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). The well-posedness as well as the global exponential stability of the resulting closed-loop system is studied. Some numerical simulations are performed to validate the theoretical results.

INTRODUCTION

In recent years, event-based control has gained a lot of attention not only because of its efficient way of using communications and computational resources by updating control inputs aperiodically (only when needed) but also because of its rigorous way to implement digitally continuous time controllers. For finite dimensional networked control systems, event-triggered strategies for stabilization have become an active research area, for which seminal contributions can be found in [START_REF] Åström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF]; Årzén (1999) or more recent ones in [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF]; [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF]; [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] and the references therein. Typically, the framework of eventbased control includes a feedback control law which is designed to stabilize the system along with a triggering strategy which determines the time instants when the control needs to be updated. The triggering strategy guarantees that a Lyapunov function decreases strictly. The most common triggering strategy uses a static rule obtained by an Input-to-State Stability (ISS) property as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. An extension to this strategy is done in [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] where an internal dynamics is introduced into the triggering rule, reducing the number of control updates in comparison to the static policy. Other approaches, among others, rely directly on the time derivative of the Lyapunov function [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF]; [START_REF] Seuret | Stability of non-linear systems by means of event-triggered sampling algorithms[END_REF]).

The design of event-based control strategies for infinite dimensional systems (namely those governed by partial differential equations (PDEs)), is rarely treated in the literature. For parabolic PDEs, event-based strategies are considered in [START_REF] Selivanov | Distributed eventtriggered control of transport-reaction systems[END_REF]. For a class of hyperbolic systems of conservation laws, the closest framework to event-based control is the work on switched hyperbolic systems as in [START_REF] Lamare | Switching rules for stabilization of linear systems of conservation laws[END_REF] which is highly inspiring, especially when dealing with the wellposedness of the closed-loop solution and with the filter mechanism in form of a dynamic variable enabling to reduce the number of switches. A recent work however has introduced two event-based boundary controllers for linear hyperbolic systems of conservations laws: inspired by two of the main strategies developed for finite dimensional systems, an extension by means of Lyapunov techniques for stability has been done in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF] for linear hyperbolic systems of conservation laws. It is worth recalling that stability analysis and continuous stabilization of such systems by means of boundary control have been considered for a long time in literature. For instance, backstepping design [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF]) and Lyapunov techniques [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]) are the most commonly used. In fact, some complex physical networks can be modeled by means of Hyperbolic PDEs. To mention few applications which stand out: hydraulic [START_REF] Bastin | Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks[END_REF]), road traffic [START_REF] Coclite | Traffic flow on a road network[END_REF]), gas pipeline networks [START_REF] Gugat | Gas flow in fan-shaped networks: Classical solutions and feedback stabilization[END_REF]. They all motivate the use of boundary control. Furthermore, they all motivate the event-based boundary control which is actually a realistic approach for the actuator in those systems. In order to make the motivation a bit more clear, for instance in open channels modeled by the Saint-Venant equations, the actuation on the boundary might be expensive due to the actuator inertia when regulating the water level and the water flow rate by using gates opening as a control actions. Event-based control would suggest to modulate efficiently the gates opening, only when needed. The main contribution of this work relies on the extension of one of the event-based strategies proposed in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]. We introduce an internal dynamic to the triggering algorithm in order to reduce the number of control updates while guaranteeing both the well-posedness of the closedloop solution and the global exponential stability as well as the absence of the so-called Zeno phenomena. This paper is organized as follows. Section 2 contains some results provided in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]. The main result of this paper is then presented in Subsection 2.3. Section 3 provides a numerical example to illustrate the main results and to compare the two control strategies for the control of a system describing traffic flow on a roundabout. Finally, conclusions are given in Section 4.

