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Abstract

We investigate the problem of the rate of convergence to equilibrium for ergodic stochastic differential
equations driven by fractional Brownian motion with Hurst parameter H € (1/3,1) and multiplicative
noise component 0. When o is constant and for every H € (0,1), it was proved in [17] that, under
some mean-reverting assumptions, such a process converges to its equilibrium at a rate of order ¢~¢
where a € (0,1) (depending on H). In [9], this result has been extended to the multiplicative case when
H > 1/2. In this paper, we obtain these types of results in the rough setting H € (1/3,1/2). Once again,
we retrieve the rate orders of the additive setting. Our methods also extend the multiplicative results
of [9] by deleting the gradient assumption on the noise coefficient o. The main theorems include some
existence and uniqueness results for the invariant distribution.

Keywords: Stochastic Differential Equations; Fractional Brownian Motion; Multiplicative noise; Ergodicity;
Rate of convergence to equilibrium; Lyapunov function; Total variation distance.

AMS classification (2010): 60G22, 3TA25.

1 Introduction

Convergence to an equilibrium distribution is one of the most natural and most studied problems concerning
Markov processes. This holds true in particular for diffusions processes, seen as solutions to stochastic
differential equations (SDEs in the sequel) driven by a Brownian motion. More specifically, consider the
R?-valued process (Y;):=0 solving the following SDE:

dY;, = b(Yy)dt + o (V) dW, (1.1)

where b: RY > R4, o : R? — My, ¢ are smooth enough functions, where My 4 is the set of d x d real matrices,
and where W is a d-dimensional Wiener process. Assume for simplicity that o(x) is invertible for every
z € R% and that 0! is a bounded function.

In the context of equation (1.1), a simple assumption which ensures ergodicity of the process Y is the
following reinforcing condition on the drift b (see Hypothesis (H2) below for further details): There exist
C1,Cy > 0 such that for every v € R?, one has

(v, b(v)) < Cy — Caflv||* . (1.2)

Under condition (1.2) (and the non-degeneracy of o), exponential convergence of the probability law L£(Y})
to a unique invariant measure p in total variation is a classical fact, and can be mainly obtained via two
different methods:
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(i) Functional inequalities. Starting from Poincaré type inequalities (or further refinements) for the solution
of (1.1), and invoking Dirichlet form techniques, exponential and sub-exponential rates of convergence are
obtained e.g in [2, 25].

(i) Lyapunov/Coupling techniques. In these methods (see e.g. [8]), the idea is to try to stick some solutions
of (1.1) (in an exponential time) with the following strategy: taking advantage of the Lyapunov assumption
(1.2) (which can be strongly alleviated in the context of (1.1)) leads to some exponential bounds on the
return-time of the (coupled) process into compact subsets of R? (or more generally petite sets). Then,
classical coupling techniques (involving the non-degeneracy of o) allow to attempt the sticking of the paths
when being in the compact subset.

Notice that in the setting of equation (1.1), the convergence analysis relies heavily on the Markov property
for Y, or equivalently on the semi-group property for the transition probability. It also hinges on the
irreducibility of Y, which can be seen as a non-degeneracy condition on the noisy part of the equation.
Finally, notice that the first approach generally leads to sharper exponents but usually requires stronger
assumptions.

Convergence to equilibrium being a relatively well understood phenomenon for equations like (1.1), recent
developments in ergodic theory for stochastic equations have focused on deviations from the irreducible
Markov setting. The reference [16] handles for instance infinite dimensional situations where only asymptotic
couplings of the process (starting from different initial conditions) are available. Let us also mention [18],
about a situation where the strong Feller property is fulfilled as ¢ — o0, due to the degeneracy of the noise.

