
HAL Id: hal-01309681
https://hal.science/hal-01309681v1

Submitted on 26 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Parallelism and Thread Mapping Control on
Software Transactional Memory

Naweiluo Zhou, Gwenaël Delaval, Bogdan Robu, Eric Rutten, Jean-François
Méhaut

To cite this version:
Naweiluo Zhou, Gwenaël Delaval, Bogdan Robu, Eric Rutten, Jean-François Méhaut. Autonomic
Parallelism and Thread Mapping Control on Software Transactional Memory. ICAC 2016 - 13th
IEEE International Conference on Autonomic Computing, Jul 2016, Wurzburg, Germany. pp.189 -
198, �10.1109/ICAC.2016.54�. �hal-01309681�

https://hal.science/hal-01309681v1
https://hal.archives-ouvertes.fr

Autonomic Parallelism and Thread Mapping Control

on Software Transactional Memory

Naweiluo Zhou1, Gwenaël Delaval1 , Bogdan Robu2

Univ. Grenoble Alpes, LIG, CNRS, INRIA1

Univ. Grenoble Alpes, GiPSA-Lab, CNRS2

Grenoble, France

naweiluo.zhou@inria.fr, gwenael.delaval@inria.fr,

bogdan.robu@gipsa-lab.grenoble-inp.fr

Éric Rutten, Jean-François Méhaut

Univ. Grenoble Alpes, LIG, CNRS, INRIA

Grenoble, France

eric.rutten@inria.fr, jean-francois.mehaut@imag.fr

Abstract—Parallel programs need to manage the trade-off
between the time spent in synchronization and computation.
The time trade-off is affected by the number of active threads
significantly. High parallelism may decrease computing time while
increase synchronization cost. Furthermore thread locality on
different cores may impact on program performance too, as
the memory access time can vary from one core to another
due to the complexity of the underlying memory architecture.
Therefore the performance of a program can be improved by
adjusting the number of active threads as well as the mapping of
its threads to physical cores. However, there is no universal rule to
decide the parallelism and the thread locality for a program from
an offline view. Furthermore, an offline tuning is error-prone.
In this paper, we dynamically manage parallelism and thread
localities. We address multiple threads problems via Software
Transactional Memory (STM). STM has emerged as a promising
technique, which bypasses locks, to address synchronization issues
through transactions. Autonomic computing offers designers a
framework of methods and techniques to build autonomic systems
with well-mastered behaviours. Its key idea is to implement
feedback control loops to design safe, efficient and predictable
controllers, which enable monitoring and adjusting controlled
systems dynamically while keeping overhead low. We propose to
design a feedback control loop to automate thread management
at runtime and diminish program execution time.

Keywords—autonomic, transactional memory, feedback control,
synchronization, parallelism adaptation, thread affinity

I. INTRODUCTION

Multicore processors are ubiquitous, which enhance pro-
gram performance through thread parallelism (number of si-
multaneous active threads). The complexity of memory hier-
archy brought by multicore processors gives diverse access
latency or memory contention from threads located on different
cores. Allocating threads appropriately to certain cores can
potentially improve usage of resource, such as main memory,
cache and interconnections. Therefore the overall performance
of a parallel application not only depends on the parallelism
degree but also the locality of its threads. High parallelism
shortens execution time, but it may also potentially increase
synchronization time. The execution time can be further de-
teriorated with an unsuitable placement of the active threads
on the cores. The conventional way to address multiple-thread
issues is via locks. However, locks are notorious for various
issues such as the likelihood of deadlock and the vulnerability

to failure and faults. Also it is not straightforward to analyse
interactions among concurrent operations.

Transactional memory (TM) emerges as an alternative
synchronization technique, which addresses synchronization
issues through transactions. Accesses to shared data are en-
closed in transactions which are executed speculatively without
being blocked by locks. Various TM schemes have been devel-
oped [1], [2], [3] including Hardware Transactional Memory
(HTM), Software Transactional Memory (STM) and Hybrid
Transactional Memory (HyTM). In this paper, we present run-
time thread control under STM systems where synchronization
time originates in transaction aborts. There are different ways
to reduce aborts, such as the design of contention manager
policy, the way to detect conflicts, the setting of version
management and the parallelism degree.

Online thread parallelism adaptation began to receive at-
tention recently. A suitable parallelism degree in a program
can significantly affect its performance. However it is onerous
to set a suitable parallelism degree for a program offline
especially for the one with online behaviour variation. When
apropos of the program with online behaviour fluctuation, there
is no unique parallelism that can enable the optimal perfor-
mance. Therefore the natural solution consists in monitoring
the program at runtime and alter its parallelism degree when
necessary. Additionally, the complexity of memory hierarchy
imposes differences of memory access time among cores,
which consequently lead to the performance diversity related
to the diverse locations of threads. When the number of active
thread number varies, their corresponding locations may also
need to be adjusted accordingly in order to optimize usage
of memory hierarchy. Assigning threads to specific cores is
called thread mapping [4] and fixing a thread to a specific
core is called setting the thread affinity.

We introduce feedback control loops to STM systems to
achieve autonomic computing [5], i.e. to automatically regulate
thread number and their mapping to cores at runtime. In this
paper we argue that online thread management is necessary
and feasible in STM systems. We demonstrate that the program
performance is sensitive to the parallelism degree as well as
thread mapping. We present one effective profiling and control
framework for thread management using TinySTM [2].

The main contributions of our paper are as follows:

1) We build a runtime parallelism predictor based on
probability theory.

