses the so-called isotropic TV defined as

TVi(x) =

N1
∑

n1=1

N2
∑

n2=1

√�
x[n1 + 1,n2] − x[n1,n2]

�2
+

�
x[n1,n2 + 1] − x[n1,n2]

�2
, (2)

using Neumann boundary conditions as well.

It is hard to quantify the isotropy of a functional like the TV, since the gridZ
2 is not isotropic

and there is no unique way of defining the rotation of a discrete image. However, it is natural

to require, at least, that after a rotation of ±90o, or a horizontal or vertical flip, the TV of the

image remains unchanged. It turns out that this is not the case with the isotropic TV, with a

change factor as large as
√
2 after a horizontal flip, see in Tab. 1 the TV of an edge at +45o and

at −45o. In spite of this significant drawback, the isotropic TV is widely used, for its simplicity.

An attempt to define a more isotropic TV has been made with the upwind TV [16], defined

as

TVu(x) =

N1
∑

n1=1

N2
∑

n2=1

√

√ �
x[n1,n2] − x[n1 + 1,n2]

�2
+
+

�
x[n1,n2] − x[n1 − 1,n2]

�2
+
+�

x[n1,n2] − x[n1,n2 + 1]
�2
+
+

�
x[n1,n2] − x[n1,n2 − 1]

�2
+

, (3)
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(1) (2) (2f) (3)

(4) (5) (5n) (6)

(7) (8) (9) (10)

Figure 1: Some patterns, for which we report the value of the TV in Tab. 1. Black and white

correspond to 0 and 1, respectively. In (3), the transition goes through the levels 0, 1/8, 7/8, 1.

In (4), the transition goes through the levels 0, 1/2, 1. In (7), the transition goes through the

levels 0, 1/2, 1, 1/2, 0

where (a)+ means max(x ,0).

The upwind TV is indeed more isotropic and produces sharp oblique edges, but as shown

below, it is not invariant by taking the image negative, i.e. replacing the image x by 1−x . Since
TVu(x) , TVu(1−x) = TVu(−x), the upwind TV is not a seminorm, contrary to the other forms

considered in this paper. In practice, it penalizes correctly small dark structures over a light

background, but not the opposite, see the striking example in Fig. 9 (e).

To evaluate the different definitions of the discrete TV, we consider typical patterns of size

N × N , depicted in Fig. 1, and we report the corresponding value of the TV in Tab. 1, when N

is large, i.e. ignoring the influence of the image boundaries. For some patterns, we consider its

horizontally flipped version, denoted by a ’f ’, see patterns (2) and (2f) in Fig. 1, and its negative

version, denoted by a ’n’, see patterns (5) and (5n). In Tab. 1, the value is in green if it is an

appropriate value for this case, and in red if not. In this respect, some considerations must be

reported. For the case of an isolated pixel (8) or (8n), in coherence with the co-area formula,

according to which the TV of the indicator function of a set (1 inside, 0 outside) is equal to

the perimeter of that set, the TV must be equal to 4. The isotropic TV and upwind TV take

too small values. This is a serious drawback, since they do not penalize noise as much as they
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should, and penalizing noise is the most important property of a functional used to regularize

ill-posed problems. For the checkerboard (10), it is natural to expect a value of 2N 2. It is im-

portant that this value is not lower, because an inverse problem like demosaicking consists in

demultiplexing luminance information and chrominance information modulated at this highest

frequency [17,18]. Interpolation on a quincunx grid also requires penalizing the checkerboard

su�ciently. The isotropic TV gives a value of
√
2N 2, which is too small, and the upwind TV

gives an even smaller value of N 2. Then, an important property of the TV is to be convex and

one-homogeneous, so that the TV of a sum of images is less or equal than the sum of their TV.

Consequently, viewing the checkerboard as a sum of diagonal lines, like the one in (6), disposed

at every two pixels, the TV of the diagonal line (6) cannot be lower than 4N . That is, the lower

value of 2
√
2N , achieved by the isotropic TV, is not compatible with the value of 2N 2 for the

checkerboard and with convexity of the TV. We can notice that the line in (6) cannot be ex-

plained as the discretization by cell-averaging, i.e. x[n1,n2] =
∫ n1+1/2

n1−1/2

∫ n2+1/2

n2−1/2
s(t1,t2)dt1dt2, of

a continuously defined diagonal ridge s. So, it is coherent that its jaggy nature is penalized. By

contrast, the pattern in (7) can be viewed as the discretization by cell-averaging of a diagonal

ridge, depicted in Fig. 2 (c). So, a TV value of 2
√
2N is appropriate for this case. Further on,

the line in (6) can be viewed as the difference of two edges like in (2), one of which shifted by

one pixel. So, by convexity, the value of the TV for the edge in (2) cannot be lower than 2N .

The value of
√
2N , we could hope for by viewing (2) as a diagonal edge discretized by point

sampling, is not accessible. Again, after a small blur, the discrete edges in (3) and (4) become

compatible with a diagonal edge discretized by cell-averaging, see the edges in Fig. 2 (a) and

(b), respectively. So, the expected value of the TV is
√
2N in these cases. It is true that a TV

value of
√
2N would be nice for the binary edge (2), especially for partitioning applications [6],

and that the isotropic TV achieves this value, but the price to pay with the isotropic TV is a

higher value of 2N for the flipped case (2f), which does not decrease much by blurring the edge

to (3f) or (4f). Therefore, minimizing the isotropic TV yields nice binary edges at the diagonal

orientation like in (2), but significantly blurred edges for the opposite orientation, as can be

observed in Figs. 7 (c), 5 (d), 11 (b).

We canmention, mainly in the literature of computational fluid or solidmechanics, the use of

staggered grid discretizations of partial differential equations, or marker and cell method [19],

wherein different variables, like the pressure and velocity, are located at different positions on

the grid, i.e. at cell centers or at cell edges. This idea is also applied in so-called mimetic finite

difference methods [20,21]. Transposed to the present context, pixel values are located at the

pixel centers, whereas a finite difference like x[n1 + 1,n2] − x[n1,n2] is viewed as the vertical

component of the gradient at the spatial position (n1 +
1
2
,n2), i.e. at an edge between two

pixels [22]. This interpretation is insightful, but it does not specify how to define the norm of

the gradient. The proposed approach is different from this framework in two respects. First, we

define the image gradient field not only at the pixel edges, but also at the pixel centers. Second,

a finite difference like x[n1+1,n2]−x[n1,n2] is not viewed as an estimate of a partial derivative,

but as its local integral; we develop this interpretation in Sect. 4.
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Table 1: Asymptotic value, when the image is of size N × N and N → +∞, of the TV, for the

examples depicted in Fig. 1. A ’f ’ means a horizontal flip and a ’n’ means taking the image

negative.