Preliminary definitions and notation. The set of all functions φ :

[0, 1] → R n such that 1 0 |φ(x)| 2 < ∞ is de- noted by L 2 ([0, 1], R n ) that is equipped with the norm • L 2 ([0,1],R n ) .
The restriction of a function y : I → J on an open interval (x 1 , x 2 ) ⊂ I is denoted by y| (x1,x2) . Given an interval I ⊆ R and a set J ⊆ R n for some n ≥ 1, a piecewise left-continuous function (resp. a piecewise right-continuous function) y : I → J is a function continuous on each closed interval subset of I except maybe on a finite number of points x 0 < x 1 < . . . < x p such that for all l ∈ {0, .., p -1} there exists y l continuous on [x l , x l+1 ] and y l|(x l ,x l+1 ) = y |(x l ,x l+1 ) . Moreover, at the points x 0 , • • • , x p the function is continuous from the left (resp. from the right). The set of all piecewise left-continuous functions (resp. piecewise right-continuous functions) is denoted by C lpw (I, J) (resp. C rpw (I, J)). In addition, we have the following inclusions

C lpw ([0, 1], R n ), C rpw ([0, 1], R n ) ⊂ L 2 ([0, 1], R n ).
Linear Hyperbolic Systems Let us consider the linear system of conservation laws given in Riemann coordinates: 

∂ t y(t, x) + Λ∂ x y(t, x) = 0 x ∈ [0, 1], t ∈ R + (1)
×[0, 1] → R n , Λ is a diagonal matrix in R n×n such that Λ = diag(λ 1 , • • • , λ n ) with 0 < λ 1 < λ 2 < • • • < λ n , H ∈ R n×n , B ∈ R n×m and u : R + → R m .
In addition, we consider the initial condition given by y(0, x) = y 0 (x),

x ∈ [0, 1] (3) where y 0 ∈ C lpw ([0, 1], R n ). We assume that the linear hyperbolic system is only observed at right boundary x = 1 at any time. Therefore we define the output function as follows:

z(t) = y(t, 1) (4) 
2. EVENT-BASED STABILIZATION

Preliminaries on stability

We define the notion of stability considered in the paper. Definition 1. The linear hyperbolic system (1)-( 3),( 4) with controller u = ϕ(z) is globally exponentially stable (GES) if there exist ν > 0 and C > 0 such that, for every

y 0 ∈ C lpw ([0, 1]; R n ), the solution satisfies, for all t in R + , y(t, •) L 2 ([0,1];R n ) ≤ Ce -νt y 0 L 2 ([0,1];R n ) (5) 
A particular case studied in literature (see e.g. [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF]) is when ϕ is given by u = ϕ c (z) as u(t) = Kz(t). This corresponds to continuous time control for which it holds y(t, 0) = Gz(t) t ∈ R + (6) with G = H + BK. The following inequality is stated in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] as a sufficient condition, usually called dissipative boundary condition, which guarantees that the system (1)-( 3) with boundary condition ( 6) is GES. In this paper, such a sufficient condition is assumed to be satisfied. Assumption 1. The following inequality holds:

ρ 1 (G) = Inf ∆G∆ -1 ; ∆ ∈ D n,+ < 1 (7)
where • denotes the usual 2-norm of matrices in R n×n and D n,+ denotes the set of diagonal matrices whose elements on the diagonal are strictly positive. Proposition 1. [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF]] Under Assumption 1, there exist µ > 0, and a diagonal positive definite matrix

Q ∈ R n×n (with Q = Λ -1 ∆ 2
) such that the following matrix inequality holds G T QΛG < e -2µ QΛ.

(8) Moreover, the linear hyperbolic system (1)-( 3),( 4),( 6) is GES and (5) holds for some C > 0 and ν = µλ where λ = min 1≤i≤n {λ i }.

Under the assumption of Proposition 1, inspired by (Diagne et al., 2012, Theorem 1), let us recall that the function defined, for all y

(•) ∈ L 2 ([0, 1], R n ), by V (y) = 1 0 y(x) T Qy(x)e -2µx dx (9) 
is a Lyapunov function for system (1)-( 3),( 4),(6).

ISS static event-based stabilization

We introduce in this subsection the main results of one event-based control scheme for linear hyperbolic systems of conservation laws introduced in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]. In that framework, ISS property with respect to a deviation between the continuous controller and the event-based controller, combined with a strict Lyapunov condition using (9), has been studied.