2) We utilise a feedback control loop to optimize both
parallelism and thread mapping strategies at runtime
for STM systems.

The rest of the paper is organized as follows. Section II
summaries the background and related work. Section III details
the profiling procedure and the design of feedback control loop
that optimizes the parallelism and thread mapping strategy.
Section IV presents the implementation details. Section V
shows the results. Section VI discusses the pros and cons of
our models and Section VII concludes the paper and gives
future work.

II. BACKGROUND AND RELATED WORK

A. Software Transactional Memory

Transactional memory (TM) is an alternative synchro-
nization technique. In TM, data accesses to shared memory
are enclosed in transactions which are executed speculatively
without being blocked by locks. Each transaction makes a
sequence of tentative changes to shared memory. When a
transaction completes, it can either commit making the changes
permanent to memory or abort discarding the previous changes
made to memory [1]. Two parameters are often used in TM
to indicate system performance, namely commit ratio and
throughput. Commit ratio (CR) equals the number of commits
divided by the sum of number of commits and aborts; it
measures the level of conflicts or contention among current
transactions. Throughput is the number of commits in one unit
of time; it directly indicates progress of useful work. In our
proposal we propose to use logic time to mark the profile
period. This is due to the fact that various TM applications
vary in the size of transaction leading to significant variation of
execution time. TM can be implemented in software, hardware
or hybrid. Different mechanisms explore the design trade-off
that impacts on performance, programmability and flexibility.
In this paper, we focus on STM systems and utilise TinySTM
[2] as our experimental platform. TinySTM is a lightweight
STM system that adopts a shared array of locks to control the
concurrent accesses to memory and applies a shared counter
as clock to manage its transaction conflicts.

B. Parallelism and Thread Mapping

Performance of STM systems has been continuously im-
proved. Studies to improve STM systems mainly focus on the
design of conflict detection, version management and conflict
resolution. Conflict detection decides when to check read/write
conflicts. Version management determines whether logging old
data and writing new data to memory or vice versa. Conflict
resolution, which is also known as contention management
policy, handles the actions to be taken when a read/write
conflict happens. The goal of the above designs is to reduce
wasted work. The amount of wasted work resides in the
number of aborts and the size (the number of operations inside
an abort) of aborts. The higher contention in a program, the
larger amount of wasted work. The time spent in wasted work
is the synchronization time in the STM view. Apart from
diminishing wasted work, one way to improve STM system
performance is to trim computing time. High parallelism may

accelerate computation but resulting in high contention thus
high synchronization time. Hence parallelism can significantly
affect performance of a program.

Modern computing systems carry a complex memory hi-
erarchy that gives different access latency to main memory
from different cores, thus the mapping of threads to the cores
impact on the application’s performance. Castro [4] defines
four different thread mapping strategies based on the locations
of threads, which are addressed as Compact (threads are
physically placed on sibling cores, e.g., on C0 and C1), Scatter
(threads are distributed across processors, e.g., on C0 and C4),
RoundRobin (is an intermediate solution, threads share higher
levels of cache (e.g., L3) but not the lower ones (e.g., L2).) and
Linux (the default Linux thread scheduling strategy). Fig. 1
illustrates the four thread mapping strategies when concerning
with two threads.

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

Scatter

Round-Robin

Compact

Linux

thread migration

Fig. 1. Four thread mapping strategies [4] when concerning with two threads.
The processor structure is only an illustration.

C. Autonomic Computing

Autonomic computing [6] is a concept that brings together
many fields of computing with the purpose of creating self-
managed computing systems.

In this paper, we introduce a feedback control loop to
achieve autonomic thread control. A classic feedback control
loop is illustrated in Fig. 2 in the shape of a MAPE-K loop.

Managed Elements

sensors Effectors

Monitors
Knowledge

Execute

Autonomic Element

Analyse Plan

Autonomic Manager

Fig. 2. A MAPE-K control loop. It incorporates an autonomic manager,
sensors, effectors as well as managed elements among which the autonomic
manager plays the main role.

In general, a feedback control loop is composed of (1)
an autonomic manager, (2) sensors (collect information), (3)
effectors (carry out changes), (4) managed elements (any
software or hardware resource). An autonomic manager is
composed of five elements: a monitor (used for sampling), an
analyser (analyse data obtained from the monitor), knowledge
(knowledge of the system), plan (utilise the knowledge of
the system to carry out computation) and execute (perform

changes). It is worth noting that the above five elements of the
autonomic manager can overlap with each other.

D. Related Work

It has been been addressed in a few previous work [7],
[8], [9], [10] to dynamically adapt parallelism via control
techniques to reduce wasted work. Ansari et. al. [7] proposed
to adapt the parallelism online by detecting the CR changes of
applications. The parallelism is regulated if the CR falls out of
the preset CR range or is not equal to a single preset CR value.
This is based on the fact that CR falls during highly contended
phases and rises with low contended phases. Ansari et. al. gave
five different algorithms that decide the profile length and the
parallelism degree. Ravichandran et. al. [10] presented a model
which adapts the thread number in two phases: exponential
and linear with a feedback control loop. Rughetti et. al. [8]
utilise a neural network to enable the performance prediction of
STM applications. The neural network is trained to predict the
wasted transaction execution time which in turn is utilised by a
control algorithm to regulate parallelism. Didona et. al. [9] pro-
vides an approach to dynamically predict the parallelism based
on the workload (duration and relative frequency, of read-only
and update transactions, abort rate, average number of writes
per transaction) and throughput, through one feedback control
loop its prediction can be continuously corrected. There is
only one previous work from Castro [4] that investigated the
runtime thread mapping issues on STM applications. Castro
utilises an offline training procedure to obtain a thread mapping
strategy predictor and employs it to estimate a thread-to-core
mapping solution at runtime. No prior literature has addressed
the issue on coordination of parallelism and thread mapping
for TM systems. Wang et. al. [11] present an offline compiler-
based approach for OpenMP programs. Two machine learning
algorithms (that require offline data training), namely feed-
forward Artificial Neural Network (ANN) and Support Vector
Machine (SVM) are employed, to dictate parallelism degree
and thread mapping rules respectively.