TVa TVi TVu TVp

(1) N N N N

(2) 2N
√
2N

√
2N 2N

(2f) 2N 2N
√
2N 2N

(3) 2N
√
2N

√
2N

√
2N

(3f) 2N (
√
37 + 1)N/4

√
2N

√
2N

(4) 2N
√
2N

√
2N

√
2N

(4f) 2N (1 + 1/
√
2)N

√
2N

√
2N

(5) 2N 2N
√
2N 2N

(5n) 2N 2N 2N 2N

(6) 4N 2
√
2N 2N 4N

(6f) 4N (2 +
√
2)N 2N 4N

(6n) 4N 2
√
2N 2

√
2N 4N

(7) 4N 2
√
2N (

√
2 + 1)N 2

√
2N

(7f) 4N (3
√
2 + 1)N/2 (

√
2 + 1)N 2

√
2N

(7n) 4N 2
√
2N 2

√
2N 2

√
2N

(8) 4 2 +
√
2 2 4

(8n) 4 2 +
√
2 4 4

(9) N 2 N 2 N 2/
√
2 N 2

(10) 2N 2
√
2N 2 N 2 2N 2

3 Proposed Discrete TV: Dual Formulation

It is well known that in the continuous domain, the TV of a function s can be defined by duality

as

TV(s) = sup
{
〈s,−div(u)〉 : u ∈ C

1
c (R

2,R2), |u(t)| ≤ 1 (∀t ∈ R2)
}
, (4)

where C
1
c (R

2,R2) is the set of continuously differentiable functions fromR
2 toR2 with compact

support and div is the divergence operator. So, the dual variable u has its amplitude bounded

by one everywhere.

In the discrete domain, the TV can be defined by duality as well. First, let us define the

discrete operator D, which maps an image x ∈ R
N1×N2 to the vector field Dx ∈ (R2)N1×N2

made of forward finite differences of x; that is,

(Dx)1[n1,n2] = x[n1 + 1,n2] − x[n1,n2], (5)

(Dx)2[n1,n2] = x[n1,n2 + 1] − x[n1,n2], (6)

for every (n1,n2) ∈ Ω, with Neumann boundary conditions. Note that for ease of implemen-

tation, it is convenient to have all images and vector fields of same size N1 × N2, indexed by
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(a) (b) (c)

Figure 2: In (a), (b), (c), continuously-defined images whose cell-average discretization yields

Fig. 1 (3), (4), (7), respectively.

(n1,n2) ∈ Ω, keeping in mind that for some of them, the last row or column is made of dummy

values equal to zero, which are constant and should not be viewed as variables; for instance,

(Dx)1[N1,n2] = (Dx)2[n1,N2] = 0, for every (n1,n2) ∈ Ω. So, TVi(x) = ‖Dx‖1,2, where the ℓ1,2
norm is the sum over the indices n1, n2 of the 2-norm |(Dx)[n1 ,n2]|.

Then, the isotropic TV of an image x can be defined by duality as

TVi(x) = max
u ∈(R2)N1×N2

{
〈Dx ,u〉 : |u[n1,n2]| ≤ 1, ∀(n1,n2) ∈ Ω

}
, (7)

with the usual Euclidean inner product.

The scalar dual variables u1[n1,n2] and u2[n1,n2], like the finite differences (Dx)1[n1,n2]

and (Dx)2[n1,n2], can be viewed as located at the points (n1+
1
2
,n2) and (n1,n2+

1
2
), respectively.

So, the anisotropy of the isotropic TV can be explained by the fact that these variables, which

are combined in the constraint |u[n1,n2]| ≤ 1, are located at different positions. We propose to

correct this half-pixel shift by interpolation: we look for the dual imagesu1 andu2, whose values

u1[n1,n2] and u2[n1,n2] are located at the pixel edges (n1 +
1
2
,n2) and (n1,n2 +

1
2
), respectively,

such that, when interpolated, the constraint |u[n1,n2]| ≤ 1 is satisfied both at pixel centers and

at pixel edges. So, the proposed TV, denoted TVp, is defined in the dual domain as

TVp(x) = max
u ∈(R2)N1×N2

{
〈Dx ,u〉 :

|(Llu)[n1,n2]| ≤ 1, |(L↔u)[n1,n2]| ≤ 1, |(L•u)[n1,n2]| ≤ 1, ∀(n1,n2) ∈ Ω
}
, (8)

where the three operators Ll, L↔u, L• interpolate bilinearly the image pair u = (u1,u2) on the

grids (n1 +
1
2
,n2), (n1,n2 +

1
2
), (n1,n2), for (n1,n2) ∈ Ω, respectively. That is,

(Llu)1[n1,n2] = u1[n1,n2], (9)

(Llu)2[n1,n2] = (u2[n1,n2] +u2[n1,n2 − 1] + u2[n1 + 1,n2] + u2[n1 + 1,n2 − 1])/4, (10)

(L↔u)1[n1,n2] = (u1[n1,n2] +u1[n1 − 1,n2] + u1[n1,n2 + 1] + u1[n1 − 1,n2 + 1])/4, (11)

(L↔u)2[n1,n2] = u2[n1,n2], (12)

(L•u)1[n1,n2] = (u1[n1,n2] +u1[n1 − 1,n2])/2, (13)

(L•u)2[n1,n2] = (u2[n1,n2] +u2[n1,n2 − 1])/2, (14)
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for every (n1,n2) ∈ Ω, replacing the dummy values u1[0,n2], u2[n1,0], u1[N1,n2], u2[n1,N1],

(Llu)1[N1,n2], (Llu)2[N1,n2], (L↔u)1[n1,N2], (L↔u)2[n1,N2] by zero.

Thus, we mimic the continuous definition (7), where the dual variable is bounded every-

where, by imposing that it is bounded on a grid three times more dense than the pixel grid.

Note that the fourth coset of pixel corners (n1 +
1
2
,n2 +

1
2
) can be added as additional constraint,

but the author found empirically that this change is not significant and is not worth the extra

computational burden.

