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Abstract

In this article, we introduce event-based boundary controls for 1-dimensional linear hyperbolic systems of conservation laws.
Inspired by event-triggered controls developed for finite-dimensional systems, an extension to the infinite dimensional case by
means of Lyapunov techniques, is studied. The main contribution of the paper lies in the definition of two event-triggering
conditions, by which global exponential stability and well-posedness of the system under investigation is achieved. Some
numerical simulations are performed for the control of a system describing traffic flow on a roundabout.
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1 Introduction

Event-based control is a computer control strategy which
aims to use communications and computational re-
sources efficiently by updating control inputs aperiodi-
cally, only when needed. Several works have been devel-
oped in this area for finite dimensional networked con-
trol systems (see for instance the seminal work [1,36] or
the most recent ones [18,27] and the references therein).
Two components are essential in the framework of event-
based control. The first one is a feedback control law
which has been designed to stabilize the system. The
second one is a triggering strategy which determines the
time instants when the control needs to be updated. Usu-
ally, the triggering strategy guarantees that a Lyapunov
function decreases strictly either by using an Input-to-
State Stability (ISS) property [34] or by working directly
on the time derivative of the Lyapunov function [24]. Be-
sides the interest of reducing communication and com-
putational loads, event-based control is also known as
a rigorous way to implement digitally continuous time
controllers. In this work, such control strategies were de-
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veloped for a class of infinite-dimensional systems of con-
servation laws, provided by linear hyperbolic partial dif-
ferential equations (PDEs).

Hyperbolic systems of conservation laws stand out as
having important applications in the modelling and con-
trol of physical networks: hydraulic [2], road traffic [4],
gas pipeline networks [16], to name a few. Stability anal-
ysis and stabilization of such systems have attracted a
lot of attention in the last decade. Two ways of acting
on these systems exist: boundary and in domain con-
trol. For boundary control, backstepping [19,7] and Lya-
punov techniques [6,14,29,25] are the most commonly
used. Several applications, in which control actions are
on the boundary, can be found for instance in [3,5,11,30]
where the exponential stability of steady-states depends
on the dissipativity of the boundary conditions. This pa-
per focuses on boundary control using Lyapunov tech-
niques where such a dissipativity property is an impor-
tant issue to be taken into account.

The design of event-based control strategies for dis-
tributed parameter systems is rarely treated in the lit-
erature. Extending existing results for ordinary differen-
tial equations (ODEs) to time-delay systems is proposed
in [12]; however, this is quite far from the problem ad-
dressed in this paper. For parabolic PDEs, event-based
control strategies are considered in [31] and [35]. Many
difficulties that arise in the context of event-based control
are due to the introduction of discontinuities when up-
dating the control. Discontinuous output feedback con-

Preprint submitted to Automatica March 10, 2016



trollers for infinite dimensional systems have been stud-
ied, for instance in [26], where unit feedback controller
and in turn global asymptotic stabilization are consid-
ered. Although, the framework of switched hyperbolic
systems [17,28,20] is highly inspiring -especially the last
work- for dealing with the well-posedness of the closed-
loop solution of such systems under event-based control
strategies. The main difference of [20] with respect to
the current work is that in [20], no boundary control in-
puts are considered but rather switching boundary con-
ditions governed by a switching signal, given as a output
feedback, that imposes the mode that the system must
evolve.

The main contribution of this paper is to propose a rig-
orous framework for event-based control of linear hyper-
bolic systems of conservation laws, as well as two event-
based stabilization strategies based on the two afore-
mentioned main triggering strategies developed for sys-
tems described by ODEs called ISS event-based stabi-
lization andD+V event-based stabilization in the sequel.
The notion of existence and uniqueness of the solution is
treated. It is also established that the number of events
in a bounded time interval is necessarily bounded avoid-
ing the well known Zeno phenomena. To the author’s
knowledge, this work is the first contribution to event-
based control for hyperbolic PDE systems proposed in
the literature. For PDEs, a well known approach for dig-
ital controller synthesis relies on numerical approxima-
tions by discretizing the space in order to get an ODE
(see e.g. [10]) on which finite dimensional approaches can
be applied. In this work, the method is completely differ-
ent and adresses directly the boundary control without
model reduction and the sampling in time of continuous
controllers so that implementations on a digital platform
may be carried out in an aperiodic fashion.

This paper is organized as follows. In Section 2, we intro-
duce the class of linear hyperbolic system of conservation
laws, and a sufficient condition for the existence of the
solution is discussed. Section 3 contains the main results
that are two strategies for event-based control. The ex-
istence and uniqueness of the solution as well as the sta-
bility of the closed loop systems are discussed. Section 4
provides a numerical example to illustrate the main re-
sults and to compare the two control strategies. Finally,
conclusions and perspectives are given in Section 5.

Preliminary definitions and notation. R+ will de-
note the set of nonnegative real numbers. For any vector
v, its dth component will be denoted vd. Given a matrix
A, its transpose will be denoted AT and its component
at row i and column j will be denoted by Aij . 0 will de-
note the zero matrix of suitable dimension.
The usual Euclidean norm in Rn is denoted by | · | and
the associated matrix norm is denoted ‖ · ‖. The set of

all functions φ : [0, 1]→ Rn such that
∫ 1

0
|φ(x)|2 <∞ is

denoted by L2([0, 1],Rn) that is equipped with the norm
‖ · ‖L2([0,1],Rn). The restriction of a function y : I → J
on an open interval (x1, x2) ⊂ I is denoted by y|(x1,x2).
Given an interval I ⊆ R and a set J ⊆ Rn for some

n ≥ 1, a piecewise left-continuous function (resp. a piece-
wise right-continuous function) y : I → J is a func-
tion continuous on each closed interval subset of I ex-
cept maybe on a finite number of points x0 < x1 <
. . . < xp such that for all l ∈ {0, .., p − 1} there exists
yl continuous on [xl, xl+1] and yl|(xl,xl+1) = y|(xl,xl+1).
Moreover, at the points x0, · · · , xp the function is con-
tinuous from the left (resp. from the right). The set
of all piecewise left-continuous functions (resp. piece-
wise right-continuous functions) is denoted by Clpw(I, J)
(resp. Crpw(I, J)). In addition, we have the following in-
clusions Clpw([0, 1],Rn), Crpw([0, 1],Rn) ⊂ L2([0, 1],Rn).

2 Linear Hyperbolic Systems

Let us consider the linear hyperbolic system of conser-
vation laws (given in Riemann coordinates):

∂ty(t, x) + Λ∂xy(t, x) = 0 x ∈ [0, 1], t ∈ R+ (1)

where y : R+ × [0, 1] → Rn, Λ is a diagonal matrix in
Rn×n such that Λ = diag(λ1, · · · , λn) with 0 < λ1 <
λ2 < · · · < λn. We consider the following boundary
condition:

y(t, 0) = Hy(t, 1) +Bu(t), t ∈ R+ (2)

where H ∈ Rn×n, B ∈ Rn×m and u : R+ → Rm.
In addition to the partial differential equation (1) and the
boundary condition (2), we consider the initial condition
given by

y(0, x) = y0(x), x ∈ [0, 1] (3)

where y0 ∈ Clpw([0, 1],Rn).

Remark 1. The results in this paper can be extended to
first order linear hyperbolic systems with both negative
and positive speeds (λ1 < · · ·λm < 0 < λm+1 < · · · <
λn) by defining the state description y = [y− y+]T ,
where y− ∈ Rm and y+ ∈ Rn−m, and applying the change
of variable ỹ(t, x) = [y−(t, 1− x) y+(t, x)]T . ◦

We shall consider possibly discontinuous inputs u ∈
Crpw(R+,Rm), therefore solutions of (1)-(3) may not be
differentiable everywhere. Thus, we introduce a notion
of weak solutions (generalized ones) (in Subsection 2.1)
as well as a sufficient condition for the existence and
uniqueness of the solution for a class of discontinuous
initial conditions and feedback laws (in Subsection 2.2).

2.1 Solution of the system

We consider solutions of (1)-(3) in the sense of charac-
teristics [22]. For each component yd of (1), one can de-
fine the characteristic curve solution of the differential
equation ẋ(t) = λd which is rewritten as x(t) = x0 +λdt.
By doing this, we obtain the following definition (see [20,
Definition 4] for a more general case):

Definition 1. Let y0 ∈ Clpw([0, 1],Rn) and u ∈
Crpw(R+,Rm). A solution to (1)-(3) is a function y :
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R+ × [0, 1] → Rn such that, for all t in R+ and x0 ∈
[−λdt, 1− λdt],

d

dt
yd(t, x0 + λdt) = 0 (4)

with the initial condition

yd(0, x) = y0d(x), ∀x ∈ [0, 1] (5)

and the boundary condition

yd(t, 0) =

n∑
j=1

Hdjyj(t, 1) +

m∑
j=1

Bdjuj(t), ∀t ∈ R+ (6)

for all d = 1, .., n.