Our approaches differ from the previous work as (1) com-
paring with Ansari et. al., we resolve the CR range which is
adaptive to the online program behaviour (2) no modifications
are made to applications to perform thread management (3)
analogising with the parallelism prediction by Didona et. al.,
Ravichandran et. al. and Rughetti et. al., we predict the optimal
parallelism by a model based on probability theory that re-
quires no offline training procedure or trying different number
of threads to search the optimum value. (4) contrasting with
the offline approach of Wang et. al. on OpenMP, we design
a feedback control loop which regulates both parallelism and
thread mapping strategy at runtime for STM systems.

III. AUTONOMIC THREAD ADAPTATION

In this section, we present the design of the feedback con-
trol loop for thread management. We firstly give an overview
of the profiling algorithm and later detail the algorithm via the
prism of control theory.

We measure three parameters from the STM system,
namely the number of commits, the number of aborts and
physical time. The number of commits and the number of
aborts are subsequently addressed as commits and aborts.

As stated in Section II-A, a commit denotes a transaction
successfully accomplishes its operations and an abort means
a transaction fails to finish its operations. We choose CR
and throughput to indicate program performance, as CR and
throughput are both sensitive to thread variation. Either is by
itself not sufficient enough to represent program performance:

• A high throughput means fast program execution
whereas a low throughput denotes slow program
progress. But a low throughput may be caused by a
low parallelism degree or simply just by a low number
of transactions taking places.

• CR indicates the conflicts among threads. A high
CR means low synchronization time whereas a low
CR means high synchronization cost. But a low CR
can bring a high throughput when a large number
of transactions are executing concurrently, whereas
a high CR may give low throughput due to a small
number of transactions executing concurrently.

Therefore it is necessary to utilise both CR and throughput to
indicate program performance. The controller observes CR to
detect the contention fluctuation and enable the corresponding
control actions. The control actions are verified by checking
if the throughput is improved after the taken actions.

A. Overview of Profiling Algorithm

To achieve autonomic thread adaptation which enables
a program to work under optimized parallelism and thread
mapping strategy, we propose to periodically profile the appli-
cations at runtime. Parallelism and thread mapping strategies
both impact on application performance. But the influence
of parallelism to an application is much larger than the
impacts of thread mapping strategy, as we can see later in
Section V. Furthermore, a different parallelism degree may
require a different thread mapping strategy [4] to enhance its
performance but a different thread mapping strategy has low
effect on estimation of parallelism degree. Hence we profile
the thread mapping strategy based on the active number of
threads chosen.

1st profiling

non- ac�on interval (�med by Tx)

...

 thread profile interval

Program starts A thread profile starts

decision point decision point

 one profile length ...

 one profile lengthdecision point

 1):predic�on

2) :verify

3) thread mapping

 1) 2) 3) 3) 3) 3)

Fig. 3. Periodical profiling procedure. At each decision point (marked by
dashed red arrow), the actions are taken. One profile length is a fixed number
of commits.

By observing CR, we can obtain the contention information
of an application. CR usually fluctuates in a certain range
within the same phase. When a program enters a new phase,
the current parallelism and thread mapping strategy produces

a different CR that falls out of the current CR range. The CR
fluctuation triggers a new thread control action. Initially the
two CR thresholds (CR UP, CR LOW) are both set to be 0
and are trained in the later profile stage. When the CR falls out
of the thresholds, it may be required to add or remove threads
to resolve conflicts in order to optimize the throughput. The
throughput can be further enhanced by a good thread mapping
strategy. The detail of the procedure is illustrated in Fig. 3.

The profiling procedure commences once the program
starts with Linux as its initial thread mapping strategy, since
Linux is the default thread mapping strategy on Linux systems.
Initially the program creates a pool of threads, of which some
can be activated and some can be suspended. At each decision
point, the control loop (see section III-B) is activated to regu-
late the parallelism and thread mapping strategy or suspend this
regulation. We address the two operations as thread regulation.
As shown in Fig. 3, a profile length is a fixed length of logic
time (commits) for information gathering, such as commit,
abort and time. A thread profile interval, within which the
thread regulation is enabled, is composed of a continuous
sequence of profile lengths. The non-action interval, within
which the thread regulation is suspended, is composed of
one or a continuous sequence of profile lengths. The duration
of the thread profile interval and non-action interval are not
fixed values as shown in Fig. 3. The thread profile interval
can be composed of two profile lengths (only parallelism
regulation) or six profile lengths (thread regulation). When the
thread number produced by the parallelism predictor remains
unchanged or is over half of the core number, the thread profile
interval terminates. Otherwise, thread mapping strategies are
profiled. The reason that half of the core number is chosen as a
critical point is: (1) when the parallelism reaches the maximum
value, the thread mapping strategy gives little impact on
program performance as all the possible cores are occupied; (2)
the higher parallelism, the less impact received from different
thread mapping strategies. A non-action interval terminates
when CR falls out of the CR range. The above procedure
continues until the program terminates. It is worth noting that
a decision point in Fig. 3 corresponds to one state in Fig. 4(b)
as explained later in Section III-B.