Our definition of the discrete TV, using interpolation in the dual domain, is not new: it was

proposed in [23] and called staggered grid discretization of the TV. With the isotropic TV, the

projection of the image pair u onto the l∞,2 ball, which amounts to simple pixelwise shrinkage,

can be used. But using the same algorithms with the proposed TV requires projecting u onto

the set {u : ‖Llu‖∞,2 ≤ 1,‖L↔u‖∞,2 ≤ 1,‖L•u‖∞,2 ≤ 1}. There is no closed form for this pro-

jection. We emphasize that in [23], and certainly in other papers using this dual staggered grid

discretization, this projection is not implemented, and is replaced by an approximate shrinkage,

see [23, Eq. (64)]. This operation is not a projection onto the set above, since it is not guaranteed

to yield an image pair satisfying the bound constraints, and it is not a firmly nonexpansive oper-

ator [24]; this means that the convergence guarantees of usual iterative fixed-point algorithms

are lost, and that if convergence occurs, there is no way to characterize the obtained solution,

which depends on the algorithm, the initial conditions, and the parameters. By contrast, we will

propose a generic splitting algorithm, with proved convergence to exact solutions of problems

involving the proposed TV, in Sect. 5.

4 Proposed Discrete TV: Primal Formulation

Since strong duality holds and there is no duality gap in the formulation of the proposed TV as

the optimal value of the dual optimization problem (8), the corresponding primal formulation

is:

TVp(x) = min
vl,v↔,v•∈(R2)N1×N2

{
‖vl‖1,2 + ‖v↔‖1,2 + ‖v•‖1,2 : L∗lvl + L

∗
↔v↔ + L

∗
•v• = Dx

}
, (15)

where ·∗ denotes the adjoint operator.

Let us call v the whole gradient field, which is the concatenation of vl, v↔, and v•, the
vector fields solution to (15); its elements vl[n1,n2], v↔[n1,n2], v•[n1,n2] are vectors of R2,

located at the positions (n1 +
1
2
,n2), (n1,n2 +

1
2
), (n1,n2), respectively, for (n1,n2) ∈ Ω. Thus,

the proposed TV is the ℓ1,2 norm of the gradient field v associated to the image x , solution to

(15) and defined on a grid three times more dense than the one of x . The mapping from x to

its gradient field v is nonlinear and implicit: given x , one has to solve the optimization problem

(15) to obtain its gradient field and the value TVp(x). We can notice that the feasible set in (15)

is nonempty, since the constraint is satisfied by the vector field defined by

vl,1 = (Dx)1, vl,2 = 0 (16)

v↔,1 = 0, v↔,2 = (Dx)2 (17)

v•,1 = 0, v•,2 = 0. (18)
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This vector field has a ℓ1,2 norm equal to ‖(Dx)1‖1+‖(Dx)2‖1, which is exactly TVa(x), the value

of the anisotropic TV of x . Therefore, we have the property: for every image x ,

TVp(x) ≤ TVa(x). (19)

Further on, we have

(L∗
l
vl + L

∗
↔v↔ + L

∗
•v•)1[n1,n2] = vl,1[n1,n2] + (v↔,1[n1,n2] +v↔,1[n1,n2 − 1] +

v↔,1[n1 + 1,n2] +v↔,1[n1 + 1,n2 − 1])/4 +

(v•,1[n1,n2] + v•,1[n1 + 1,n2])/2, (20)

(L∗lvl + L
∗
↔v↔ + L

∗
•v•)2[n1,n2] = v↔,2[n1,n2] + (vl,2[n1,n2] +vl,2[n1,n2 + 1] +

vl,2[n1 − 1,n2] +vl,2[n1 − 1,n2 + 1])/4 +

(v•,2[n1,n2] + v•,2[n1,n2 + 1])/2, (21)

using, again, zero boundary conditions. So, the quantity (L∗
l
vl + L

∗
↔v↔ + L

∗
•v•)1[n1,n2] is the

sum of the vertical part of the elements of the vector fieldv falling into the square [n1,n1 + 1]×
[n2 − 1

2
,n2 +

1
2
], weighted by 1/2 if they are on an edge of the square, and by 1/4 if they are at

one of its corners. Similarly, (L∗
l
vl + L

∗
↔v↔ + L

∗
•v•)2[n1,n2] is the sum of the horizontal part of

the elements ofv falling into the square [n1− 1
2
,n1+

1
2
]× [n2,n2+1]. Equating these two values

to (Dx)1[n1,n2] and (Dx)2[n1,n2], respectively, is nothing but a discrete and 2-D version of the

fundamental theorem of calculus, according to which the integral of a function on an interval

is equal to the difference of its antiderivative at the interval bounds. So, we have defined the

differentiation process from an image x to its gradient field v as the linear inverse problem of

integration: integrating the gradient field v allows to recover the image x . Among all vector

fields consistent with x in this sense, the gradient field v is selected as the simplest one, i.e. the

one of minimal ℓ1,2 norm.

Let us be more precise about this integration property connecting v to x . We first note that

it is incorrect to interpret the pixel value x[n1,n2] as a point sample of an unknown function

s(t1,t2), i.e. x[n1,n2] = s(n1,n2), and the values vl,1[n1,n2], v↔,1[n1,n2], v•,1[n1,n2] as point
samples of ∂s/∂t1 at (n1+

1
2
,n2), (n1,n2+

1
2
), (n1,n2), respectively. Indeed, if it were the case, and

viewing (20) as a kind of extended trapezoidal rule for numerical integration, the right-hand side

of (20) would be divided by three. Instead, one can view x as the cell-average discretization

of an unknown function s(t1,t2), i.e. x[n1,n2] =
∫ n1+1/2

n1−1/2

∫ n2+1/2

n2−1/2
s(t1,t2)dt1dt2, and v as the

gradient field of s, in a distributional sense. For this, let us define the 1-D box and hat functions

Π(t) =



1 if t ∈ (−1
2
, 1
2
),

1
2

if t = ±1
2
,

0 else

, Λ(t) = Π(t) ∗ Π(t) = max(1 − |t |,0), (22)

where ∗ denotes the convolution. We also define the 2-D box function Π(t1,t2) = Π(t1)Π(t2)
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and the functionψ (t1,t2) = Λ(t1)Π(t2). The function or distribution ∂s/∂t1 is such that