Definition 2. [Definition of ϕ s ] Let ς, κ, η, µ > 0, K in R m×n , Q a diagonal positive matrix in R n×n .
Let us define ϕ s the operator which maps z to u as follows:

Let z be in C rpw (R + , R n ) and let Ṽ be given, at t = 1 λ , by

Ṽ ( 1 λ ) = n i=1 Q ii 1 0 H i z(t -x λi ) 2 e -2µx dx (10) 
and, for all t > 1 λ , by

Ṽ (t) = n i=1 Q ii 1 0 H i z(t -x λ i ) + B i u(t -x λ i ) 2 e -2µx dx (11) and let ε(t) = ς Ṽ ( 1 λ )e -ηt for all t ≥ 1 λ . If Ṽ ( 1 λ ) > 0, let the increasing sequence of time instants (t u k ) be defined iteratively by t u 0 = 0, t u 1 = 1 λ , and for all k ≥ 1, t u k+1 = inf{t ∈ R + |t > t u k ∧ BK(-z(t) + z(t u k )) 2 ≥ κ Ṽ (t) + ε(t)} (12) If Ṽ ( 1 λ ) = 0, the time instants are t u 0 = 0, t u 1 = 1 λ and t u 2 = ∞.
Finally, let the control function, z → ϕ s (z)(t) = u(t), be defined by:

u(t) = 0 ∀t ∈ [t u 0 , t u 1 ) u(t) = Kz(t u k ) ∀t ∈ [t u k , t u k+1 ), k ≥ 1 (13)
Remark 1. The boundary condition (2) with controller u = ϕ s (z) as defined in Definition 2 can be rewritten as:

y(t, 0) = Gz(t) + d(t) t ∈ R + (14) where d(t) = BK(-z(t) + z(t u k )) t ∈ [t u k , t u k+1 ) (15 
) which can be seen as a deviation between the continuous controller u = Kz and the event based controller of Definition 2.

• Proposition 2. [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]] Let y be a solution to (1)-( 3). It holds that, for all t ≥ 1 λ , V (y(t, •)) = Ṽ (t), where Ṽ (t) is given by (11). Theorem 1. [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]] Let K be in R n×n such that Assumption 1 holds for G = H +BK. Let µ > 0, Q a diagonal positive matrix in R n×n and ν = µλ be as in Proposition 1. Let σ be in (0, 1), α > 0 such that

(1 + α)G T QΛG ≤ e -2µ QΛ. Let ρ be the largest eigenvalue of (1 + 1 α )QΛ, κ = 2νσ ρ , η > 2ν(1 -σ)
and ε and ϕ s be given in Definition 2. Let V be given by (9). Then the system (1)-( 3),( 4) with the controller u = ϕ s (z) has a unique solution and is globally exponentially stable.

ISS dynamic event-based stabilization

In this section we introduce a second event-based control strategy relying on the previous one. It is inspired by [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] (for finite dimensional systems) where an internal dynamic variable is added to the event triggering condition in order to reduce the number of triggering times while guaranteeing the exponential stability. We recall that in ISS static event-based stabilization, events are triggered so that d 2 -κ Ṽ is always less than ε (see ( 12)). In this new approach, we will rather impose that the weighted average value of d 2 -κ Ṽ -ε is less than 0. Then, an internal dynamic will be presented under the form

m(t) = e -ηt t 1 λ e ηs -κ Ṽ (s) -ε(s) + d(s) 2 ds for all t ≥ 1 λ . Definition 3. [Definition of ϕ d ] Let σ be in (0, 1), Ṽ (t), ε(t)
given as in Definition 2 for all t ≥ 1 λ , and ρ and κ as in Theorem 1. Let us define ϕ d the operator which maps z to u as follows:

Let z be in C rpw (R + , R n ). If Ṽ ( 1 λ ) > 0
, let the increasing sequence of time instants (t u k ) be defined iteratively by t u 0 = 0, t u 1 = 1 λ , and for all k ≥ 1,

t u k+1 = inf{t ∈ R + |t > t u k ∧ m(t) ≥ 0} (16) where m satisfies the differential equation, ṁ(t) = -ηm(t) + (-κ Ṽ (t) -ε(t) + BK(-z(t) + z(t u k )) 2 ) m( 1 λ ) = 0 (17) for all t ∈ [t u k , t u k+1 ) for a given η > 2ν(1 -σ).
If Ṽ ( 1 λ ) = 0, the time instants are t u 0 = 0, t u 1 = 1 λ and t u 2 = ∞. Finally, let the control function, z → ϕ d (z)(t) = u(t), be defined by:

u(t) = 0 ∀t ∈ [t u 0 , t u 1 ) u(t) = Kz(t u k ) ∀t ∈ [t u k , t u k+1 ), k ≥ 1 (18)
Note that m(t u k ) = 0 for all k ≥ 1. Proposition 3. For any y 0 in C lpw ([0, 1], R n ), there exists an unique solution to the closed-loop system (1)-( 3),( 4) and controller u = ϕ d (z).

Proof. We recall a sufficient condition for the existence and uniqueness of solutions under a feedback control. Lemma 1. [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]] Let ϕ be an operator from

C rpw (R + , R n ) to C rpw (R + , R m ) satisfying the follow- ing causality property: for all s in R + , for all z, z * ∈ C rpw (R + , R n ) (∀t ∈ [0, s], z(t) = z * (t)) =⇒ (∀t ∈ [0, s], u(t) = u * (t)) where u = ϕ(z) and u * = ϕ(z * ). Let y 0 ∈ C lpw ([0, 1], R n ).
Then, there exists a unique solution to the closed-loop system (1)-( 3) with controller u = ϕ(z) where z is defined by (4). Moreover, for all

t in R + , y(t, •) ∈ C lpw ([0, 1], R n ) and for all x ∈ [0, 1] y(•, x) ∈ C rpw (R + , R n ).
We will show that ϕ d defined in Definition 3 satisfies hypothesis of Lemma 1. Once it is done, the result of Proposition 3 yields with ϕ d .

Let us then prove that

u = ϕ d (z) belongs to C rpw (R + , R m ) provided z is in C rpw (R + , R n ). Consider J a closed interval subset of R + . Since z is in C rpw (R + , R n ),
z has a finite number of discontinuities on J. We denote t z 1 , • • • , t z M ∈ J as the increasing sequence of these discontinuity time instants to which we add the extremities t z 0 and t z M +1 of the interval J. The goal is to prove that u has a finite number of discontinuities on the time interval [t z i , t z i+1 ], with i ∈ {0, ..., M }. If Ṽ ( 1 λ ) = 0, there is only at most one discontinuity which is t u 1 = 1 λ . Let us see the case Ṽ ( 1 λ ) > 0. We define w i (t) as the continuation of BKz(t) on the interval [t z i , t z i+1 ] with the left limit of BKz(t) in t z i+1 , that is

w i (t) = BKz(t), if t ∈ [t z i , t z i+1 ) (19) w i (t z i+1 ) = lim t→(t z i+1 ) -BKz(t) (20) 
The definition of C rpw (R + , R n ) insures that the left limit of BKz(t) exists and that w i (t) is continuous on the closed interval [t z i , t z i+1 ]. Then, it is uniformly continuous. It means that for all ζ > 0, there exists τ > 0 such that