B. Feedback Control of Thread Adaptation

Fig. 4(a) gives the structure of the complete platform that
forms a MAPE-K feedback control loop. The autonomic man-
ager, which can be also seen as the controller, is described as
an automaton in the paper as shown in Fig. 4(b). Our designed
automaton is composed of five states, and the program can only
reside on one state at each decision point.

1) Control Objective: Under control theory terminology,
the control objective of the feedback control loop is to max-
imize throughput and reduce the application execution time.
This is achieved by minimizing the conflicts among threads
and diminishing thread migration among cores.

2) Inputs and Outputs: The inputs of the loop are commits,
aborts, active thread number, thread mapping strategy and
physical time. The outputs/actions are optimum parallelism,
optimum thread mapping strategy and profile action.

3) Four Decision Functions: The control loop is activated
at each decision point (see Fig. 3). Four decision functions

 TinySTM

benchmarks

Mul�core HW

commits, aborts, tn,

�me, mapping

Autonomic Element

Autonomic Manager

Monitors Execute

Analyse

CR, th

Plan

Knowledge

Managed Elements

sensors
profile flag, mapping

inc/dec tn effectors

CR range

mapping,

opt tn

online && offline

 system info

(a) The instantiation of MAPE-K-shape feedback
control loop.

predict
 tn

mapping
 &
CR range

 stop
profile

 no
thread
control

th dec

(CR<
CR_LO

W
 and tn>

tn_m
in)

((CR>
CR_UP or CR=

1) and tn<
tn_m

ax
))

.

th
 in

c
a
n
d
 t
n

ch
an

ge

a
n
d
 t
n<

=
12

verify

 or

true

true

true

start

(b) The structure for the autonomic manager of Fig.4(a) in
automaton shape.

Fig. 4. The feedback control loop. th, tn and mapping stand for throughput,
thread number and thread mapping strategy respectively. One state corresponds
to one decision point in Fig. 3. The boolean value true means unconditional
state transfer.

cooperate to make decisions: a parallelism predictor (predicts
the parallelism degree), a thread mapping strategy decision
function (predicts the thread mapping strategy), a CR range
decision function (decides the phase change) and a thread
profile decision function (enables the thread profile action). At
each decision point as illustrated in Fig. 3, one corresponding
decision function reacts to make its decision. We firstly detail
the derivation of the parallelism predictor, then we describe the
design of the automaton as it elucidates the relation among the
decision functions, as well as how the thread mapping decision
function and profile decision function are designed. The CR
decision function is presented lastly.

We have developed a probabilistic model to serve as the
parallelism predictor. This probabilistic model however has its
limitation, it is based on two assumptions:

• we assume that the same amount of transactions are
executed in the active threads during a fixed period,
as every thread shows similar behaviour in our TM
applications,

• the probability of one commit (see Section II-A for
definition) approaches a constant, as there is a large
amount of transactions executed during the fixed pe-
riod making the probability of conflicts between two
transactions approaches a constant.

Let L0 be a fixed period during an application execution,
assuming that the average length of transactions (including

the aborted transactions and the committed transactions), is
L, thus the number of transactions N executed during L0 can
be expressed in equation (1).

N = n ·

L0

L
= α · n (1)

Where n stands for the number of active threads during L0,
N contains both aborts and commits, and a = L0

L
.

We assume that the probability of the conflicts p between
two transactions is independent from the current active threads,
thus independent from the number of active transactions.
Therefore during the L0 period, one transaction can commit if
it encounters no conflicts with other active transactions. The
probability of a commit can be expressed in Equation (2).

P (Xi = 1) = q
(N−1)

(2)

Where q = 1−p, which stands for the probability of a commit
between two transactions. However, the transactions executed
in a sequence within the same thread do not cause conflicts
among each other, the probability of a commit in Equation (2)
is lower than the reality. We suppose that during L0 period,
each thread approximately executes the same number of trans-
actions which is N

n
. Therefore the number of transactions

causing conflict are reduced to N −
N
n

. So Equation (2) can
be modified as in Equation (3).

P (Xi = 1) = q
(N−

N
n

)
(3)

Equation 3 is correct only if there is a large amount of
transactions executed during L0 period making the probability
of conflicts p between two transactions approaches a constant,
thus q approaches a constant.

Under the terminology of probability theory, Xi is a
random variable with Xi = 1 if the transaction i is committed,
Xi = 0 if i aborted. Xi follows a Bernoulli law of parameter

q(N−
N
n
).

Let T represents the throughput. In a unit of time, the
throughput can be also expressed as T =

∑
Xi and CR can

be expressed as CR = T
N

. As T is a random variable which

follows a binomial distribution B(N, q(N−
N
n
)). The expected

value of T is therefore to be:

E[T] = N · q
(N−

N
n

) = αnq
α(n−1)

(4)

Hence

E[CR] = q(N−
N
n
) = qα(n−1) (5)

Equation (4) can be rewritten as a function from n to T as
shown in Equation (6).

T (n) = α · n · q
α(n−1)

(6)

To obtain the value of n where the throughput can reach
the maximum, we compute the derivative of Equation (6) as
shown in Equation (7).

T ′(n) = αqα(n−1) + α2nqα(n−1) ln(q) (7)

Therefore

T ′(nopt) = 0 ⇔ αqα(nopt−1) + α2noptq
α(nopt−1) ln(q) = 0

⇔ qα(nopt−1)
· (α+ α2nopt ln(q)) = 0

⇔ α+ α2nopt ln(q) = 0
⇔ nopt = −

1
α ln(q)

(8)
Where nopt stands for the optimum value of n which is the
optimum thread number.