(Dx)1[n1,n2] = x[n1 + 1,n2] − x[n1,n2] = (s ∗ Π)(n1 + 1,n2) − (s ∗ Π)(n1,n2) (23)

=

∫ n1+1

n1

( ∂s

∂t1
∗ Π
)

(t1,n2)dt1 (24)

=

( ∂s

∂t1
∗ψ
)

(n1 +
1
2
,n2). (25)

Then, the same equality holds, when replacing ∂s/∂t1 by the distribution

ṽ1(t1,t2) =
∑

(n1,n2)∈Ω
vl,1[n1,n2]δ (t1 − n1 − 1

2
,t2 − n2) +v↔,1δ (t1 − n1,t2 − n2 − 1

2
) +

v•,1[n1,n2]δ (t1 − n1,t2 − n2), (26)

where δ (t1,t2) is the 2-D Dirac distribution. Indeed,

(ṽ1 ∗ψ )(n1 + 1
2
,n2) = vl,1[n1,n2] + (v↔,1[n1,n2] +v↔,1[n1,n2 − 1] +

v↔,1[n1 + 1,n2] +v↔,1[n1 + 1,n2 − 1])/4 +

(v•,1[n1,n2] + v•,1[n1 + 1,n2])/2, (27)

which, according to Eq. (20), is equal to (L∗
l
vl + L

∗
↔v↔ + L

∗
•v•)1[n1,n2], which in turn is equal

to (Dx)1[n1,n2], by definition of v in Eq. (15). Altogether, the scalar field v1, the vertical com-

ponent of the gradient fieldv , identified to the distribution ṽ1, plays the same role as the partial

derivative ∂s/∂t1 of s, in the sense that they both yield the pixel values of x by integration. The

same relationship holds between v2 and ∂s/∂t2. To summarize, v is the discrete counterpart

of the gradient of the unknown continuously-defined scene s, whose cell-average discretization

yields the image x . So, it is legitimate to call v the gradient field of x . Note that there exists no

function s such that∇s is the Dirac brush (ṽ1,ṽ2), sov is nomore than a discrete equivalent of∇s.

We can notice that, given the image x , the gradient field v solution to (15) is not always

unique. For instance, for the 1-D signal x = (0,0,1/2,1,1), viewed as an image with only one

row, one can setvl = 0,v↔ = 0,v• = (0,0,1,0,0). Another possibility is to takevl = 0,v• = 0,

v↔ = (0,1/2,1/2,0,0).

We end this section with a remark about the fact that the grid for the gradient field is twice

finer than the one of the image. This factor of two appears naturally, according to the following

sampling-theoretic argument. Let us consider a 2-D sine function s(t1,t2) = sin(at1+bt2+c), for

some a, b, c in (−π ,π ), which is sampled to give the image x , with x[n1,n2] = s(n1,n2). We have

|∇s(t1,t2)|2 = (a2+b2) cos2(at1+bt2+c) = (a2+b2)cos(2at1 +2bt2+2c)/2+ (a
2
+b2)/2. So, by

taking the squared amplitude of the gradient, the frequency of the sine is doubled. According to

Shannon’s theorem, the function |∇s|2 must be sampled on a grid twice finer than the one of x ,

for its information content to be kept. Since, by virtue of the Fourier transform, every function

can be decomposed in terms of sines, this argument extends to every 2-D function s, not only

sines. The picture does not change by applying the square root, passing from |∇s|2 to |∇s|, the
integral of which is the TV of s. Thus, as long as the amplitude of the gradient is the information

of interest, it must be represented on a twice finer grid; else aliasing occurs and the value of the

TV becomes unreliable.
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5 Algorithms for TV Minimization

In this section, we focus on the generic convex optimization problem:

Find x̂ ∈ argmin
x ∈RN1×N2

{F (x) + λ TV(x)} , (28)

where the sought-after image x̂ has size N1 × N2, λ > 0 is the regularization parameter, F is

a convex, proper, lower semicontinuous function [24]. A particular instance of this problem is

image denoising or smoothing: given the image y, one solves:

Find x̂ ∈ argmin
x ∈RN1×N2

�
1
2
‖x − y‖2 + λ TV(x)

	
, (29)

where the norm is the Euclidean norm. This problem is a particular case of (28) with F (x) =
1
2
‖x −y‖2. More generally, many inverse problems in imaging can be written as: given the data

y and the linear operator A,

Find x̂ ∈ argmin
x ∈RN1×N2

�
1
2
‖Ax − y‖2 + λ TV(x)

	
. (30)

Again, this problem is a particular case of (28) with F (x) = 1
2
‖Ax − y‖2. Another instance is

TV minimization subject to a linear constraint, for instance to regularize an ill-posed inverse

problem in absence of noise: given the data y and the linear operator A, one solves:

Find x̂ ∈ argmin
x ∈RN1×N2

{TV : Ax = y} . (31)

This problem is a particular case of (28) with λ = 1 and F (x) = ı{x : Ax=y}(x), where the convex

indicator function ıΓ of a set Γ maps its variable x to 0 if x ∈ Γ, to +∞ else.

When the TV is the anisotropic, isotropic, or upwind TV, which is a simple function composed

with the finite differentiation operator D, there are e�cient primal–dual algorithms to solve a

large class of problems of the form (28), see e.g. [3, 11, 12] and references therein. In Sect. 6,

we use the overrelaxed version [25] of the Chambolle–Pock algorithm [3]. With the proposed

TV, it is not straightforward to apply these algorithms. In fact, (28) can be rewritten as:

Find (x̂ ,v̂) ∈ argmin

x ∈RN1×N2 ,v ∈((R2)N1×N2)
3

�
F (x) + λ ‖v‖1,1,2 : L∗v = Dx

	
, (32)

where the ℓ1,1,2 norm ofv is the sum of the ℓ1,2 norm of its three componentsvl, v↔, v•, and L
∗

is the adjoint operator of L, the concatenation of Ll, L↔, L•, so that L∗v = L∗
l
vl+L

∗
↔v↔+L

∗
•v•.