Note that for classical differentiable solutions, (1)-(3) are
equivalent to (4)-(6) and note that y does not need to be
differentiable nor continuous in general but only differ-
entiable along the characteristics as given by (4).
In this paper, we assume that the linear hyperbolic sys-
tem is only observed at the point x = 1 at any time.
Therefore we define the output function as follows:

z(t) = y(t, 1) (7)

2.2 A sufficient condition for the existence and unique-
ness of the solution

Now that solutions intended in this paper are properly
defined, we will consider the following causality assump-
tion:

Assumption 1. Let ϕ be an operator from Crpw(R+,Rn)
to Crpw(R+,Rm) satisfying the following causality prop-
erty: for all s in R+, for all z, z∗ ∈ Crpw(R+,Rn)

(∀t ∈ [0, s], z(t) = z∗(t)) =⇒ (∀t ∈ [0, s], u(t) = u∗(t))

where u = ϕ(z) and u∗ = ϕ(z∗).

This assumption enables us to state the following result
on existence of solutions:

Proposition 1. Let ϕ satisfy Assumption 1 and y0 ∈
Clpw([0, 1],Rn). Then, there exists a unique solution to
the closed-loop system (1)-(3) with controller u = ϕ(z)
where z is defined by (7). Moreover, for all t ∈ R+

y(t, ·) ∈ Clpw([0, 1],Rn) and for all x ∈ [0, 1] y(·, x) ∈
Crpw(R+,Rn).

Proof. Let us consider λ = max1≤i≤n{λi} and let δ =

1/λ be the minimum time for a characteristic, with ve-
locity λ, to cross the spatial domain [0,1]. For p ∈ N, let
∆p ⊂ R+ be defined by ∆p = [pδ, (p+ 1)δ]. We will pro-
ceed by induction over the interval ∆p with the following
induction property:

• y is defined on ∆p × [0, 1];
• y(·, x) ∈ Crpw(∆p,Rn);
• y(t, ·) ∈ Clpw([0, 1],Rn).

Let us consider, for p = 0, the interval ∆0 = [0, δ]. We
first check that y given, for all (t, x) ∈ ∆0 × [0, 1] and
d ∈ {1, . . . , n}, by

yd(t, x) =

{
yd(t− x

λd
, 0), if λdt ≥ x

y0d (x− λdt) , if λdt < x
(8)

is the solution to system (1)-(3). Equation (8) can be
written in an equivalent way; that is, for all t in ∆0, x0 in
[−λdt, 1− λdt], the solution at each component is given
by

yd(t, x0 + λdt) =

{
yd(
−x0

λd
, 0), if x0 ≤ 0

y0d (x0) , if x0 > 0
(9)

Since (9) does not depend on t, it is clear that d
dtyd(t, x0+

λdt) satisfies Definition 1, and hence y is solution to (1)-
(3). Conversely, d

dtyd(t, x0 + λdt) = 0 implies f(x0) =
yd(t, x0 + λdt) for all t ∈ [0, δ] and x0 ∈ [−λdt, 1− λdt].
In particular, by setting t = 0, one gets

f(x0) = yd(0, x0) if x0 > 0

On the other hand, by setting t = −x0

λd
,

f(x0) = yd(− x0

λd
, 0) if x0 ≤ 0

Therefore, we have obtained equation (9) and then,
shown that it is the unique solution to (1)-(3) in the
sense of characteristics on ∆0×[0, 1]. Furthermore, when
x = 1, λdt < 1 and for all t ∈ ∆0, one gets

zd(t) = yd(t, 1) = y0d(1− λdt) (10)

Since z is well defined on ∆0, using the causality prop-
erty, one can claim that u is well defined on ∆0. In addi-
tion, using (10) and boundary condition (6), (8) can be
rewritten as follows,

yd(t, x) =

{∑n
j=1Hdjzj(t− x

λd
) +

∑m
j=1Bdjuj(t−

x
λd

), if λdt ≥ x
y0d (x− λdt) , if λdt < x

(11)
It is worth remarking that zj(t− x

λd
) = y0j (1− λdt+ x).

Then, it is proved that yd depends uniquely on y0d on
∆0 × [0, 1].
Since y0 belongs to Clpw([0, 1],Rn), z belongs to
Crpw(∆0,Rn). Therefore, by Assumption 1, u belongs to
Crpw(∆0,Rm). It follows then, from (11), that y is de-
fined on ∆0 × [0, 1]. Moreover,

• zj(t− x
λd

) belongs to Crpw with respect to t and belongs
to Clpw with respect to x due to the opposite sign in
the argument;
• uj(t− x

λd
) belongs to Crpw with respect to t and belongs

to Clpw with respect to x due to the opposite sign in
the argument;
• y0d (x− λdt) belongs to Clpw with respect to x and be-

longs to Crpw with respect to t due to the opposite sign
in the argument.
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It follows from (11) that y(t, ·) ∈ Clpw([0, 1],Rn) for all t
in ∆0 and that y(·, x) ∈ Crpw(∆0,Rn) for all x ∈ [0, 1].
Thus, induction property holds at p = 0.

Now, assume that induction property holds for a given
p ∈ N. We are now going to prove the same property for
p+1 > 0. For that purpose, let us take y((p+1)δ, ·) as the
initial condition of the system. Applying the same argu-
ments as above; and by means of hypothesis of induction,
one gets that z ∈ Crpw(∆p+1,Rn), u ∈ Crpw(∆p+1,Rm).
In addition, y is defined on ∆p+1× [0, 1], y(t, ·) exists for
all t in ∆p+1 and belongs to Clpw([0, 1],Rn) and y(·, x)
belongs to Crpw(∆p+1,Rn) for every x ∈ [0, 1].

Therefore, we have proved by induction that, for each
p ∈ N, z ∈ Crpw(∆p,Rn) and y(t, ·) exists for all t in
∆p, and belongs to Clpw([0, 1],Rn) and y(·, x) belongs to
Crpw(∆p,Rn) for every x ∈ [0, 1]. Thus, there exists an
unique solution to the closed-loop system (1)-(3) with
u = ϕ(z). Hence, this concludes the proof. �

3 Event-based Stabilization

3.1 Some issues related to stability

We define the notion of stability considered in the paper
and state one existing result on stability of linear hyper-
bolic systems of conservation laws.

Definition 2. The linear hyperbolic system (1)-(3),(7)
with controller u = ϕ(z) is globally exponentially stable
(GES) if there exist ν > 0 and C > 0 such that, for every
y0 ∈ Clpw([0, 1];Rn), the solution satisfies, for all t in R+,

‖y(t, ·)‖L2([0,1]);Rn) ≤ Ce−νt‖y0‖L2([0,1];Rn) (12)

We want to point out that a particular case studied in
literature (see e.g. [8]) is when ϕ is given by u = ϕ0(z)
as u(t) = Kz(t). This corresponds to continuous time
control for which it holds,

y(t, 0) = Gz(t) t ∈ R+ (13)

with G = H +BK.

The following assumption is stated in [5] as a sufficient
condition, usually called dissipative boundary condition,
which guarantees that the system (1)-(3) with boundary
condition (13) is globally exponentially stable. In this
paper, such a sufficient condition is assumed to be satis-
fied.

Assumption 2. The following inequality holds:

ρ1(G) = Inf
{
‖∆G∆−1‖; ∆ ∈ Dn,+

}
< 1 (14)

where ‖ · ‖ denotes the usual 2-norm of matrices in Rn×n
and Dn,+ denotes the set of diagonal matrices whose el-
ements on the diagonal are strictly positive.

Recall the following result:

Proposition 2 ([9]). Under Assumption 2, there exist
µ > 0, and a diagonal positive definite matrix Q ∈ Rn×n
(with Q = Λ−1∆2) such that the following matrix in-
equality holds

GTQΛG < e−2µQΛ. (15)

Then, the linear hyperbolic system (1)-(3),(7),(13) is
GES and (12) holds for some C > 0 and ν = µλ where
λ = min1≤i≤n {λi}.