From Equation (5), we can obtain q = CR
1

α(n−1) . Then
Equation (8) can be rewritten as follows.

nopt = −
n− 1

ln(CR)
(9)

Where nopt stands for the optimum thread number, n stands
for the number of current active threads and CR is the current
commit ratio.

In this paragraph, we detail the thread mapping strategy
decision function and the thread profile decision function. The
automaton as illustrated in Fig. 4(b) starts from the predict tn
state where the optimum parallelism is predicted. Executing
the predicted parallelism for one profile length, the automaton
unconditionally enters the verify state which corresponds to
the second decision point in Fig. 3. In the verify state, the
predicted optimum thread number is verified by comparing the
current throughput with the previous throughput. If the current
throughput is larger than the previous value, we maintain
the predicted thread number, otherwise the thread number
is switched back to the previous optimal value. Additionally
the verify state decides the necessity of profiling the thread
mapping strategy. The following conditions must be both
satisfied in order to enter mapping & CR range state: (1) the
thread number has been changed, (2) the new thread number
is less than half of the core number (see the reasoning in
Section III-A). If the conditions are not met, the automaton
goes into stop profile state making all the thread regulation
suspended. At each instant of mapping & CR range state,
a new thread mapping strategy is applied. The optimum
thread mapping strategy is the one which yields the highest
throughput. mapping & CR range state is executed four times
as four thread mapping strategy needs to be profiled. At the
final decision point of a thread profile interval, the parallelism
and thread mapping strategy are set to be the value which
yields the maximum throughput. At each decision point of
a non-action interval, the profile decision function decides if
a new thread profile is needed, which corresponds to the no
thread control state. A new thread profile procedure starts from
the predict tn state. It is worth noting that the profile decision
function is performed on the verify, mapping & CR range and
no thread control state.

Lastly we describe the CR range decision function.
Through detecting CR fluctuation in the state no thread control,
the controller decides whether the program enters a new phase.
When CR fluctuates in a certain range, there is no need to
regulate the threads as the conflicts in the program are already
minimized by previous control actions. However it is onerous
to determine such a CR range offline, especially it is unrealistic
to set a fixed CR range for the programs with online behaviour
variation. Also a constant CR range impedes programs to
search its optimum parallelism and thread mapping strategy.

Therefore it becomes interesting to dynamically resolve a CR
range. The CR range computation is based on the optimum
CR value. The optimum CR (CRopt) is produced by the
optimum parallelism and thread mapping strategy and has
been recorded by the previous operations. The two thresholds
of the CR range is the optimum CR plus or minus its 10%
(CRthresholds = CRopt±0.1∗CRopt). This means that when
CR fluctuates within 10% of the optimum CR, the program
still stays in the same phase and the previous profiled optimum
parallelism and thread mapping strategy persist. When a new
optimum thread number is predicted and verified, a new CR
range is prescribed. We choose 10%, as we consider 10% of the
current performance change is good enough for the controller
to choose a new strategy. We leave a better design of CR range
decision function to the future work.

The four decision functions are illustrated in pseudocodes
in Fig. 5 to further clarify their integration as well as their
designs. The profile decision function is composed of two
parts: disable and enable profile actions.

1 /*CR range decision func and parallelism predictor*/

2 thread_predition_func(){...}//see previous derivation

3 CR_range_func(){...}//see previous derivation

1 /*thread mapping and disable profile decision funcs*/

2 thread_mapping_prediction()

3 {

4 for i in {Linux,Scatter,Compact,RR} //mapping strategy

5 {

6 apply i;

7 if (current throughput> max throughput)

8 optimum mapping= i;

9 }

10 apply optimum mapping;

11 }

12 if (current throughput > max throughput)

13 compute a new CR range;

14 max throughput=current throughput;

15 if (optimum tn <= half the core number && tn changes)

16 apply thread mapping prediction;

17 else

18 disable profile;

19 else

20 optimum tn = previous tn;

21 apply previous optimum thread mapping;

22 disable profile ;

1 /*enable profile decision fuc*/

2 enable_profile_action();

3 {

4 record current mapping strategy;

5 record current max throughput;

6 record current tn;

7 }

8 if CR falls out the CR range

9 enable thread profile action;

10 else

11 keep collecting profile info;

Fig. 5. The main structure of the four decision functions. tn and thread
mapping stand for the thread number and thread mapping strategy respectively.

It is worth noting that, in case the upper CR threshold is
100%, and the program CR is 100% (when only read opera-
tions in the transactions or no conflicts among transactions),
higher parallelism to the program is assigned.

IV. IMPLEMENTATION

There are two methods for collecting application profile
information in a parallel program. A master thread can be
employed to record the interesting information of itself. An al-
ternative way is to collect the information from all threads. The
first method requires little synchronization cost for information
gathering but the obtained information may not represent the
global view. Also the master thread must be active during the
whole program execution possibly resulting in earlier termina-
tion than the other threads, meaning that the fair execution time
among threads can not be guaranteed. The latter method may
suffer from synchronization cost but the profile information
represents the global view. More importantly, a strategy for
fair execution can be employed among threads. We choose
the second method. The synchronization cost of information
gathering is negligible for most of our applications.