So, one has to find not only the image x̂ , but also its gradient field v̂, minimizing a separable

function, under a linear coupling constraint. Let us introduce the functionG(v) = λ ‖v‖1,1,2 and

the linear operatorC = −L∗, so that we can put (32) under the standard form:

Find (x̂ ,v̂) ∈ argmin

x ∈RN1×N2 ,v ∈((R2)N1×N2)
3

{F (x) +G(v) : Cv + Dx = 0} . (33)
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The dual problem is

Find û ∈ argmin
x ∈u ∈(R2)N1×N2

{F ∗(−D∗u) +G∗(−C∗u)} , (34)

which, in our case, is

Find û ∈ argmin
x ∈u ∈(R2)N1×N2

�
F ∗(−D∗u) : ‖Lu‖∞,∞,2 ≤ λ

	
, (35)

where the ℓ∞,∞,2 norm is the maximum over the three components and the pixels of the 2-norm

of the vector.

We now assume that the function F is simple, in the sense that it is easy to apply the proximity

operator [24, 26] proxα F of αF , for any parameter α > 0. For the denoising problem (29),

proxα F (x) = (x + αy)/(1 + α). For the regularized least-squares problem (30), proxα F (x) =

(Id + αA∗A)−1(x + αA∗y). For the constrained problem (31), proxα F (x) = x + A†(y − Ax),
where A† is the Moore-Penrose pseudo-inverse of A. We also need the proximity operator of

αG = αλ‖ · ‖1,1,2, which is

�
proxαG (v)

�
c
[n1,n2] = vc[n1,n2] −

vc [n1,n2]

max(|vc [n1,n2]|/(αλ),1)
, ∀(n1,n2) ∈ Ω, ∀c ∈ {l,↔,•}.

(36)

We can notice that ‖D‖2 ≤ 8 [2] and ‖C‖2 = ‖L‖2 ≤ 3. So, we have all the ingredients to use

the Alternating Proximal Gradient Method [27], a particular case of the Generalized Alternating

Direction Method of Multipliers [28]:

Algorithm 1 to solve (32):

Choose the parameters 0 < τ < 1/‖D‖2, 0 < γ < 1/‖C‖2, µ > 0, and the initial estimates x (0),

v (0), u(0).

Then iterate, for i = 0,1, . . .

x (i+1) := proxτ µF

(

x (i) − τD∗(Dx (i) +Cv (i)
+ µu(i))

)

,

v (i+1) := proxγ µG

(

v (i) − γC∗(Dx (i+1) +Cv (i)
+ µu(i))

)

,

u(i+1) := u(i) + (Dx (i+1) +Cv (i+1))/µ .

Assuming that there exists a solution to (32), for which a su�cient condition is that there exists a

minimizer of F , Algorithm 1 is proved to converge [27,28]: the variables x (i), v (i), u(i) converge

respectively to some x̂ , v̂, û, solution to (32) and (35).

It is easy to show that the same algorithm can be used to compute the gradient field v of an

image x , solution to (15); we simply replace x (i) by x . This yields

Algorithm 2 to find v solution to (15), given x:

Choose the parameters 0 < γ < 1/‖C‖2, µ > 0, and the initial estimates v (0), u(0).

Then iterate, for i = 0,1, . . .
v (i+1) := proxγ µG

(

v (i) − γC∗(Dx +Cv (i)
+ µu(i))

)

,

u(i+1) := u(i) + (Dx +Cv (i+1))/µ .
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In practice, we recommend setting τ = 0.99/8 and γ = 0.99/3 in Algorithms 1 and 2, so

that there only remains to tune the parameter µ.

Further on, let us consider the regularized least-squares problem (30), in the case where

the proximity operator of the quadratic term cannot be computed. It is possible to modify

Algorithm 1, by changing the metric in the Generalized Alternating Direction Method of Mul-

tipliers [28], to obtain a fully split algorithm, which only applies A and A∗ at every iteration,

without having to solve any linear system. So, we consider the more general problem

Find x̂ ∈ argmin
x ∈RN1×N2

�
F (x) + 1

2
‖Ax − y‖2 + λ TVp(x)

	
, (37)

or, equivalently,

Find (x̂ ,v̂) ∈ argmin

x ∈RN1×N2 ,v ∈((R2)N1×N2)
3

�
F (x) + 1

2
‖Ax − y‖2 +G(v) : Cv + Dx = 0

	
, (38)

where, again,G(v) = λ ‖v‖1,1,2 andC = −L∗. The algorithm, with proved convergence to exact

solutions of (37) and its dual, is:

Algorithm 3 to solve (38):

Choose the parameters τ > 0, µ > 0, such that τ < 1/(‖D‖2 + µ‖A‖2), 0 < γ < 1/‖C‖2, and

the initial estimates x (0), v (0), u(0).

Then iterate, for i = 0,1, . . .

x (i+1) := proxτ µF

(

x (i) − τD∗(Dx (i) +Cv (i)
+ µu(i)) − τ µA∗(Ax (i) − y)

)

,

v (i+1) := proxγ µG

(

v (i) − γC∗(Dx (i+1) +Cv (i)
+ µu(i))

)

,

u(i+1) := u(i) + (Dx (i+1) +Cv (i+1))/µ .

Note that many other algorithms could be applied to solve problems involving the proposed

TV. The most appropriate algorithm for a particular problem must be designed on a case-by-case

basis. So, it is beyond the scope of this paper to do any comparison of algorithms in terms of

convergence speed.

6 Experiments

In this section, we evaluate the proposed TV on several test problems. First, we report in Tab. 1

the value of the proposed TV for the patterns shown in Fig. 1. For each image, the value was

determined by computing the associated gradient field, using Algorithm 2; these gradient fields

are depicted in Fig. 3. According to the discussion in Sects. 2 and 4, the proposed TV, which is a

seminorm, takes appropriate values in all cases. That is, for a patternwhich can be interpreted as

the cell-average discretization of a continuously defined structure, the discrete TV of the pattern

and the continuous TV of the structure take the same value. On the other hand, for binary

patterns, the gradient field, and thus the value of the TV, is the same as with the anisotropic TV;

that is, it is given by Eqs. (16)–(18). Thus, the staircased nature of oblique binary patterns is

penalized.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 3: Same patterns as in Fig. 1, with the associated gradient fields, solutions to (15). The

vectors vl[n1,n2], v↔[n1,n2], v•[n1,n2], are represented by red, blue, green arrows, starting at

(n1 +
1
2
,n2), (n1,n2 +

1
2
), (n1,n2), respectively.