Under the assumption of Proposition 2, inspired by [9,
Theorem 1], let us recall that the function defined, for
all y(·) ∈ L2([0, 1],Rn), by

V (y) =

∫ 1

0

y(x)TQy(x)e−2µxdx (16)

satisfies, along the classical solutions of (1)-(3),(7) and
(13), that

V̇ ≤ yT (·, 1)
[
GTQΛG− e−2µQΛ

]
y(·, 1)

− 2ν

∫ 1

0

yTQye−2µxdx

thus in regard of (15), it is a Lyapunov function. The
global exponential stability along L2 solutions follows by
density (see [9] for more details).

3.2 ISS event-based stabilization

We introduce in this section a first event-based control
scheme for hyperbolic systems of conservation laws and
discuss the existence of solutions and their stability un-
der this control strategy. This approach relies on both the
Input-to-State Stability property with respect to devia-
tions to sampling and Lyapunov techniques. It is mainly
inspired by [34] where the sampling error is restricted to
satisfy a state-dependent inequality. It guarantees that
the ISS-Lyapunov function is strictly decreasing. In this
paper, we will seek for ISS property with respect to a de-
viation between the continuous controller and the event-
based controller, combined with a strict Lyapunov con-
dition using (16).

Definition 3 (Definition of ϕ1). Let ς1, κ, η, µ > 0, K
in Rm×n, Q a diagonal positive matrix in Rn×n. Let us
define ϕ1 the operator which maps z to u as follows:

Let z be in Crpw(R+,Rn) and letW1 be given, at t = 1
λ , by

W1( 1
λ ) =

n∑
i=1

Qii

∫ 1

0

(
Hiz(t− x

λi
)
)2
e−2µxdx (17)

and, for all t > 1
λ , by

W1(t)=
n∑
i=1

Qii

∫ 1

0

(
Hiz(t− x

λi
) +Biu(t− x

λi
)
)2
e−2µxdx

(18)
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Let ε1(t) = ς1W1( 1
λ )e−ηt for all t ≥ 1

λ . If W1( 1
λ ) > 0, let

the increasing sequence of time instants (tuk) be defined
iteratively by tu0 = 0, tu1 = 1

λ , and for all k ≥ 1,

tuk+1 = inf{t ∈ R+|t > tuk ∧ ‖BK(−z(t) + z(tuk))‖2

≥ κW1(t) + ε1(t)}
(19)

If W1( 1
λ ) = 0, let the time instants be defined by tu0 = 0,

tu1 = 1
λ and tu2 =∞.

Finally, let the control function, z 7→ ϕ1(z)(t) = u(t), be
defined by:

u(t) = 0 ∀t ∈ [tu0 , t
u
1 )

u(t) = Kz(tuk) ∀t ∈ [tuk , t
u
k+1), k ≥ 1

(20)

Remark 2. The boundary condition (2) with controller
u = ϕ1(z) as defined in Definition 3 can be rewritten as:

y(t, 0) = Gz(t) + d(t) t ∈ R+ (21)

where

d(t) = BK(−z(t) + z(tuk)) t ∈ [tuk , t
u
k+1) (22)

which can be seen as a deviation between the continuous
controller u = Kz and the event-based controller of Defi-
nition 3. Hence, we follow the perturbed system approach
as in [34], [21] and [18] that we will call in the sequel ISS
event-based stabilization. The event triggering condition
(19) ensures that, for all t, ‖d(t)‖2 ≤ κW1(t) + ε1(t).

In addition, we point out the possible case when W1( 1
λ ) =

0, then ε1(t) = 0. From (17), it means that for all i =
1, .., n, z(s) = 0 with s = t− x

λi
for all s ∈ [t− 1

λi
, t]. In

particular, for all i = 1, .., n, z(s) = 0 for all s ∈ [t− 1
λ , t]

which means that the system has already achieved the
steady state in finite time. In that scenario, event-based
stabilization would not be required. ◦

The following proposition shows that W1 given by (18)
is an estimate of V .

Proposition 3. Let y be a solution to (1)-(3). It holds
that, for all t ≥ 1

λ , V (y(t, ·)) = W1(t), where W1(t) is

given by (18).

Proof. Along solutions y to the system (1)-(3) and since
Q is diagonal, (16) gives:

V (y(t, ·)) =

n∑
i=1

Qii

∫ 1

0

y2i (t, x)e−2µxdx

Using the first line of (8), in particular for all t ≥ 1
λ , the

boundary condition (6) and output function (7) one has

that yi(t, x) = yi(t− x
λi
, 0) = Hiz(t− x

λi
) +Biu(t− x

λi
).

Therefore, for all t ≥ 1
λ ,

V (y(t, ·))=

n∑
i=1

Qii

∫ 1

0

[
Hiz(t− x

λi
) +Biu(t− x

λi
)
]2
e−2µxdx

= W1(t)

This concludes the proof. �

Due to the previous proposition, W1 can be seen as an
estimation of the Lyapunov function V . It is based only
on the measured output function and the input value. As
a consequence, the triggering condition in (19) depends
on the measured output function and the input value as
well. In addition, it will be discussed in Subsection 3.2.1
that ε1 is to guarantee the existence and uniqueness of
the closed-loop system.

In the next section, we will prove that operator ϕ1 sat-
isfies Assumption 1.

3.2.1 Existence and uniqueness of the closed-loop solu-
tion

The goal is to prove that u = ϕ1(z) belongs to
Crpw(R+,Rm) provided z is in Crpw(R+,Rn) and that ϕ1

is a causal operator.

Lemma 1. The operator ϕ1 considered in Definition 3
satisfies Assumption 1.

Proof. Let z in Crpw(R+,Rn) and u = ϕ1(z) where ϕ1 is
the operator given in Definition 3. Let J be a closed inter-
val subset of R+. By hypothesis, z has a finite number of
discontinuities on J . Let tz1, · · · , tzM ∈ J be the increas-
ing sequence of these discontinuity time instants; and tz0
and tzM+1 are respectively the lower bound and the up-
per bound of the interval J . We want to prove that u has
a finite number of discontinuities on the time interval
[tzi , t

z
i+1], with i ∈ {0, ...,M}. If W1( 1

λ ) = 0, there is only

at most one discontinuity which is tu1 = 1
λ . If W1( 1

λ ) > 0,

let us remark that it is sufficient to show that there is a
finite number of discontinuities on the open time interval
(tzi , t

z
i+1), with i ∈ {0, ...,M}.

Let wi1(t) be the continuation of BKz(t) on the interval
[tzi , t

z
i+1] with the left limit of BKz(t) in tzi+1, that is

wi1(t) =BKz(t), if t ∈ [tzi , t
z
i+1) (23)

wi1(tzi+1) = lim
t→(tz

i+1
)−
BKz(t) (24)

The definition of Crpw(R+,Rn) insures that the left limit
of BKz(t) exists and that wi1(t) is continuous on the
closed interval [tzi , t

z
i+1]. Therefore, it is uniformly con-

tinuous. It means that for all ζ > 0, there exists τ > 0
such that

∀t, t′ ∈ [tzi , t
z
i+1] : |t− t′| < τ ⇒ ‖wi1(t)− wi1(t′)‖2 < ζ

5



We denote τi the value of τ when ζ = ε1(tzi+1). Let the
sequence (tuk) defined by Equation (19) in Definition 3.
Assume first that there exists at least two consecutive
discontinuity instants in (tzi , t

z
i+1) and let tuk be the first

one of these instants. We will deal later on whether only
one time instant exists within this interval.

Let us consider ‖ − wi1(t) + wi1(tuk)‖2 for all t ∈ [tzi , t
z
i+1]

where wi is given in (23) and (24). Combined with (19)
of Definition 3 and using the continuity of W1, ε1 and
wi1, it holds at time t = tuk+1:

‖wi1(tuk)− wi1(tuk+1)‖2 ≥ κW1(tuk+1) + ε1(tuk+1)

Using the non-negativity of W1, the fact that ε1 is a de-
creasing function, the uniform continuity argument and
the definition of τi, one gets

‖wi1(tuk)− wi1(tuk+1)‖2 ≥ ε1(tuk+1) ≥ ε1(tzi+1)

=⇒ |tuk − tuk+1| ≥ τi

Thus, τi gives a lower bound for the duration between two
input updates, depending only on the interval (tzi , t

z
i+1).

Finally, an upper bound for the maximal number of input
updates on (tzi , t

z
i+1) is given by:

si =
⌊
tzi+1−t

z
i

τi

⌋
If there is at most one element of the sequence (tuk) in
(tzi , t

z
i+1) then si can be chosen equal to 1. To conclude,

the number of discontinuities of u on J is bounded by

S =
∑M
i=1 si +M + 2 which is finite.

In addition, from (20) in Definition 3, u is piecewise con-
stant, which yields u ∈ Crpw(R+,Rm).