We have implemented a monitor to collect the profile
information, control the dynamic parallelism and the race
condition. This implementation requires no modification to
the applications. The monitor is a cross-thread lock which
consists of the concurrent-access variables by threads. The
major variables of the monitor are commits, aborts, two FIFO
queues recording the suspended and active threads, the current
active thread number, the optimum thread number and the
throughput. There are three entry points of the monitor. The
first entry point is upon threads initialization, where some
initial values (e.g., thread id) are set for the threads and all
the threads pass the entry. The second entry point is upon a
transaction committing, where commits are accumulated and
where the control functions take actions. The third entry point
is upon a thread exiting, where one suspended thread is awaken
when one thread exits.

A time overhead is added to each transaction when calling
and releasing a monitor. The overhead caused by calling lock
is negligible on the transaction with medium and long length.
But this overhead is significant for the transaction with a small
number of operations. This is the case for intruder and ssac2
(two applications of STAMP described in the later section).
Such an overhead can be reduced through diminishing the
frequency of calling the monitor, i.e. the monitor is called every
100 commits rather than every commit.

To guarantee fair execution time of threads, threads are
periodically suspended and awaken. However this procedure
brings thread migration which is costly. To reduce the influence
of thread migration but meanwhile avoid thread starvation, the
new awaken thread is mapped to the core where a thread is
just suspended. Therefore only one thread is migrated each
time rather than all the active thread remapping.

V. PERFORMANCE EVALUATION

In this section, we present the results from 6 different
STAMP [12] benchmarks and one application from Eigen-
Bench [13]. The data sets cover a wide range from short to
long transaction length, from short to long program execution
time, from low to high program contention. The data sets also
incorporate the applications with a unique phase and diverse
online phases. Table I presents the qualitative summary of
each application’s runtime transactional characteristics: length
of a transaction (number of instructions per transaction or

execution time per transaction), execution time (application
execution time), and contention. The classification is based on
the application with its static optimal parallelism. A transaction
with execution time between 10us and 1000 us is classified
as medium-length. The contention between 30% and 60% is
classified as medium. The execution time between 10 seconds
and 30 seconds are classified as medium.

TABLE I. Qualitative summary of each application’s runtime
transactional characteristics. Tx length is the number of instructions per
transaction. Execution time means the whole program execution time.

Contention is the global contention of the application. The classification is
based on the application with its optimal parallelism applied.

Application TX length Execution time Contention

EigenBench medium long medium

intruder short medium high

genome medium short high

vacation medium medium low

ssca2 short short low

yada medium medium high

labyrinth long long low

A. Platform

We evaluate the performance on a SMP machine with 4
processors of 6 cores each. Every pair of cores share a L2
cache (3072KB) and every 6 cores share a L3 cache (16MB).
This machine holds 2.66GHz frequency and 63GB RAM. We
utilise TinySTM as our STM platform.

B. Benchmark Settings

We have tested 6 different applications from STAMP,
namely intruder, ssca2, genome, vacation, yada and
labyrinth. Two applications, namely bayes and kmeans from
STAMP, are not taken into account in this paper. As bayes
exhibits non-determinism [14]: the ordering of commits among
threads at the beginning of an execution can dramatically affect
the execution time. The aforementioned applications have
represented a wide range of characteristics of TM applications,
therefore we do not present the results from kmeans due to
the page limit. The inputs of the six selected applications are
detailed in Table II.

TABLE II. The inputs of STAMP

intruder -a8 -l176 -n109187

ssca2 -s20 -i1.0 -u1.0 -l3 -p3

genome -s32 -g32768 -n8388608

vacation -n4 -q60 -u90 -r1048576 -t4194304

yada -a15 -i inputs/ttimeu1000000.2

labyrinth -i random-x1024-y1024-z7-n512.txt

As most of the transactions within each STAMP applica-
tion usually have very similar behaviour [4] which are not
suitable for the evaluation of our dynamic thread mapping
approach. To evaluate the efficiency of dynamical thread
mapping strategy, we use EigenBench [13] (an artificial but
highly configurable benchmark suit) to create new TM appli-
cations with diverse phases. When its parallelism varies, the
corresponding thread mapping strategy varies. EigenBench in-
cludes 3 different arrays which provide the shared transactional
accesses (Array1), private transactional accesses (Array2) and
non-transactional accesses (Array3). We provide different read
and write accesses to the three arrays to create the phase

diversity. Due to the page limit, we only present the results
on one application from EigenBench. The application gives
two online phases. Its inputs are given in Table III.

TABLE III. The data set of EigenBench inputs for 24 threads.

*R1 0 35

*W1 0 45

loops 3333 *R2 0 200

A1 95536 *W2 0 100

A2 1048576 *R3o 0 10

A3 819200 *W3o 0 10

NOPi 0 *R1 1 300

NOPo 0 *W1 1 220

Ki 1 *R2 1 100

Ko 1 *W2 1 50

LCT 0 *R3i 1 0

M 2 *R3o 1 0

*W3o 1 0

C. Results

We firstly present the results of the execution time com-
parison between two autonomic thread adaptation approaches
with static parallelism. The maximum parallelism is 24 which
is the number of the available cores. The minimum parallelism
is 2, as we are only concerned with parallel applications. All
the applications are executed 10 times with one application
executing each turn. Simultaneous execution of multiple appli-
cations, which are more common in interactive systems, are not
concerned. The results are the average execution time. In the
following paragraphs, we address the model which only adjusts
parallelism as dynamic parallelism model. And we address the
model which regulates both parallelism and thread mapping
strategy as dynamic thread control model.