In the remainder of this section, we study the behavior of the proposed TV in several appli-

cations, based on TV minimization.

6.1 Smoothing of a Binary Edge

We consider the smoothing problem (29) with the proposed TV, where the initial image y (N1 =

N2 = 256), is an oblique binary edge, obtained by point sampling a continuously defined straight

edge with slope 5/16. The central part of y is depicted in Fig. 6 (a). So, we solve

Find (x̂ ,v̂) ∈ argmin

x ∈RN1×N2,v ∈((R2)N1×N2)
3

�
1
2
‖x − y‖2 + λ ‖v‖1,1,2 : L∗v = Dx

	
, (39)

using Algorithm 1 (µ = 0.05, 2000 iterations). The central part of the smoothed image x̂ , as

well as the corresponding gradient field v̂, are depicted in Fig. 6 (b), for λ = 2; see the caption

of Fig. 3 for the representation of the gradient field by colored arrows. The result for stronger

smoothing with λ = 20 is depicted in Fig. 6 (c).

We observe that the edge undergoes a slight blur, which remains concentrated over one or

two pixels vertically, even for a strong smoothing parameter λ. This is expected, since such a

slightly blurred edge has a lower TV value than the binary edge in y. Importantly, the minimiza-

tion of the proposed TV tends to make all the gradient vectors of the field v̂ aligned with the

same orientation, which is exactly perpendicular to the underlying edge with slope 5/16. This

shows that not only the amplitude, but also the orientation of the gradient vectors obtained with

the proposed approach, is meaningful.
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Figure 4: Zoom on the top-left part of the disk edge in Fig. 7 (f), with the associated gradient

field.

6.2 Smoothing of a Disk

We consider the smoothing problem (29), with λ = 6, where y is the image of a white disk,

of radius 32, over a black background (N1 = N2 = 99), depicted in Fig. 7 (a). To simulate

cell-average discretization, a larger (16N1) × (16N2) binary image was constructed by point

sampling a 16 times larger disk, and then y was obtained by averaging over the 16 × 16 blocks

of this image. In the continuous domain, it is known [29] that TV smoothing of a disk of radius

R and amplitude one over a zero background, with zero/Dirichlet boundary conditions, gives

the same disk, with lower amplitude 1 − 2λ/R, assuming λ < R/2. Here, we consider a square

domain of size N1 × N2 with symmetric/Neumann boundary conditions, so the background

is expected to become lighter after smoothing, with amplitude 2πλR/(N1N2 − πR2). We can

notice that the total intensity remains unchanged and equal to πR2 after smoothing. Moreover,

according to the co-area formula, the TV of the image of a disk is 2πR, the perimeter of the disk,

multiplied by the difference of amplitude between the disk and the background. Thus, in the

discrete domain, we expect the smoothed image x̂ to be similar to y, after an a�ne transform

on the pixel values, so that the pixel values in the interior of the disk and in the background

are 1 − 2λ/R = 0.625 and 2πλR/(N1N2 − πR2) ≈ 0.183, respectively; this reference image is

depicted in Fig. 7 (b).

The images x̂ obtained by solving (29) with the anisotropic, isotropic, upwind, and proposed

TV (using 2000 iterations of Algorithm 1 with µ = 0.1), are shown in Fig. 7.

•With the anisotropic TV the perimeter of the disk is evaluated in the sense of theManhattan

distance, and not the Euclidean distance. So, the TV of the disk is over-estimated. Since blurring

an edge does not decrease the TV, TV minimization lets the TV value decrease by shrinking the

shape of the disk and attenuating the amplitude of the edge more than it should.

• With the isotropic TV, the bottom, right, and top-left parts of the edge are sharp, but the
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other parts are significantly blurred. Contrary to the three other forms, the isotropic TV does

not yield a symmetric image; the image is only symmetric with respect to the diagonal at −45o.
• The upwind TV performs relatively well.

• The proposed TV outperforms the three other forms. Except at the top, bottom, left,

right ends, the edge is sharper than with the upwind TV. The edge has the same spread every-

where, independently of the local orientation, which is a clear sign of the superior isotropy of

the proposed approach. Since the proposed TV does not blur a horizontal or vertical edge after

smoothing, the fact that the top, bottom, left, right ends of the disk edge are blurred here shows

the truly nonlocal nature of the proposed TV; this is due to the higher number of degrees of

freedom optimized during TV minimization, with not only the image but also its three gradient

subfields. The other forms of the TV have less flexibility, with the gradient fully determined by

local finite differences on the image.

The gradient field v̂, solution to (39), is depicted in Fig. 4. We can observe its quality,

with all the arrows pointing towards the disk center, showing that the gradient orientation is

perpendicular to the underlying circular edge everywhere.

6.3 Smoothing of a Square

We consider the smoothing problem (29), with λ = 6, wherey is the image of a white square, of

size 64×64, over a black background (N1 = N2 = 100), depicted in Fig. 8 (a). In the continuous

domain, the solution of the smoothing problem, when the function y is equal to 1 inside the

square [−1,1]2 and 0 outside, λ < 1/(1 +
√
π/2), and with zero boundary conditions, contains

a square of same size, but with rounded and blurred corners, and lower amplitude [30,31]. The

following closed-form expression can be derived:

x(t1,t2) =



0 if |t1| > 1 or |t2| > 1,

0 else, if r ≤ λ,
1 − λ(1 +

√
π/2) else, if r ≥ 1/(1 +

√
π/2),

1 − λ/r else,

(40)

where r = 2− |t1|− |t2|+
√

2(1 − |t1|)(1 − |t2|). Since symmetric, instead of zero, boundary con-

ditions are considered here, x(t1,t2) is actually the maximum of this expression and a constant,

which can be calculated. So, the reference result in the discrete case was simulated by point

sampling this function x(t1,t2) on a fine grid, with λ = 6/32, in a large 1600 × 1600 image,

which was then reduced by averaging over its 16 × 16 blocks. This reference image is depicted

in Fig. 8 (b).