Let us now prove that our operator ϕ1 satisfies the
causality property. Let s ∈ R+ and z, z∗ ∈ Crpw(R+,Rn)
be given such that

z(t) = z∗(t) ∀t ∈ [0, s] (25)

Let u = ϕ1(z) and u∗ = ϕ1(z∗). It will be shown that
u(t) = u∗(t) for all t ∈ [0, s]. Let us first consider
t ∈ [0, s). It follows that u(t) = Kz(tuk) where tuk is the
previous triggering time associated to u. It follows also
from (25) that z(tuk) = z∗(tu

∗

k ), and tuk = tu
∗

k where tu
∗

k is
the previous triggering time associated to u∗. Therefore
u(t) = Kz∗(tu

∗

k ) = u∗(t) for all t ∈ [0, s). Let W1 be de-
fined by (18) andW ∗1 be defined similarly replacing z and
u by z∗ and u∗ respectively. Therefore W1(t) = W ∗1 (t)
for all t ∈ [0, s].

Let us consider what happens at t = s. Three cases are
pointed out:

(1) Suppose that there is no triggering time at t = s. In
this case, u(s) = Kz(tuk) where tuk = tu

∗

k is the pre-

vious triggering time. Clearly, u∗(s) = Kz∗(tu
∗

k ) =
Kz(tuk) = u(s).

(2) Suposse that there is a triggering time for both u
and u∗, that is at s = tuk+1 = tu

∗

k+1. Then, with (25)

u(tuk+1) = Kz(tuk+1) = Kz(s)

= Kz∗(s) = Kz∗(tu
∗

k+1) = u∗(tu
∗

k+1)

(3) Suppose that there is a triggering time at time s. As-
sume without loss of generality that s = tuk+1. Con-

sider f(t) = ‖BK(−z(t)+z(tuk))‖2−κW1(t)−ε1(t)

and f∗(t) = ‖BK(−z∗(t) + z∗(tu
∗

k ))‖2 − κW ∗1 (t)−
ε1(t). Then there exists a sequence of time (sn),
sn ≥ s with sn → s and f(sn) ≥ 0. Since f is in
Crpw(R+,Rn), f(s) ≥ 0. According to (25) and us-
ing W1(s) = W ∗1 (s) it follows that f(s) = f∗(s) ≥
0. It means that a trigger happens at the same time
for u∗ and then tu

∗

k+1 = tuk+1 = s. Consequently,
one comes back to the previous case and hence
u(s) = u∗(s).

Since u is in Crpw(R+,Rm) and the causality property is
satisfied, Assumption 1 holds. It concludes the proof. �

Combining the previous lemma with Proposition 1, we
get

Corollary 1. For any y0 in Clpw([0, 1],Rn), there exists
a unique solution to the closed-loop system (1)-(3),(7)
and controller u = ϕ1(z).

3.2.2 Stability of the closed-loop system

Let us now state our first main result.

Theorem 1. Let K be in Rn×n such that Assumption 2
holds for G = H +BK. Let µ > 0, Q a diagonal positive
matrix in Rn×n and ν = µλ be as in Proposition 2. Let
σ be in (0, 1) and α > 0 such that (1 + α)GTQΛG ≤
e−2µQΛ. Let ρ be the largest eigenvalue of (1+ 1

α )QΛ, κ =
2νσ
ρ , η > 2ν(1− σ) and ε1 and ϕ1 be given in Definition

3. Let V be given by (16). Then the system (1)-(3),(7)
with the controller u = ϕ1(z) has a unique solution and
is globally exponentially stable. Moreover, it holds for all
t ≥ 1

λ ,

D+V (t) ≤ −2ν(1− σ)V (t) + ρε1(t) (26)

Proof. The existence and uniqueness of a solution to sys-
tem (1)-(3),(7) with controller u = ϕ1(z) is given by
Corollary 1.

We are here going to show that the system is globally
exponentially stable. Assume for the time-being that
W1( 1

λ ) > 0.

First, we establish the following lemma which will be
necessary for the proof of Theorem 1.

Lemma 2. Let y be a solution to (1)-(3) and let V (y)
be given by (16). Then, t 7→ V (y(t, ·)) is continuous and
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right differentiable on R+ and its right time-derivative is
given by:

D+V = yT (·, 0)QΛy(·, 0)− yT (·, 1)e−2µQΛy(·, 1)

− 2µ

∫ 1

0

yT (Λe−2µxQ)ydx

(27)

The proof of Lemma 2 is given in the Appendix.

Using the boundary condition (2) with u = ϕ1(z), we
obtain from its equivalent form (21) that (27) can be
rewritten as follows:

D+V = (Gy(·, 1) + d)TQΛ(Gy(·, 1) + d)

−yT (·, 1)e−2µQΛy(·, 1)− 2µ

∫ 1

0

yT (Λe−2µxQ)ydx

Using the output function given by (7), it gives:

D+V = (Gz)TQΛGz + 2(Gz)TQΛd+ dTQΛd

−zT e−2µQΛz − 2µ

∫ 1

0

yT (Λe−2µxQ)ydx (28)

By means of a decoupling procedure between d and z us-
ing the Young’s inequality one gets that (Gz)TQΛGz +
2(Gz)TQΛd + dTQΛd ≤ (1 + α)(Gz)TQΛGz + (1 +
1
α )dTQΛd. Since α is such that (1 + α)GTQΛG ≤
e−2µQΛ, from (28) it follows:

D+V ≤ −2µ

∫ 1

0

yTΛQye−2µxdx+ (1 + 1
α )dTQΛd

Since Q is diagonal positive definite, it holds ΛQ ≥ λQ.
Thus, taking ν = µλ, it yields,

D+V ≤ −2νV + (1 + 1
α )dTQΛd

which can be rewritten as follows:

D+V ≤ −2νV + ρ‖d‖2

= −2ν(1− σ)V − 2νσV + ρ‖d‖2, σ ∈ (0, 1)

For all t ≥ 1
λ , Proposition 3 implies that

D+V ≤ −2ν(1− σ)V − 2νσW1 + ρ‖d‖2

In order to guarantee D+V is strictly negative,
−2νσW1 + ρ‖d‖2 must be strictly negative. Therefore,
from the definition of ϕ1, events are triggered so as to
guarantee for all t ≥ 1

λ , ‖d‖2 ≤ κW1+ε1. Using κ = 2νσ
ρ ,

we obtain for all t ≥ 1
λ ,

D+V (t) ≤ −2ν(1− σ)V (t) + ρε1(t)

Which gives inequality (26) of Theorem 1. Then, using
the Comparison principle, one gets, for all t ≥ 1

λ ,

V (y(t, ·)) ≤ e
−2ν(1−σ)(t− 1

λ )V (y( 1
λ , ·))

+ρ

∫ t

1
λ

e−2ν(1−σ)(t−s)ε1(s)ds

and thus,

V (y(t, ·)) ≤V (y( 1
λ , ·))e

−2ν(1−σ)(t− 1
λ ) +

ρς1W1( 1
λ )

2ν(1− σ)− η
e−ηt

−
ρς1W1( 1

λ )

2ν(1− σ)− η
e
−2ν(1−σ)(t− 1

λ )−η 1
λ

Select η > 2ν(1− σ). Thus, we get, for all t ≥ 1
λ ,

V (y(t, ·)) ≤ V (y( 1
λ , ·))e

−2ν(1−σ)(t− 1
λ )

+
ρς1V (y( 1

λ , ·))
η − 2ν(1− σ)

e
−2ν(1−σ)(t− 1

λ )−η 1
λ (29)

with V (y( 1
λ , ·)) = W1( 1

λ ) due to Proposition 3. The pre-

vious inequality holds even if W1( 1
λ ) = 0 since in this

case V (y( 1
λ , ·)) = 0 for all t ≥ 1

λ .