Fig. 6 and Fig. 7 illustrate the execution time compar-
ison with different static parallelism, dynamic parallelism
model and dynamic thread control model of EigenBench and
STAMP. The dots represent the execution time with different
static parallelism. The solid black line stands for execution
time with the dynamic parallelism model and the dashed red
line gives the execution time with the dynamic thread control
model. Fig. 7(b) indicates the performance comparison up to 10
threads to better illustrate the performance difference between
two dynamic models on EigenBench,

According to Fig. 6 and Fig. 7, our two models outperform
the performance of the majority of the static thread number.
The dynamic thread control model shows positive performance
rise against the dynamic parallelism model on applications:
EigenBench, yada and intruder, but it indicates a perfor-
mance degradation on genome and vacation. Both thread
models bring the similar performance to labyrinth and ssca2.
Table IV and Table V detail the performance comparison.
The digits in the brackets are the static parallelism which
gives the best and the worst performance respectively. Both
thread models outperform the best case of static parallelism
on EigenBench, genome and labyrinth. Both thread models
shows performance degradation on vacation, intruder and
ssca2 against the best case, yet brings significant performance
improvement comparing with the average value and the worst
case. It is worth noting that, some of TM applications scale
poorly when their parallelism rises (e.g., genome, vacation,
EigenBench) due to TM mechanisms.

Fig. 8 demonstrates the parallelism variation for both mod-
els and the thread mapping strategy variation for the dynamic

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●

●
●

●

●
● ●

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3
2

6
2

9
3

2
3

5
3

8

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(a) intruder

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●
● ● ● ● ● ● ●

0
1

2
3

4
5

6
7

8
9

1
1

1
3

1
5

1
7

1
9

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(b) ssca2

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●
● ● ● ● ●

●

●

●

●

●
●

0
4

0
8

0
1

3
0

1
8

0
2

3
0

2
8

0
3

3
0

3
8

0
4

3
0

4
8

0
5

3
0

5
8

0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(c) genome

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●
●

●

●

●

●

●

●

●

●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(d) vacation

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

● ● ● ●

●
●

●

●

●

●

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(e) yada

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●

●
● ● ● ● ●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(f) labyrinth

Fig. 6. Time comparison for STAMP for static parallelism, dynamic parallelism model and dynamic thread control model . The dots represent the execution
time with different static parallelism.

TABLE IV. Performance comparison on different applications with
dynamic parallelism model. The performance is compared with the

minimum, average and the maximum value of all the static parallelism.

benchmarks best case average value worse case

EigenBench +14% (2) +95% +99% (24)

genome +16% (4) +97% +99% (20)

vacation -18% (8) +83% +94% (24)

labyrinth +8% (24) +43% +80% (2)

yada -21% (8) +59% +90% (22)

ssca2 -13% (24) +12% +62% (2)

intruder -64% (6) +41% +55% (24)

TABLE V. Performance comparison on different applications with
dynamic thread control model. The performance is compared with the
minimum, average and the maximum value of all the static parallelism

benchmarks best case average value worse case

EigenBench +25% (2) +96% +99% (24)

genome +1% (4) +97% +99% (20)

vacation -33% (8) +80% +93% (24)

labyrinth +7% (24) +42% +80% (2)

yada +16% (8) +72% +93% (22)

ssca2 -14% (24) +11% +62% (2)

intruder -11% (6) +60% +70% (24)

thread control model. As shown in the figures, the EigenBench
application shows thread mapping strategy variation, whereas
yada keeps the same strategy during its whole execution time.

Lastly to validate the correctness of our approaches on
prediction of suitable parallelism and thread mapping strategy

at each phase, we present the online throughput variation
comparison as shown in Fig. 9. Due to the page limit, we
only present the results on two applications. Both dynamic
models rival or exceed the maximum throughput of the static
parallelism on different phases.

VI. DISCUSSION

The overhead of our approaches mainly originate in three
aspects: (1) Thread migration. This stems in two points:
switching among different thread mapping strategies and pe-
riodically awake and suspend the threads to ensure the fair
execution time for each thread. (2) Unnecessary profiling of
thread mapping strategies. Most of the transactions within
STAMP applications show very similar behaviour, therefore
the thread mapping strategy is only needed to be profiled once
despite of the altered parallelism later. The more frequently the
parallelism is adjusted, the higher overhead the applications
suffer. (3) The cost of calling locks. Two factors contribute
to this cost: the operation of obtaining and releasing the
lock and the time spent contending the lock. The latter cost
increases significantly with higher active number of threads
and gives significant impacts on the applications with short-
length transactions. However this cost is trivial as explained
in Section IV.

We utilise a simple CR range decision function to deter-
mine application phase changes. The decision function shows
its limitation on phase detection for intruder. As its CR tends

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

● ● ● ● ●

●
● ●

●

●

●

●

0
3

0
0

7
0

0
1

1
0

0
1

6
0

0
2

1
0

0
2

6
0

0
3

1
0

0
3

6
0

0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(a) all threads

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●
●

●

●

●

0
4

8
1

3
1

9
2

5
3

1
3

7
4

3
4

9
5

5
6

1
6

7
7

3
7

9

2 4 6 8 10

para

para & mapping

(b) up to 10 threads

Fig. 7. Time comparison of EigenBench for static parallelism, dynamic

parallelism model and dynamic thread control model. The dots represent the
execution time with different static parallelism.

to fluctuate frequently over the CR range, yet remains in
the same phase. Therefore both dynamic models overreact to
such changes especially the dynamic parallelism model, but
dynamic thread control model better controls thread migration
and prevents abrupt parallelism change thus performs better
than the other model.