The image x̂ , solution to (29) with the anisotropic, isotropic, upwind, and proposed TV

(using 2000 iterations of Algorithm 1 with µ = 0.3), is shown in Fig. 8. The anisotropic TV yields

a square, without any rounding of the corners. This shows again that the metric underlying

anisotropic TV minimization is not the Euclidean one. With the isotropic TV, the asymmetric

blur of the corners contaminates the top and left sides of the square. Only the top-left corner

has the correct aspect. With the upwind TV, the level lines at the corners are more straight than

circular. The proposed TV yields the closest image to the reference image.
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(a) (b) (c) (d)

Figure 5: Inpainting experiment, see Sect. 6.5. The region to reconstruct is in blue in (a). In (b),

one solution of anisotropic TV minimization. In (c), solution of isotropic, upwind, and proposed

TV minimization. In (d), solution of isotropic TV minimization, for the flipped case.

6.4 Denoising of the Bike

We consider the application of the smoothing/denoisingproblem (29), or (39)with the proposed

TV, to remove noise in a natural image. The initial image y, depicted in Fig. 9 (a), is a part of

the classical Bike image, depicted in Fig. 9 (b), corrupted by additive white Gaussian noise of

standard deviation 0.18. λ is set to 0.16. With the anisotropic TV, the noise is removed, but the

contrast of the spokes is more attenuated than with the other forms of the TV. With the isotropic

TV, the noise is less attenuated and some small clusters of noise remain. This is also the case,

to a much larger extent, with the upwind TV: the dark part of the noise is removed, but not the

light part, and a lot of small light clusters of noise remain. This drawback of the isotropic and

upwind TV can be explained by the too low penalization of a single isolated pixel, as reported

in Tab. 1 and in Sect. 2. The proposed TV yields the best result: the noise is removed, the spokes

have an elongated shape with less artifacts and a good contrast.

6.5 Inpainting of an Edge

We consider an inpainting problem, which consists in reconstructing missing pixels by TV min-

imization. The image is shown in Fig. 5 (a), with the missing pixels in blue. We solve the

constrained TV minimization problem (31), where A is a masking operator, which sets to zero

the pixel values in the missing region and keeps the other pixels values unchanged. We have

A† = A∗ = A. The image y, shown in Fig. 5 (b), has its pixel values in the missing region equal

to zero.

With the anisotropic TV, the solution is not unique, and every image with nondecreasing

pixels values horizontally and vertically is a solution of the TV minimization problem. One

solution, equal to y, is shown in Fig. 5 (b). The result with the isotropic, upwind, and proposed

TV (using 1000 iterations of Algorithm 1, with µ = 1) is the same, and corresponds to what

is expected; it is shown in Fig. 5 (c). The gradient field v̂ associated to the solution with the

proposed TV is not shown, but it is the same as in Fig. 3 (3).

We also consider the flipped case, where y is flipped horizontally. The solution with the

isotropic TV is shown in Fig. 5 (d). It suffers from a strong blur. Indeed, as reported in Tab. 1,
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the value of the isotropic TV for slightly blurred edges at this orientation, like in the cases (3f)

and (4f), is too high. So, when minimizing the TV, the TV value is decreased by the introduction

of an important blur. By contrast, the anisotropic, upwind, and proposed TV are symmetric, so

they yield flipped versions of the images shown in Fig. 5 (b) and (c).

6.6 Upscaling of a Disk

We consider the upscaling problem, which consists in increasing the resolution of the image y

of a disk, shown in Fig. 10 (a), by a factor of 4 in both directions. Upscaling is viewed as the

inverse problem of downscaling: the downscaling operator Amaps an image to the image of its

averages over 4× 4 blocks, and we suppose that y = Ax ♯ , for some reference image x ♯ , that we

want to estimate. Here, y is of size 23 × 23 and the reference image x ♯ , shown in Fig. 10 (b),

of size 92 × 92, was constructed like in Sect. 6.2: to approximate cell-average discretization, a

larger 1472× 1472 image x0 was constructed by point sampling a 16 times larger disk, and x ♯

was obtained by averaging over the 16×16 blocks of this image; that is, x ♯ = AAx0. Then y was

obtained as y = Ax ♯ . Hence, the upscaled image is defined as the solution to the constrained

TV minimization problem (31). We have A† = 16A∗.
The result with the anisotropic, isotropic, upwind, and proposed TV (using 2000 iterations

of Algorithm 1, with µ = 1) are shown in Fig. 10 (c)–(f). With the anisotropic TV, the result is

very blocky. With the isotropic TV, the disk edge is jagged, except at the top-left and bottom-

right ends. The result is much better with the upwind TV, and even better with the proposed TV,

which has the most regular disk edge. The distance ‖x̂ − x ♯‖ between the upscaled image and

the reference image is 2.91, 1.59, 1.23, with the isotropic, upwind, proposed TV, respectively.

So, this error is 23% lower with the proposed TV than with the upwind TV.

6.7 Segmentation of the Parrot

Given the set Σ = {ck ∈ [0,1]3 : k = 1, . . . ,K} of K ≥ 2 colors ck , expressed as triplets of

R,G,B values, and the color image y ∈ (R3)N1×N2 , we would like to find the segmented image

x̂ = argmin
x ∈ΣN1×N2

{

1
2
‖x − y‖2 + λ

2

K
∑

k=1

per(Ωk )

}

, (41)

for some λ > 0, where Ωk = {(n1,n2) ∈ Ω : x[n1,n2] = ck} and per denotes the perimeter.

That is, we want a color image, whose color at every pixel is one of the ck , close to y, but at

the same time having homogeneous regions. However, this nonconvex “Potts” problem is very

di�cult, and even NP-hard [6]. And a rigorous definition of the perimeter of a discrete region

is a di�culty in itself. So, we consider a convex relaxation of this problem [6]: we look for the

object ẑ ∈ ∆N1×N2 , such that, at every pixel, ẑ[n1,n2] = (ẑk [n1,n2])
K
k=1

is an assignment vector

in the simplex ∆ = {(ak )
K
k=1

:
∑K

k=1
ak = 1 and ak ≥ 0,∀k}. The elements ẑk [n1,n2] ∈ [0,1]

are the proportions of the colors ck at pixel (n1,n2); that is, the segmented image x̂ is obtained

from ẑ as

x̂[n1,n2] =

K
∑

k=1

ẑk [n1,n2]ck , ∀(n1,n2) ∈ Ω. (42)
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Now, by virtue of the co-area formula, the segmentation problem can be reformulated as [6]

Find ẑ = argmin
z∈∆N1×N2

{

〈z,p〉 + λ

K
∑

k=1

TV(zk )