Let us see what happens for all t in [0, 1
λ ) so as the right

hand side of the inequality depends on the initial condi-
tion y0. For that purpose, let us consider the following
function:

V(y) =

∫ 1

0

y(x)TQy(x)e2θxdx (30)

where θ > 0. In addition, from Definition 3, u = 0 for all
t ∈ [0, 1

λ ). It implies that the boundary condition given

by (2) is y(t, 0) = Hy(t, 1). Computing the right time-
derivative of (30), it yields

D+V(y(t, ·)) = yT (t, 1)
[
HTQΛH − e2θQΛ

]
y(t, 1)

+

∫ 1

0

2θyTQΛye2θdx

There exists θ ≥ 0 such that HTQΛH < e2θQΛ. In ad-
dition, since Q is a diagonal positive matrix, ΛQ ≤ λQ
holds. Therefore, D+V ≤ 2θλV. Hence, the solution of
the previous differential inequality thanks to the com-

parison principle satisfies V(y(t, ·)) ≤ e2θλtV(y0). In par-

ticular, V(y( 1
λ , ·)) ≤ e

2θ λλV(y0). On the other hand, (16)

and (30) imply

V (y) ≤ V(y) =

∫ 1

0

y(x)TQy(x)e2(θ+µ)xe−2µxdx

≤ e2(θ+µ)V (y)
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and thus, one gets for all t ∈ [0, 1
λ ),

V (y(t, ·)) ≤ V(y(t, ·)) ≤ e2θλtV(y0) ≤ e2θλte2(θ+µ)V (y0)

In particular, at t = 1
λ we have,

V (y( 1
λ , ·)) ≤ e

2θ λλ e2(θ+µ)V (y0) (31)

Replacing (31) in (29) we get for all t ≥ 1
λ ,

V (y(t, ·)) ≤ e
2θ λλ e2(θ+µ)e

−2ν(1−σ)(t− 1
λ )
V (y0)

+
ρς1e

2θ λλ e2(θ+µ)V (y0)

η − 2ν(1− σ)
e
−2ν(1−σ)(t− 1

λ )−η 1
λ

Reorganizing, we finally get,

V (y(t, ·)) ≤ e

(
2θ
λ
λ+2(θ+µ)+2ν(1−σ) 1λ

)
×

[
1 + ρ ς1e

−η
1
λ

η−2ν(1−σ)

]
e−2ν(1−σ)tV (y0)

This ends the proof of Theorem 1. �

Remark 3. We emphasize again that it was crucial that
u ∈ Crpw(R+,Rm) just to be able to apply Proposition 1
and to prove existence and uniqueness of solution.

The decreasing function ε1 has been added within the trig-
gering law with the aim to prove that the control value,
under the triggering condition (19), has a finite num-
ber of discontinuities as it could be seen in the proof of
Lemma 1. ◦

3.3 D+V event-based stabilization

Let us consider in this section an event-triggered con-
trol similar to the one proposed in [24]. This triggering
condition is not based on the existence of an Input-to-
State stability assumption but relies on the time deriva-
tive of a Lyapunov function. This approach can also be
found in an implicit form in [18] for a linear plant, in
which it is required that the solution of an event-based
implementation satisfies what they call weaker inequal-
ity. The control value is then only updated when such
an inequality is violated. Without entering into further
details about the aforementioned approaches for finite
dimensional systems, we will just point out that, in this
work, the weaker inequality that causes an event when
violated is of the following form:

D+Vev ≤ (1− σ)D+Vcont + ε, σ ∈ (0, 1)

where D+Vev is the right time-derivative of the Lya-
punov function candidate of the system when the control
is updated only on events and D+Vcont the right time-
derivative of the same Lyapunov function candidate but
for a control that is continuously updated and ε a non-
negative decreasing function of the time. Following the

same idea, we will consider the Lyapunov function can-
didate V given by (16). Since d will here again denote the
deviation between the continuously updated control and
the event-triggered ones (as is (22)), D+Vev will denote
the right time-derivative of V when d 6= 0:

D+Vev = zT
[
GTQΛG− e−2µQΛ

]
z + 2(Gz)TQΛd

+dTQΛd+

∫ 1

0

yT (−2µΛe−2µxQ)ydx (32)

whereas D+Vcont will denote the right time-derivative of
V when d = 0:

D+Vcont = zT
[
GTQΛG− e−2µQΛ

]
z

+

∫ 1

0

yT (−2µΛe−2µxQ)ydx (33)

Now that the main idea has been stated, let us formulate
this in a more rigorous way with the definition of the fol-
lowing operator that plays the same role as Definition 3
for the ISS based approach presented in Section 3.2. Be-
fore we state the definition, let us note that, using (32)
and (33), D+Vev ≤ (1 − σ)D+Vcont + ε is equivalent to
the following, for all t ≥ 0 and tuk to be defined later on,

σz(t)T
[
GTQΛG− e−2µQΛ

]
z(t)

+2(Gz(t))TQΛBK(z(tuk)− z(t))
+(BK(z(tuk)− z(t)))TQΛBK(z(tuk)− z(t))

≤ 2µσ

∫ 1

0

yTQΛye−2µxdx+ ε(t)

Definition 4 (Definition ofϕ2). Let ς2, η > 0, σ ∈ (0, 1),
K in Rm×n,G = H+BK in Rn×n,D a diagonal positive
definite matrix in Rn×n, µ > 0 such thatGTDG−e−2µD
is a negative symmetric matrix in Rn×n, V given by (16)
and ε2(t) = ς2V ( 1

λ )e−ηt for all t ≥ 1
λ . Let us define ϕ2

the operator which maps z to u as follows:

Let z in Crpw(R+,Rn) and the time functionW2 be defined
similarly to (18), for all t ≥ 1

λ by:

W2(t) =
n∑
i=1

Dii

∫ 1

0

(
Hiz(t− x

λi
) +Biu(t− x

λi
)
)2
e−2µxdx

If V ( 1
λ ) > 0, let the increasing sequence of time instants

(tuk) be defined iteratively by tu0 = 0, tu1 = 1
λ , and for all

k ≥ 1,

tuk+1 = inf{t ∈ R+|t > tuk ∧ σzT (t)
[
GTDG− e−2µD

]
z(t)

+2(Gz(t))TDBK(z(tuk)− z(t))
+(BK(z(tuk)− z(t)))TDBK(z(tuk)− z(t))

≥ 2µσW2(t) + ε2(t)} (34)

If V ( 1
λ ) = 0, let the time instants be defined by tu0 = 0,

tu1 = 1
λ and tu2 =∞.
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Finally, let the control function, z 7→ ϕ2(z)(t) = u(t), be
defined by:

u(t) = 0 ∀t ∈ [tu0 , t
u
1 )

u(t) = Kz(tuk) ∀t ∈ [tuk , t
u
k+1), k ≥ 1

(35)

Remark 4. Following the same arguments as in the sec-
ond part of Remark 2, whenever V ( 1

λ ) = 0, event-based

stabilization would not be required. ◦

The purpose of next two subsections is to prove that sys-
tem (1)-(3),(7), with the same boundary condition (21)
as before and under the event-triggered control of Defi-
nition 4, has a unique solution for any given initial con-
ditions and is globally exponentially stable in the sense
of Definition 2.

3.3.1 Existence and uniqueness of the closed-loop solu-
tion

As in Section 3.2.1, the goal here is to prove that
u = ϕ2(z) belongs to Crpw(R+,Rm) whenever z is in
Crpw(R+,Rn) and that ϕ2 is a causal operator.

Lemma 3. The operator ϕ2 defined in Definition 4 sat-
isfies Assumption 1.

Proof. The proof follows essentially the same steps as
proof of Lemma 1. Let z in Crpw(R+,Rn) and u = ϕ2(z)
where ϕ2 is the operator given in Definition 4. Let J
be a closed interval subset of R+. By assumption, z has
a finite number of discontinuities on J . As previously,
tz1, · · · , tzM ∈ J will be the increasing sequence of these
discontinuity time instants to which we add the the ex-
tremities tz0 and tzM+1 of the interval J . As in the proof
of Lemma 1, our aim is to prove that u has a finite num-
ber of discontinuities on the time interval [tzi , t

z
i+1], with

i ∈ {0, ...,M} and therefore, it is sufficient to show that
there is a finite number of discontinuities on the open
time interval (tzi , t

z
i+1), with i ∈ {0, ...,M}. If V ( 1

λ ) = 0,

there is only at most one discontinuity which is tu1 = 1
λ .

If V ( 1
λ ) > 0, let γ be a strictly positive real number such

that the following inequality matrix holds:

GTDG <
σ

γ + σ
e−2µD (36)

Note that taking γ sufficiently small, this inequality can
always be satisfied. Let w2 ∈ Crpw(R+,Rn) be defined
by:

w2(t) :=
√
DBKz(t) (37)

where D is as in Definition 4 (since D is a diagonal pos-
itive definite matrix, D has an unique positive-definite
diagonal square root matrix, denoted

√
D, whose diag-

onal elements are equal to square roots of the diagonal
elements of D). Let wi2(t) be the continuation of w2(t)
given by (37), on the interval [tzi , t

z
i+1] with the left limit

of w2(t) in tzi+1, that is:

wi2(t) =w2(t), if t ∈ [tzi , t
z
i+1) (38)

wi2(tzi+1) = lim
t→(tz

i+1
)−
w2(t) (39)

The definition of Crpw(R+,Rn) insures that the left limit
of w2(t) exists and that wi2(t) is continuous on the closed
interval [tzi , t

z
i+1]. Therefore, it is uniformly continuous.