The parallelism predictor relies on two assumptions which
are based on ideal situations, thus some errors are imposed
inevitably in reality, meaning that the predicted parallelism
may be slightly different as the optimum one (e.g., yada).
However such performance lost is compensated by the per-
formance gain from thread mapping. The gain obtained with
a dynamic approach over a static one is directly related to
the diversity of application phases. The more distinct are
the phases, the higher gain is. Hence our proposed dynamic
approaches are more interesting to the applications with online
behaviour variations. Although the dynamic framework is
capable of optimizing the parallelism and thread mapping
strategy for the applications with stable online behaviour, the
performance benefit can not always compensate the profile
overhead, e.g., ssca2. It is also worth noting that not all
the applications require to set a thread mapping strategy. For
instance the application with low contention and its parallelism
degree equals to the core number (e.g., labyrinth, ssca2).
Therefore, both models illustrate similar performance on the
two applications. Additionally, profiling the thread mapping
strategy gives penalty to genome and vacation as the two

logic time (1.4K commits)

th
re

a
d

 n
u

m
b

e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

Scatter RR Compact

para

para & mapping

(a) EigenBench

logic time (10K commits)
th

re
a

d
 n

u
m

b
e

r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

Compact

para

para & mapping

(b) yada

Fig. 8. Parallelism and thread mapping strategy variation at runtime. The
solid black line is by dynamic parallelism model, the dashed red line is by
dynamic thread control model.

applications contain sudden contention changes which the
dynamic parallelism model can respond immediately. But the
dynamic thread control model requires extra profiling lengths
to search a better thread mapping strategy, meanwhile the
applications have already entered a new phase.

Compact is favoured when CR is low and Scatter is
likely to be selected when CR is high. But when CR is high,
the dynamic thread control model favours higher parallelism.
When the parallelism is approaching the maximum core num-
ber, the thread mapping strategy profiling is disabled as little
performance impact can be received from thread mapping.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate autonomic parallelism adap-
tation and thread mapping regulation on a STM system. We
examine the performance of different static parallelism and
concluded that runtime regulation of parallelism and thread
mapping is necessary to the performance of STM systems. We
then present our approaches and compared their performance
with static parallelism. We introduce a feedback control loop
to manipulate the threads at runtime. We then analyse the
implementation overhead and discuss the advantages as well
as limitations of our work.

commits (1.4k)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

●

●
●

●

●
●●●

●

2threads

4thread

8threads

16threads

24threads

para

para & mapping

(a) EigenBench

commits (10k)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

●

●

●

●

● ●

●

●

●

2threads

4thread

8threads

16threads

24threads

para

para & mapping

(b) yada

Fig. 9. Online throughput variation. The dynamic parallelism model and dynamic thread control model are the black line with crosses and the blue line with
dots respectively.

Thread migration among cores impacts on system per-
formance and causes performance degradation. Four different
thread mapping strategies are profiled in order to select the
optimum one. Such a profiling procedure is costly, as it brings
thread migration and also imposes the program to work partly
under an unsuitable thread mapping strategy. We plan to design
a thread mapping strategy predictor which can predict the
optimum thread mapping strategy in one step. We present a
general approach on thread control for STM system which can
be transferred to HTM systems to obtain better performance
by taking advantage of hardware support in future work.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
vol. 21, pp. 289–300, May 1993.

[2] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel

programming, PPoPP ’08, (New York, NY, USA), pp. 237–246, ACM,
2008.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid transactional memory,” SIGPLAN Not., vol. 41, pp. 336–
346, Oct. 2006.

[4] M. B. Castro, Improving the Performance of Transactional Memory

Applications on Multicores: A Machine Learning-based Approach. PhD
thesis, University de Grenoble, December 2012.

[5] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41–50, Jan. 2003.

[6] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
— degrees, models, and applications,” ACM Comput. Surv., vol. 40,
pp. 7:1–7:28, Aug. 2008.

[7] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and
I. Watson, “Advanced concurrency control for transactional memory
using transaction commit rate,” in Proceedings of the 14th International

Euro-Par Conference on Parallel Processing, Euro-Par ’08, (Berlin,
Heidelberg), pp. 719–728, Springer-Verlag, 2008.

[8] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine learning-
based self-adjusting concurrency in software transactional memory sys-
tems,” in Modeling, Analysis Simulation of Computer and Telecommuni-

cation Systems (MASCOTS), 2012 IEEE 20th International Symposium

on, pp. 278–285, Aug 2012.

[9] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker,
“Identifying the optimal level of parallelism in transactional memory
applications,” in Networked Systems (V. Gramoli and R. Guerraoui,
eds.), vol. 7853 of Lecture Notes in Computer Science, pp. 233–247,
Springer Berlin Heidelberg, 2013.

[10] K. Ravichandran and S. Pande, “F2C2-STM: Flux-based feedback-
driven concurrency control for STMs,” in Parallel and Distributed

Processing Symposium, 2014 IEEE 28th International, pp. 927–938,
May 2014.

[11] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A
machine learning based approach,” SIGPLAN Not., vol. 44, pp. 75–84,
Feb. 2009.

[12] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in 2008

IEEE International Symposium on Workload Characterization (IISWC),
September 2008.

[13] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and
K. Olukotun, “EigenBench: A simple exploration tool for orthogonal
TM characteristics,” in 2010 IEEE International Symposium on Work-

load Characterization (IISWC), pp. 1–11, Dec 2010.

[14] W. Ruan, Y. Liu, and M. Spear, “STAMP need not be considered harm-
ful,” in 9th ACM SIGPLAN Workshop on Transactional Computing,
(Salt Lake City), March 2014.