}

, (43)

where the Frobenius inner product is

〈z,p〉 =
∑

(n1,n2)∈Ω

K
∑

k=1

zk [n1,n2]pk [n1,n2], (44)

with pk [n1,n2] = ‖y[n1,n2] − ck‖2. (45)

The problem (43) can be put under a form similar to (28):

Find ẑ ∈ argmin
z∈(RK )N1×N2

�
F(z) + λ TV(z)

	
, (46)

with the TV of z having a separable form with respect to k, i.e. TV(z) =
∑K

k=1 TV(zk ), and F(z)

having a separable form with respect to the pixels, i.e. F(z) =
∑

(n1,n2)∈Ω Fn1,n2
(z[n1,n2]), where

Fn1,n2
(a) = ı∆(a) + 〈a,p[n1,n2]〉. (47)

For any α > 0, we have proxα Fn1,n2
(a) = P∆(a −αp[n1,n2]), where P∆ is the projection onto the

simplex, which can be computed e�ciently [32]. So, the primal–dual algorithms described in

Sect. 5 can be used for the segmentation problem, as well. With the proposed TV, we must intro-

duceK gradient fieldsvk , associated to the images zk . We used 10000 iterations of Algorithm 1,

with µ = 8.

We compare the performances of the anisotropic, isotropic, upwind, proposed TV on this

problem, with y a part, of size 399 × 400, of the classical Parrot image, shown in Fig. 11 (a).

We set the K = 6 colors as some kind of black, white, yellow, blue, green, brown, visible in

Fig. 11 (b). In this respect, we would like the edges, which are the interfaces between the

regions Ωk , to be sharp, and their perimeter to be correctly measured by the total variation of

the assignment images ẑk . But these two goals are antagonist: the co-area formula is not well

satisfied for discrete binary shapes, as we have seen in Sect. 2: the length of oblique binary

edges is overestimated by the anisotropic, isotropic, and proposed TV, and the length of small

structures, like in the extreme case of a single isolated pixel, is underestimated by the upwind TV.

This seems like an intrinsic limitation and the price to pay for convexity, in a spatially discrete

setting. As visible in Fig. 11 (b), the anisotropic TV yields sharp edges, but their length is

measured with the Manhattan distance, not the Euclidean one. So, the edges tend to be vertical

and horizontal. With the isotropic TV, for half of the orientations, the edges are significantly

blurred, as is visible on the dark region over a green background, in the bottom-left part of the

image in Fig. 11 (c). The upwind TV tends to introduce more regions made of a few pixels,

because their perimeter is underestimated, see the eye of the parrot in Fig. 11 (d). The best

tradeoff is obtained with the proposed TV: there is a slight, one or two pixel wide blur at the

edges, but this blur cannot be avoided, for the perimeter of the regions to be correctly evaluated.
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7 Conclusion

We proposed a new formulation for the discrete total variation (TV) seminorm of an image.

Indeed, the classical, so-called isotropic, TV suffers from a poor behavior on oblique structures,

for half of the possible orientations. It is important to have a sound definition of the TV, not

least to be able to compare different convex regularizers for imaging problems, based on their

intrinsic variational and geometric properties, and not on the quality of their implementation.

Our new definition of the gradient field of an image has potential applications going far

beyond TV minimization; for instance, one can consider edge detection based on the gradient

amplitude, nonlinear diffusion and PDE flows based on the gradient orientation, one can define

higher order differential quantities. . . Wewill explore some of these problematics in futurework.

The extension of the proposed TV to color or multichannel images will be investigated, as well.
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(a) Initial image (central part)

(b) Smoothed image (central part), proposed TV, λ = 2

(c) Smoothed image (central part), proposed TV, λ = 20

Figure 6: Smoothing experiment, see Sect. 6.1. In (b) and (c), central part of the images and

their gradient fields obtained by smoothing the binary edge in (a), with λ = 2 and λ = 20,

respectively.
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(a) Initial image

(b) Reference image

(c) Smoothed image, anisotropic TV

Figure 7: Smoothing experiment, see Sect. 6.2. In (c), the image obtained by smoothing the

image in (a), using the anisotropic TV. In (b), the ideal result one would like to obtain. Every

image is represented in grayscale on the left and in false colors on the right, to better show the

spread of the edges.

23



g

(d) Smoothed image, isotropic TV

(e) Smoothed image, upwind TV

(f) Smoothed image, proposed TV

Fig. 7, continued. In (d), (e), (f), the images obtained by smoothing the image in (a), using the

isotropic TV, upwind TV, proposed TV, respectively.
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(a) Initial image

(b) Reference image

(c) Smoothed image, anisotropic TV

Figure 8: Smoothing experiment, see Sect. 6.3. In (c), the image obtained by smoothing the

image in (a), using the anisotropic TV. In (b), the ideal result one would like to obtain. Every

image is represented in grayscale on the left and in false colors on the right, to better show the

spread of the corners.
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(d) Smoothed image, isotropic TV

(e) Smoothed image, upwind TV

(f) Smoothed image, proposed TV

Fig. 8, continued. In (d), (e), (f), the images obtained by smoothing the image in (a), using the

isotropic TV, upwind TV, proposed TV, respectively.
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(a) Initial image

(b) Reference image

Figure 9: Denoising experiment, see Sect. 6.4. The initial noisy image in (a) is the ground-truth

image in (b), after corruption by additive white Gaussian noise.
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(c) Denoised image, anisotropic TV

(d) Denoised image, isotropic TV

Fig. 9, continued. In (c), (d), the images obtained by denoising the image in (a), using the

anisotropic TV and isotropic TV, respectively.
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(e) Denoised image, upwind TV

(f) Denoised image, proposed TV

Fig. 9, continued. In (e), (f), the images obtained by denoising the image in (a), using the

upwind TV and proposed TV, respectively.
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(a) Initial image (b) Reference Image

(c) Upscaled image, anisotropic TV (d) Upscaled image, isotropic TV

(e) Upscaled image, upwind TV (f) Upscaled image, proposed TV

Figure 10: Upscaling experiment, see Sect. 6.6. The images in (b)–(f), when reduced by aver-

aging over 4 × 4 blocks, yield the image in (a), exactly.
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(a) Initial image

(b) Segmented image, anisotropic TV (c) Segmented image, isotropic TV

(d) Segmented image, upwind TV (e) Segmented image, proposed TV

Figure 11: Segmentation experiment, see Sect. 6.7.
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