∀t, t ∈ [t z i , t z i+1 ] : |t -t | < τ ⇒ w i (t) -w i (t ) 2 < ζ We denote τ the value of τ when ζ = ε(t z i+1
). We assume that there are at least two consecutive discontinuity instants in (t z i , t z i+1 ) and let t u k be the first one. Considering ( 16) and ( 17) in Definition 3 and using the continuity of m, ε and w i , it holds at time t = t u k+1 : m(t u k+1 ) ≥ 0 (21) Let us prove by contradiction that |t u k -t u k+1 | ≥ τ . To do that, let us assume that |t u k -t u k+1 | < τ . Then, by uniform continuity, we have

w i (t u k ) -w i (s) 2 < ε(t z i+1 ) for all s ∈ [t u k , t u k+1 ].
Since ε is a decreasing function, it holds also that w i (t u k ) -w i (s) 2 < ε(s). Due to the non-negativity of Ṽ , we have

w i (t u k ) -w i (s) 2 < ε(s) + κ Ṽ (s) (22)
Multiplying both sides of ( 22) by e ηs and integrating on [t u k , t u k+1 ], it yields,

t u k+1 t u k e ηs w i (t u k ) -w i (s) 2 ds < t u k+1 t u k e ηs ε(s)ds + t u k+1 t u k e ηs κ Ṽ (s)ds
Multiplying both sides by e -ηt u k+1 and re-organizing the previous inequality, one gets, 23) is equivalent to m(t u k+1 ) < 0. which contradicts (21). Hence, |t u k -t u k+1 | ≥ τ . Therefore, τ gives a lower bound for the duration between two input updates, depending only on the interval (t z i , t z i+1 ). Finally, an upper bound for the maximal number of input updates on (t z i , t z i+1 ) is given by:

e -ηt u k+1 t u k+1 t u k e ηs ( w i (t u k ) -w i (s) 2 -κ Ṽ (s) -ε(s))ds < 0 (23) Using (17) and m(t u k ) = 0, for all t ≥ t u k , we have that m(t) = e -ηt t t u k e ηs -κ Ṽ (s) -ε(s) + w i (t u k ) - w i (s) 2 ds Then, (
s i = t z i+1 -t z i τ
The number of discontinuities of u on J is bounded by S = M i=1 s i + M + 2 which is finite. To conclude, from (18) in Definition 3, u is piecewise constant, which yields u ∈ C rpw (R + , R m ). Due to the limitation of space, we refer to [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF] to see the type of arguments that need to be used for the proof that operator ϕ d satisfies the causality property.

We conclude then that Lemma 1 holds. This ends the proof of Proposition 3.

•

Let us now state our main result of the paper. Theorem 2. Let K be in R n×n such that Assumption 1 holds for G = H + BK. Let µ > 0, Q a diagonal positive matrix in R n×n and ν = µλ be as in Proposition 1. Let σ be in (0, 1), η and ε and ϕ d be given in Definition 3. Let V be given by ( 9) and d given by (15). Then the system (1)-( 3),( 4) with the controller u = ϕ d (z) has a unique solution and is globally exponentially stable.

Proof. The existence and uniqueness of a solution to system (1)-( 3),(4), with u = ϕ d (z) is given by Proposition 3. Let us show that the system is GES but before proceeding, it is important to recall the following lemma which will be necessary to show that the system is GES and whose proof is given in the Appendix in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]. Lemma 2. Let y be a solution to (1)-( 3) and let V (y) be given by (9). Then, t → V (y(t, •)) is continuous and right differentiable on R + and its right time-derivative (denoted by D + V ) is given by:

D + V = y T (•, 0)QΛy(•, 0) -y T (•, 1)e -2µ QΛy(•, 1) -2µ 1 0 y T (Λe -2µx Q)ydx (24) 
Having stated this, assume first that Ṽ ( 1 λ ) > 0. Thanks to the boundary condition (2) with u = ϕ d (z), we obtain from its equivalent form ( 14) that ( 24) can be rewritten as follows: 25) Using Young's inequality and the fact that (1 + α)G T QΛG ≤ e -2µ QΛ, then from (25) it follows:

D + V = (Gz) T QΛGz + 2(Gz) T QΛd + d T QΛd -z T e -2µ QΛz -2µ 1 0 y T (e -2µx ΛQ)ydx (
D + V ≤ -2µ 1 0 y T ΛQye -2µx dx + (1 + 1 α )d T QΛd Since Q is diagonal positive definite, it holds ΛQ ≥ λQ. Thus, taking ν = µλ, it yields, D + V ≤ -2νV + (1 + 1 α )d T QΛd
which can be rewritten as follows:

D + V ≤ -2νV + ρ d 2 ( 
26) To show the global exponential stability of the closed-loop system, we consider the following Lyapunov function candidate W , for the augmented dynamical system, defined, for all y(•)

∈ C lpw ([0, 1], R n ) and m ∈ R -, ε ∈ R + , by W (y, m, ε) = V (y) + ρ η-2ν(1-σ) ε -ρm (27) 
Computing the right time-derivative of ( 27), it yields,

D + W = D + V -η ρ η-2ν(1-σ) ε -ρ(-ηm -κ Ṽ -ε + d 2 ) ( 28 
) Then, replacing (26) in (28), using κ = 2σν ρ and applying Proposition 2, we obtain for all t ≥ 1 λ ,

D + W (t) ≤ -2ν(1 -σ)V (t) +ρηm(t) + ρε(t) -η ρ η-2ν(1-σ) ε(t)
which can be rewritten as follows:

D + W (t) ≤ -2ν(1 -σ)(W (t) - ρ η-2ν(1-σ) ε(t) + ρm(t)) +ρηm(t) + ρε(t) -η ρ η-2ν(1-σ) ε(t)
Simplifying the previous inequality, one gets

D + W (t) ≤ -2ν(1 -σ)W (t) + ρ(-2ν(1 -σ) + η)m(t)
From the definition of ϕ d , events are triggered in order to guarantee for all t ≥ 1 λ , that m(t) ≤ 0. We obtain accordingly, for all t ≥ 1 λ , D + W (t) ≤ -2ν(1 -σ)W (t) Now, using the Comparison principle, for all t ≥ 1 λ , we have

V (y(t, •)) ≤ W (y(t, •), m, ε) ≤ e -2ν(1-σ)(t-1 λ ) W (y( 1 λ , •), m, ε) (29) 
The previous inequality holds even if Ṽ ( 1 λ ) = 0 since in this case W (y( 1 λ , •), m, ε) = 0 for all t ≥ 1 λ . Knowing that

m( 1 λ ) = 0 and ε( 1 λ ) = ςV (y( 1 λ , •))e -η 1 
λ , inequality (29) can be rewritten as follows,

V (y(t, •)) ≤ e -2ν(1-σ)(t-1 λ ) V (y( 1 λ , •)) + ρς η-2ν(1-σ) V (y( 1 λ , •))e -η 1 λ (30)
In addition, V (y( 1 λ , •)) is given as follows (see [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF] for further details):

V (y( 1 λ , •)) ≤ e 2θ λ λ e 2(θ+µ) V (y 0 ) (31)
Therefore, replacing ( 31) in ( 30) we get for all t ≥ 1 λ ,

V (y(t, •)) ≤ e 2θ λ λ +2(θ+µ) ×   1 + ρςe -η 1 λ η -2ν(1 -σ)   e -2ν(1-σ)t V (y 0 )
This ends the proof of Theorem 2.

•

The following proposition states that the first triggering time after t = 1 λ occurs with ϕ s than with ϕ d . (Its proof is omitted due to space limitation). Proposition 4. Let t u 2,s be given by the rule (12) and let t u 2,d be given by the rule (16). It holds that after t = 1 λ , t u 2,s ≤ t u 2,d .

NUMERICAL SIMULATIONS

We illustrate our results by considering the following example of a linear system of 2×2 hyperbolic conservation laws describing traffic flow on a simple roundabout (see [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF]):

∂ t y + Λ∂ x y = 0 ( 32 
)
with y = [y 1 y 2 ] T and Λ = diag(1 √ 2), the boundary condition given by y(t, 0) = Hy(t, 1) + Bu(t) where H = ( 0 0.7 0.9 0 ), B = I 2 and u(t) = Ky(t, 1) with K = 0 k1 k2 0 . The initial condition is y(0, x) = [ 4x(x-1) sin(8πx) ]

T for all x ∈ [0, 1].