The current contribution is more directly related to another line of investigation, which aims at handling
cases deviating from the fundamental Markov assumption. A general setting for this kind of situation is
provided in the landmark of random dynamical systems [1, 5, 13]. However, the type of information one can
retrieve with these techniques seldom include rates of convergence to an equilibrium measure. Alternatively,
one can also consider differential systems driven by a fractional Brownian motion (fBm) as a canonical
example on which non standard Markovian approaches to convergence can be elaborated. This point of view
is ours, and is justified by the fact that fBm is widely used in applications (see e.g [14, 24, 21, 22]), and also
by the fact that fBm can be seen as one of the simplest processes exhibiting long range dependence.

In this paper, we are thus concerned by the long time behavior of an equation which is similar to (1.1),
except for the fact that the noisy input is a fractional Brownian motion. Specifically, we consider the following
SDE:

dY: = b(Yy)dt + o(Yz) d X4, (1.3)

where the coefficients b and o satisfy the same assumptions as above (in particular relation (1.2)), and
where (X;)¢>0 is a d-dimensional H-fBm with Hurst parameter H € (3,1). Notice that in the case H > 3
equation (1.3) makes sense owing to Young integration techniques, whereas the case H € (1/3,1/2) requires
elements of rough paths theory (see Section 2.1).

The study of ergodic properties for fractional SDEs (under the stability assumption (1.2)) has been
undertaken by Hairer [17], Hairer and Ohashi [19], and by Hairer and Pillai [20], respectively in the additive
noise, multiplicative noise with H > 1/2 and multiplicative hypoelliptic noise with H € (1/3,1/2). These
papers mostly focus on a way to define stationary solutions, and on extending tools of the Markovian
theory to the fBm setting. In particular, criteria for uniqueness of the invariant distribution are proved in
increasingly demanding settings. Let us also mention the references [3, 4] for some results on approximations
of stationary solutions. In all those references, the Markovian formalism is based on the Mandelbrot-Van
Ness representation of the fractional Brownian motion, namely:

0
X, — aHf (—rYT=4 (AW, — dW,), £ 0, (1.4)
—0o0

where (W})er is a two-sided R9-valued Brownian motion and a is a normalization coefficient depending on
H. Tt is then shown that (Yi, (Xs4¢)s<o0)t=0 can be realized through a Feller transformation (Qy);>0 whose
definition is recalled below (see Section 3.1.1). In particular, an initial distribution of the dynamical system
(Y, X) is a distribution gy on R? x W_, where W_ is an appropriate Holder space (see Section 3.1.2 for
more details). Rephrased in more probabilistic terms, an initial distribution is the distribution of a couple
(Yo, (Xs)s<0) where (X;)s<0 is an R%valued fBm on (—o0,0]. Then, such an initial distribution is called an

2



invariant distribution if it is invariant by the transformation Q; for every ¢ > 0. The uniqueness of such an
invariant distribution is investigated in [17, 19, 20].

Let us now go back to our original question concerning the rate of convergence to equilibrium, which is
obviously a natural problem when uniqueness holds for the invariant distribution. This problem has been
first considered in [17], for equation (1.3) with an additive noise. In this context it is shown that the law
of Y, converges in total variation to the stationary regime, with a rate upper-bounded by C.t=(*=¢) for any

e > 0, where
5 if He(n)\{3}
H(1—2H) if He(0,%].

The upper bound above is believed to be non-optimal, though its sub-exponential character can be interpreted
as an effect of the non-Markovianity of the fBm X. Referring to our previous discussion on methods to achieve
rates of convergence, functional inequalities tools are ruled out in the fBm setting, due to the absence of a
real semi-group related to equation (1.3). The method chosen in [17] is thus based on coupling of solutions
starting from different initial conditions. More specifically, the problem is reduced to a coupling between two
paths starting from some initial conditions po and p, where the second one denotes an invariant distribution of
(Q¢)i=0. The main step consists (classically) in finding a stopping time 7 such that (YA )0 = (Y1, )i=o0.
The rate of convergence in total variation is then obtained by means of an accurate bound on P(7o, > t),
t=0.