It means that for all ζ > 0, there exists τ > 0 such that

∀t, t′ ∈ [tzi , t
z
i+1] : |t− t′| < τ ⇒ ‖wi2(t)− wi2(t′)‖2 < ζ

As in the proof of Lemma 1, we denote τi the value of τ
when ζ = γ

γ+1ε2(tzi+1). Here again, we assume first that

there are at least two consecutive discontinuity instants
in (tzi , t

z
i+1) and let tuk be the first one.

Let us consider the triggering condition (34) in Definition
4 and using the continuity of W2, ε2 and wi2, it holds at
time t = tuk+1:

σzT (tuk+1)
[
GTDG− e−2µD

]
z(tuk+1)

+2(Gz(tuk+1))TDBK(z(tuk)− z(tuk+1))

+(BK(z(tuk)− z(tuk+1)))TDBK(z(tuk)− z(tuk+1))

≥ 2µσW2(tuk+1) + ε2(tuk+1)

Using the Young’s inequality, one has for γ as in (36):

zT (tuk+1)
[
(γ + σ)GTDG− σe−2µD

]
z(tuk+1)

+(1 + 1
γ )(BK(z(tuk)− z(tuk+1)))TDBK(z(tuk)− z(tuk+1))

≥ 2µσW2(tuk+1) + ε2(tuk+1)

Knowing that (BK(z(tuk) − z(tuk+1)))TDBK(z(tuk) −
z(tuk+1)) = ‖

√
DBK(z(tuk) − z(tuk+1))‖2 and according

to (38) and (39), one gets

‖wi2(tuk)− wi2(tuk+1)‖2 ≥
γ

1+γ

(
−zT (tuk+1)

[
(γ + σ)GTDG− σe−2µD

]
z(tuk+1)

+2µσW2(tuk+1) + ε2(tuk+1)
)

Moreover, using the non-negativity of W2 and
−zT (tuk+1)

[
(γ + σ)GTDG− σe−2µD

]
z(tuk+1), the fact

that ε2 is a decreasing function, the uniform continuity
argument and the definition of τi, one gets

‖wi2(tuk+1)− wi2(tuk)‖2 ≥ γ
1+γ ε2(tuk+1) ≥ γ

1+γ ε2(tzi+1)

=⇒ |tuk − tuk+1| ≥ τi

Thus, τi gives a lower bound for the duration be-
tween two input updates, depending only on the interval
(tzi , t

z
i+1). The remaining part of the proof that u is in

Crpw(R+,Rm) follows the lines of Lemma 1.

For proving the causality property of the operator
ϕ2, it is sufficient to follow the same steps as in
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proof of Lemma 1 but considering, at the final step
of the proof, f(t) = σzT (t)

[
GTDG− e−2µD

]
z(t) +

2(Gz(t))TDBK(z(tuk) − z(t)) + (BK(z(tuk) −
z(t)))TDBK(z(tuk) − z(t)) − 2µσW2(t) − ε2(t)
and f∗(t) = σ(z∗)T (t)

[
GTDG− e−2µD

]
z∗(t) +

2(Gz∗(t))TDBK(z∗(tu
∗

k ) − z∗(t)) + (BK(z∗(tu
∗

k ) −
z∗(t)))TDBK(z∗(tu

∗

k )− z∗(t))− 2µσW ∗2 (t)− ε2(t).

Since u is in Crpw(R+,Rm) and the causality property is
satisfied, Assumption 1 holds. It concludes the proof. �

Combining the previous lemma with Proposition 1, we
get

Corollary 2. For any y0 in Clpw([0, 1],Rn), there exists
a unique solution to the closed-loop system (1)-(3),(7)
and controller u = ϕ2(z).

3.3.2 Stability of the closed-loop system

Let us now state our second main result.

Theorem 2. Let K be in Rn×n such that Assumption
2 holds for G = H + BK. Let µ > 0, Q a diagonal
positive matrix in Rn×n and ν = µλ be as in Proposition
2. Let σ be in (0, 1), η > 0 and ε2 and ϕ2 be given in
Definition 4. Let V be given by (16) and d given by (22).
Then the system (1)-(3),(7) with the controller u = ϕ2(z)
has a unique solution and is globally exponentially stable.
Moreover, it holds for all t ≥ 1

λ ,

D+V (t) ≤ −2ν(1− σ)V (t) + ε2(t) (40)

Proof. The existence and uniqueness of a solution to sys-
tem (1)-(3),(7), with u = ϕ2(z) is given by Corollary 2.

We are now going to show that the system is globally
exponentially stable. Assume that V ( 1

λ ) > 0 (the other

case is studied as in Theorem 1).

From the definition of ϕ2, events are trig-
gered so as to guarantee for all t ≥ 1

λ ,

σzT (t)
[
GTQΛG− e−2µQΛ

]
z(t) + 2(Gz(t))TQΛd(t) +

dT (t)QΛd(t) ≤ 2µW2(t) + ε2(t) and therefore
D+Vev(t) ≤ (1 − σ)D+Vcont(t) + ε(t) by taking into
account that D = QΛ and ε = ε2. By construction, it
follows that, for all t ≥ 1

λ ,

D+V (t) = D+Vev(t) ≤ (1− σ)D+Vcont(t) + ε2(t) (41)

Using ΛQ ≥ λQ and Proposition 2, it is clear that
D+Vcont ≤ −2νV .

Therefore, in (41), for all t ≥ 1
λ ,

D+V (t) ≤ −2ν(1− σ)V (t) + ε2(t)

Now, proceeding exactly as in the proof of Theorem
1 when using the Comparision principle and analyzing
what happens for all t ∈ [0, 1

λ ), the final result which

proves the global exponential stability, is the following
for all t ≥ 1

λ ,

V (y(t, ·)) ≤ e

(
2θ
λ
λ+2(θ+µ)+2ν(1−σ) 1λ

)
×

[
1 + ς2e

−η
1
λ

η−2ν(1−σ)

]
e−2ν(1−σ)tV (y0)

This ends the proof of Theorem 2. �

3.4 Comparison between ISS event-based stabilization
and D+V event-based stabilization

The following proposition links the two event-based con-
trol approaches that we have proposed in this article.

Proposition 4. Let σ be in (0, 1), α, ρ, ν, κ and Q be
as in Theorem 1. Let V be given by (16), D+Vev and
D+Vcont be given by (32) and (33) respectively, d given by
(22), andW1 as in Definition 3. The following implication
holds, for all t ≥ 1

λ ,

D+Vev ≥ (1− σ)D+Vcont + ε2 ⇒ ‖d‖2 ≥ 2νσ
ρ W1 + ε2

ρ

(42)
Therefore for all solutions to (1)-(3) and (7) in closed-
loop, respectively with controllers u = ϕ1(z) and u =
ϕ2(z), by selecting ς1 = ς2

ρ and having the same initial

condition, the first triggering time occurs with ϕ1 and not
with ϕ2.

Proof. It holds that D+Vev ≥ (1 − σ)D+Vcont + ε2 is
equivalent to:

σzT
[
GTQΛG− e−2µQΛ

]
z + 2(Gz)TQΛd+ dTQΛd

≥ −σ
∫ 1

0

yT (−2µΛe−2µxQ)ydx+ ε2

Using ΛQ ≥ λQ and the Young’s inequality we obtain
that D+Vev ≥ (1− σ)D+Vcont + ε2 implies,

zT
[
(σ + α)GTQΛG− σe−2µQΛ

]
z + (1 + 1

α )dTQΛd

≥ σzT
[
GTQΛG− e−2µQΛ

]
z + 2(Gz)TQΛd+ dTQΛd

≥ 2νσV + ε2

for any α > 0 and ν = λµ. Due to Assumption
14 and Proposition 2, there exists α > 0 such that
(σ + α)GTQΛG− σe−2µQΛ < 0, hence,

D+Vev ≥ (1−σ)D+Vcont+ε2 ⇒ (1+ 1
α )dTQΛd ≥ 2νσV+ε2

Taking ρ as the largest eigenvalue of matrix (1 + 1
α )QΛ

one gets,

D+Vev ≥ (1− σ)D+Vcont + ε2 ⇒ ρ‖d‖2 ≥ 2νσV + ε2

Finally, using Proposition 3, one gets, for all t ≥ 1
λ ,

‖d‖2 ≥ κW1 + ε1

10



and thus inequality (42) holds, with ε1 = ε2
ρ and κ =

2νσ
ρ . �

Remark 5. One consequence of Proposition 4 is that
controller u = ϕ1(z) generates the first triggering time
before the controller u = ϕ2(z). Of course this does not
imply that we have less triggering times with ϕ2 than ϕ1.
However, this property and in turn, larger inter-execution
times in average under ϕ2 times, are observed on numer-
ical simulations as we will see in the next section. ◦

4 Numerical simulations

Numerical simulations were done by discretizing an ex-
ample of linear hyperbolic system. For that purpose we
have used a two-step variant of the Lax–Friedrichs nu-
merical method presented in [33] and the solver on Mat-
lab in [32]. We selected the parameters of the numer-
ical scheme so that the Courant-Friedrich-Levy condi-
tion for the numerical stability holds. In addition, the
sufficient stability condition is achieved using classical
numerical tools for semi-definite programming (see e.g.
Yalmip toolbox [23] with SeDuMi solver).