Continuous stabilization: controller

u = ϕ c (z) Here, u(t) = ϕ c (z)(t) = Kz(t) is the continuous controller acting from t ≥ 1 λ = 1. K has been designed such that ρ 1 (G) < 1 with G = H + BK. With K = 0 0.3 -0.9 0 and ∆ G = ( 0.9134 0 0 1.2580 ), ∆ G G∆ -1 G = 0.7262 < 1.
It implies that the closed-loop system is GES. Condition (8) in Proposition 1 was checked with scalars µ = 0.1, ν = 0.1 and the symmetric matrix Q = ( 0.8346 0 0 1.1191 ).

ISS static event-based stabilization: controller

u = ϕ s (z)
The boundary condition is now y(t, 0) = Hy(t, 1) + Bu(t) where u(t) = ϕ s (z)(t). The parameters for the triggering algorithm are α = 0.5, σ = 0.9. Therefore, ρ = 4.7481, κ = 0.0379 and [(1 + α)G T QΛG -e -2µ QΛ] = -0.6833 0 0 -0.0439 is a symmetric negative definite matrix. Consequently, 12) is chosen to be ε(t) = ςV (1)e -ηt , t ∈ R + with η = 1, V (1) = 0.6390 and ς is such that ςV (1) = 1 × 10 -2 . The number of events under this event-based approach was 109, counting them from t ≥ 1 λ = 1.

ISS dynamic event-based stabilization: controller

u = ϕ d (z)
The boundary condition is now y(t, 0) = Hy(t, 1) + Bu(t) where u(t) = ϕ d (z)(t). The number of events under this event-based approach was 86, counting them from t ≥ 1.

Figure 1 shows functions V when stabilizing with ϕ s and ϕ d . It can be noticed that under the two eventbased controllers ϕ s and ϕ d , global asymptotic stability is achieved with quite different observed rates despite similar theoretical guarantees. Besides this, the first triggering time occurs with ϕ s . This is consistent with Proposition 4. In addition, for both event-based approaches, we ran simulations for several initial conditions given by y 0 a,b (x) = [ax(1 -x) b 2 sin((2a)πx)] T , a = 1, ..., 5 and b = 1, ..., 10 on a frame of 8 s. We have computed the duration intervals between two control updates (inter-execution times). The mean value, standard deviation and the coefficient of variation of inter-execution times for both approaches are reported in Table 1 and the density of such inter-execution times is given in Figure 2. From this figure and Table 1, it can be observed that stabilization with ϕ d results in larger inter-execution times than with ϕ s which was expected because events generated according to ϕ d -event-triggered rule, is a weighted average of those generated according to ϕ s -event-triggered rule. The mean value of triggering times with ϕ s was 158.3 events whereas, with ϕ d , it was 109.1 events. It can be seen that using ϕ d results in larger inter-execution times in average than ϕ s . In addition, ϕ d Table 1. Mean value, standard deviation and variability of inter-execution times for ϕ s and ϕ d . reduces the variability of the inter execution times and with ϕ s it is needed to sample faster than with ϕ d .

CONCLUSION

In this paper, a new event-based boundary controller has been proposed. The analysis of global exponential stability is based on Lyapunov techniques. We have proved that under the new event-based stabilization strategy, the solution to the closed-loop system exists and is unique. This work leaves some open questions for future works.

The event-based stabilization approaches may be applied to a linear hyperbolic system of balance laws.

Fig

  Fig. 1. Time-evolution of functions V . Theorem 1 holds. The function ε used in the triggering condition (12) is chosen to be ε(t) = ςV (1)e -ηt , t ∈ R + with η = 1, V (1) = 0.6390 and ς is such that ςV (1) = 1 × 10 -2 . The number of events under this event-based approach was 109, counting them from t ≥ 1 λ = 1.

Fig. 2 .

 2 Fig. 2. Density of the inter-execution times with controller u = ϕ s (z) (left) and with controller u = ϕ d (z) (right).
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