As a matter of example, we consider a system of 2×2 hy-
perbolic conservation laws describing the vehicle traffic
flow on a roundabout made up of only two inputs/exits.
Inspired by [3], where an example of ramp-meetering con-
trol in road traffic networks is treated, we consider the
structure of Figure 1 for a network in compartmental sys-
tem representation describing flows on conservative net-
works. Each compartment or node represents a segment
of the roundabout. Based on LWR model (see e.g. [4]),
let us consider the special case where the dynamic of the
system is written as a set of kinematic wave equations,

∂tq + C(q)∂xq = 0 (43)

where q = [q1 q2]T is the flux. C(q) =
diag(c1(q1) c2(q2)) is the matrix of characteristic ve-
locities. The boundary conditions are

1

2
x

x v2(t)

v1(t)

Figure 1. Network of 2 conservation laws for a roundabout.

q1(t, 0) = γq2(t, 1) + v1(t)

q2(t, 0) = βq1(t, 1) + v2(t) (44)

where γ and β are traffic splitting factors at the two
exits of the roundabout and v1(t) and v2(t) are the in-
fluxes injected from outside into compartments 1 and 2
respectively. They can be viewed as control inputs (e.g.
when modulating with traffic lights). With these con-
trol actions, one intends to prevent the appearance of
traffic jams on the roundabout or to achieve a desired

steady-state without congestion. As in [3], we assume
free-flow conditions. In that case, characteristic veloci-
ties are all positives. In addition, a steady-state for the
system {q∗, v∗} is space invariant and satisfies (44), that
is q∗1 = γq∗2 +v∗1 and q∗2 = βq∗1 +v∗2 . We select the steady-
state {q∗, v∗} as a free-flow steady-state. We want to sta-
bilize it under linear output feedback control of the form

v1(t) = v∗1 + k1(q2(t, 1)− q∗2)

v2(t) = v∗2 + k2(q1(t, 1)− q∗1)

where k1, k2 are tuning control parameters. Defining the
deviations y = q − q∗ and u = v − v∗, the linearization
of system (43) at the equilibrium is given by

∂ty + C(q∗)∂xy = 0 (45)

with y = [y1 y2]T , C(q∗) = diag(c1(q∗1) c2(q∗2)) and
the boundary condition given by

y(t, 0) = Hy(t, 1) +Bu(t) (46)

whereH =
(

0 γ
β 0

)
,B = I2 and u(t) = Ky(t, 1) withK =(

0 k1
k2 0

)
. We then perform simulations setting c1(q∗1) = 1,

c2(q∗2) =
√

2, γ = 0.7, β = 0.9. The initial condition is

y(0, x) = [ 4x(x−1) sin(8πx) ]
T

for all x ∈ [0, 1].

It is worth remarking that due to the nature of this
problem, the system in open-loop converges to the equi-
librium, i.e. ρ1(H) < 1 holds, thus the system (45) in
open-loop is GES. Therefore, the design of the control
u(t) would be rather devoted to improve the performance
of the network (e.g. to accelerate the time convergence
to the steady-state, by decreasing the ρ1−norm of the
boundary condition).

4.1 Continuous stabilization: controller u = ϕ0(z)

The boundary condition is y(t, 0) = Hy(t, 1) + Bu(t)
where u(t) = ϕ0(z)(t) = Kz(t) is the continuous con-
troller acting from t ≥ 1

λ = 1. The initial condition

was chosen such that the zero-order compatibility con-
dition is satisfied i.e. y(0, 0) = (H + BK)y(0, 1). Con-
dition (14) holds since ‖∆HH∆−1H ‖ = 0.8079 < 1 with
∆H = ( 1.2729 0

0 1.1426 ) and thus ρ1(H) < 1. Then, K
has been designed such that ρ1(G) < ρ1(H) < 1 with
G = H +BK. To be more specific, with K =

(
0 0.3
−0.9 0

)
and ∆G = ( 0.9134 0

0 1.2580 ), ‖∆GG∆−1G ‖ = 0.7262 < 1.
It implies that the closed-loop system is GES and the
ρ1-norm of the boundary condition is smaller than the
open-loop case. Besides this, condition (15) in Proposi-
tion 2 was also checked getting as a result the existence
of scalars µ = 0.1, ν = 0.1 and one symmetric matrix
Q = ( 0.8346 0

0 1.1191 ).

4.2 ISS event-based stabilization: controller u = ϕ1(z)

The boundary condition is now y(t, 0) = Hy(t, 1)+Bu(t)
where u(t) = ϕ1(z)(t). The parameters for the triggering

11



algorithm were chosen to be α = 0.5, σ = 0.9. Therefore,
ρ = 4.7481, κ = 0.0379 and [(1+α)GTQΛG−e−2µQΛ] =(−0.6833 0

0 −0.0439
)

is a symmetric negative definite matrix.
Hence, Theorem 1 holds. The function ε1 used in the
triggering condition (19) is chosen to be

ε1(t) = ς1V (1)e−ηt, t ∈ R+ (47)

with η = 0.4, V (1) = 0.6390, and ς1 is such that
ς1V (1) = 5× 10−3. Figure 2 shows the time evolution of

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

Time[s]

 

 

2ν σV

ρ
+ ε1

‖d‖2

Execution times

Figure 2. Trajectories involved in triggering condition (19)
for controller u = ϕ1(z).

the functions appearing in the triggering condition (19).
Once the trajectory ‖d‖2 reaches the trajectory κV +ε1,
an event is generated, the control value is updated and d
is reset to zero. The number of events under this event-
based approach was 89, counting them from t ≥ 1

λ = 1.

It is considerable less with respect to continuous stabi-
lization, since the number of discretization points in time
is NT = 8000 with a discretization step ∆t = 1× 10−3.

4.3 D+V event-based stabilization: controller u =
ϕ2(z)

The boundary condition is now y(t, 0) = Hy(t, 1)+Bu(t)
where u(t) = ϕ2(z)(t). The only parameter to be cho-
sen here is σ and it is as before, σ = 0.9. The function
ε2 used in the triggering condition (34) is ε2 = ρε1 with
ρ = 4.7481 and ε1 given by (47). The number of events
under this event-based approach was 30, counting them
from t ≥ 1.
A comparison of the functions V when stabilizing with
ϕ0, ϕ1 and ϕ2 is done as shown in Figure 3. It can be
noticed that under the two event-based stabilization ap-
proaches, global asymptotic stability is achieved with
different observed rates despite similar theoretical guar-
antees. D+V event-based stabilization results in slower
convergence but leads to larger inter-execution times
than the ISS one which results in faster convergence.
Moreover, the first triggering time occurs with ϕ1. This
is consistent with Proposition 4. For both approaches, σ

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time−evolution of functions V

Time[s]

V

1 1.2 1.4 1.6
0.35

0.4

0.45

0.5

0.55

2.4 2.6 2.8 3 3.2

0

0.05

0.1

0.15

Figure 3. Time-evolution of functions V . Legend: Dashed–
dotted black line for continuous stabilization with controller
u = ϕ0(z), dashed red line with red diamond marker for ISS
event-based stabilization with controller u = ϕ1(z) and blue
line with blue circle marker for D+V event-based stabiliza-
tion with controller u = ϕ2(z).

has been chosen to reduce as much as possible the num-
ber of triggering times. The closer σ is to zero, the faster
triggering is required. Figure 4 shows the first compo-
nent of solution when stabilizing with both ϕ1 (left) and
ϕ2 (right). Note that for both approaches, oscillations
are presented near the equilibrium and asymptotic sta-
bility is achieved. It is worth remarking that under con-
tinuous stabilization with ϕ0, it is possible to achieve
the convergence to the equilibrium in finite time. Such a
time, for this particular illustrating example, is given by

TF = 1
λ + 1

λ1
+ 1

λ2
= 4+

√
2

2 s.

Moreover, for both event-based approaches, we ran sim-
ulations for several initial conditions given by y0a,b(x) =

[ax(1−x) b
2 sin((2a)πx)]T , a = 1, ..., 5 and b = 1, ..., 10

on a frame of 8s. Note that these initial conditions
satisfy the zero-order compatibility condition. We have
computed the duration intervals between two trigger-
ing times (inter-execution times). The mean value, stan-
dard deviation and the coefficient of variation of inter-
execution times for both approaches are reported in Ta-
ble 1 and the density of such inter-execution times is
given in Figure 5. The mean value number of trigger-

Table 1
Mean value, standard deviation and variability of inter-
execution times for ISS event-based stabilization approach
(ϕ1) and D+V event-based stabilization approach (ϕ2).

Mean value Standard deviation Coefficient of variation

ISS event-based 0.0448 0.1702 3.8024

D+V event-based 0.1361 0.1972 1.4489

ing times with ϕ1 was 121.1 events whereas with ϕ2

was 45.72 events. They both are considerable less with
respect to continuous time approach ϕ0 since the dis-
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Figure 4. Numerical solution of the first component y1 of the closed-loop system with controller u = ϕ1(z) (left) and with
controller u = ϕ2(z) (right).
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Figure 5. Density of the inter-execution times with controller u = ϕ1(z) (left) and with controller u = ϕ2(z) (right).

cretization time for all simulations was NT = 8000 with
∆t = 1 × 10−3. It can be seen that using ϕ2 results in
larger inter-execution times in average than ϕ1. In ad-
dition, ϕ2 reduces the variability of the inter execution
times and with ϕ1 it is needed to sample faster than with
ϕ2.

5 Conclusion

In this paper, event-based boundary controls to stabi-
lize a linear hyperbolic system of conservation laws have
been designed. The analysis of global exponential stabil-
ity is based on Lyapunov techniques. Moreover, we have
proved that under the two event-based stabilization ap-
proaches, the solution to the closed-loop system exists
and is unique. This paper might be considered as the first
contribution to event-based control of Hyperbolic PDEs,
and complements the work of [13] and [31] on sampled
data control of parabolic PDEs and on event-based con-
trol of parabolic PDEs, respectively.

This work leaves some open questions for future works.
The event-based stabilization approaches may be ap-
plied to a linear hyperbolic system of balance laws. An-
other interesting point is to apply this control strategy
to open channels modeled by the Saint-Venant equations
(see e.g. [8]). Indeed, actuation might be expensive due
to the actuator inertia when regulating the water level
and the water flow rate by using gates opening as the
control actions. Then, event-based control would sug-
gest to modulate efficiently the gates opening, only when
needed. Another interesting application could be flow
control on vehicle highway traffic networks with junc-
tions as considered in [4]. It would generalize what it has
been done in Section 4. The rate inflow might be con-
trolled throughout traffic lights modulation in strategies
such as ramp-metering on event-based fashion which is
actually a realistic approach for the actuator in the sys-
tem. Concerning the event-based algorithms, it can also
be interesting to add an internal dynamic so as it filters
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the event-based signals as it is done in [15] for nonlin-
ear systems. Finally, it could be fruitful to consider per-
formance and rate convergence issues by studying the
impact of the event-based control parameters as well as
robustness with respect to measurement noise.

Appendix: Proof of Lemma 2

Let us prove that V is continuous and right differentiable
on R+. From (16), it follows that

V (y) =

n∑
d=1

QddVd(y) (48)

where Vd(y) =
∫ 1

0
y2d(x)e−2µxdx. Let y be a solution of

(1)-(3), let t in R+, x ∈ [0, 1], h > 0 then

yd(t+ h, x) =

{
yd(t+ h− x

λd
, 0), if λdh ≥ x

yd (t, x− λdh) , if λdh < x
(49)

Let V (t) = V (y(t, ·)) and Vd(t) = Vd(yd(t, ·)). Using
(49), Vd(t+ h)− Vd(t) is computed as follows:

Vd(t+ h)− Vd(t) =

∫ λdh

0

y2d(t+ h− x
λd
, 0)e−2µxdx

+

∫ 1

λdh

y2d(t, x− λdh)e−2µxdx

−
∫ 1

0

y2d(t, x)e−2µxdx

=

∫ λdh

0

y2d(t+ h− x
λd
, 0)e−2µxdx

+

∫ 1−λdh

0

y2d(t, x)e−2µxe−2µλdhdx

−
∫ 1

0

y2d(t, x)e−2µxdx

Hence,

Vd(t+ h)− Vd(t) =

∫ λdh

0

y2d(t+ h− x
λd
, 0)e−2µxdx

− e−2µλdh
∫ 1

1−λdh
y2d(t, x)e−2µxdx

+ (e−2µλdh − 1)

∫ 1

0

y2d(t, x)e−2µxdx

Since yd(·, 0) ∈ Crpw(R+,Rn), we have

lim
h→0+

1
h

∫ λdh

0

y2d(t+ h− x
λd
, 0)e−2µxdx = λdy

2
d(t, 0)

Now, due to the fact that yd(t, ·) ∈ Clpw([0, 1],Rn), for
all t ≥ 0,

lim
h→0+

1
he
−2µλdh

∫ 1

1−λdh
y2d(t, x)e−2µxdx = λdy

2
d(t, 1)e−2µ

In addition, on gets

lim
h→0+

1
h (e−2µλdh − 1) = −2µλd

therefore,

lim
h→0+

Vd(t+h)−Vd(t)
h =λdy

2
d(t, 0)− λdy2d(t, 1)e−2µ

− 2µλd

∫ 1

0

y2d(t, x)e−2µxdx
(50)

From (48) and (50) we get,

lim
h→0+

V (t+h)−V (t)
h =

n∑
d=1

Qdd

(
λdy

2
d(t, 0)

− λdy2d(t, 1)e−2µ

− 2µλd

∫ 1

0

y2d(t, x)e−2µxdx

)
which proves that V is right differentiable and
in turn right continuous. Moreover, since D+V =

limh→0+
V (t+h)−V (t)

h , (27) holds. In order to prove that
V is left continuous, let us consider the case when h < 0.
Then,

yd(t+h, x) =

{
yd(t+ h− (x−1)

λd
, 1), if x ≥ λdh+ 1

yd (t, x− λdh) , if x < λdh+ 1

(51)
and

Vd(t+ h)− Vd(t) =

∫ 1

−λdh
y2d(t, x)e−2µxe−2µλdhdx

+

∫ 1

λdh+1

y2d(t+ h− (x−1)
λd

, 1)e−2µxdx

−
∫ 1

0

y2d(t, x)e−2µxdx

which can be rewritten as follows,

Vd(t+ h)− Vd(t) =

∫ 1

λdh+1

y2d(t+ h− (x−1)
λd

, 1)e−2µxdx

−e−2µλdh
∫ −λdh
0

y2d(t, x)e−2µxdx

+(e−2µλdh − 1)

∫ 1

0

y2d(t, x)e−2µxdx

(52)

From (52) it can be noticed that,

lim
h→0−

Vd(t+ h)− Vd(t) = 0

Therefore, V is left continuous. Since it is also right con-
tinuous, it is continuous on R+. This concludes the proof
of Lemma 2.
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[6] J-M Coron, B. d’Andréa Novel, and G. Bastin. A strict
Lyapunov function for boundary control of hyperbolic
systems of conservation laws. IEEE Transactions on
Automatic Control, 52(1):2–11, 2007.

[7] J.-M. Coron, R. Vazquez, M. Krstic, and G. Bastin. Local
exponential H2 stabilization of a 2×2 quasilinear hyperbolic
system using backstepping. SIAM Journal on Control and
Optimization, 51(3):2005–2035, 2013.

[8] J. de Halleux, C. Prieur, J.-M. Coron, B. d’Andréa Novel,
and G. Bastin. Boundary feedback control in networks of
open channels. Automatica, 39(8):1365–1376, 2003.

[9] A. Diagne, G. Bastin, and J.-M. Coron. Lyapunov exponential
stability of 1-D linear hyperbolic systems of balance laws.
Automatica, 48(1):109–114, 2012.

[10] S.M. Djouadi, R.C. Camphouse, and J.H. Myatt. Reduced
order models for boundary feedback flow control. In American
Control Conference, pages 4005–4010, Seattle, Washington,
2008.

[11] V. Dos Santos, G. Bastin, J-M. Coron, and B. d’Andréa Novel.
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