Within the general framework recalled above, the next challenge consists in extending the rate (1.5)
to multiplicative noises. This has been achieved in Fontbona and Panloup [9], where the order of conver-
gence (1.5) is obtained in the case H > %, with the additional assumption that the diffusion component o
is invertible and satisfies the following gradient type assumption: its inverse o~! is a Jacobian matrix. Our
paper has thus to be seen as an improvement of [9] in two different directions:

(1.5)

(i) We get rid of the gradient type hypothesis assumed in [9], which extends the scope of application of our
result.

(i) We treat the case of an irregular fBm, with Hurst parameter H € (1/3,1/2), which means that equa-
tion (1.3) has to be understood in the rough paths sense. Our main goal (see Theorem 2.5 for a precise
statement) is then to obtain the rate of convergence (1.5) under those general conditions on ¢ and in the
rough case.

Let us specify it right now: the techniques displayed in this paper can cover both the case H € (1/3,1/2)
(as mentionned in point (i7) above) and the case H > 1/2 (thus extending the results of [9] beyond the
gradient type assumption, as reported in point (4)). This being said, for the sake of conciseness, we shall
only express our analysis within the rough setting, that is when H € (1/3,1/2), and therefore leave to the
reader the details of the extension to the (simpler) Young situation H > 1/2 (see Remark 2.2 for a few
additional comments on this topic).

In order to achieve our claimed rate of convergence, we shall implement the coupling strategy alluded
to above. Let us briefly recall how this coupling strategy is divided in 3 steps. As a preliminary step, one
waits that the two paths (starting respectively from g and pg) get close. This is ensured by the reinforcing
condition (1.2). Then, at each trial, the coupling attempt is divided in two steps. First, one tries in Step 1
to cluster the positions on an interval of length 1. Then, in Step 2, one tries to ensure that the paths stay
clustered until +00. Actually, oppositely to the Markovian case where the paths stay naturally together
after a clustering (by putting the same noise on each coordinate), the main difficulty here is that, due to
the memory, staying together is costly. In other words, this property can be guaranteed only with the help
of a non trivial coupling of the noises. One thus talks of asymptotic coupling. If one of the two previous
steps fails, a new attempt will be made after a (long) waiting time which is called Step 3. During this step
one waits again for the paths to get close, but one also expects the memory of the coupling cost to vanish
sufficiently.

In our general rough setting with non constant coefficient o, the implementation of the coupling strategy
requires some non trivial adaptations of the general scheme. Let us highlight our main contributions in order
to achieve the desired convergence rate:

1. The binding preliminary step relies on Lyapunov type properties of the differential equation (1.3). We
3



will invoke here some rough paths techniques based on discretization schemes.

2. In the additive case, two paths driven by the same fBm differ from a drift term, which leads to a
straightforward way of sticking the paths in Step 1. We are no longer able to use this trick here, and
our coupling is based on a linearization of equation (1.3). The analysis of such a linearization turns
out to be demanding, and is one of our main efforts in this article.

3. The different trials we have to make in a context where nontrivial correlations occur force us to consider
conditioning procedures. For these conditionings, we have chosen to decompose X into a Liouville fBm
plus a smooth process with singularity at ¢ = 0. The rough path formalism has to be adapted to this
new setting.

Those steps are sometimes delicate, and will be detailed in the remainder of the article.

Our paper is organized as follows: In Section 2 we detail our assumptions and state our main result,
namely Theorem 2.5. The Markov setting for equation (1.3), as well as Lyapunov type inequalities, are given
in Section 3. Our global strategy to get the convergence rate is explained at Section 4. The singular rough
equations needed for the coupling step are detailed in Section 5. Then the coupling Step 1 is achieved in
Section 6. Eventually, the proof of Theorem 2.5 is completed in Sections 7, 8 and 9.

2 Setting and main result

We recall here the minimal amount of rough paths considerations allowing to define and solve equation (1.3)
driven by a fBm with Hurst parameter H > 1/3. These preliminaries will be presented using terminology
taken from the so-called algebraic integration theory, which is a variant of the rough paths theory introduced
in [15] (see also [11]). Then we shall state precisely the main result of this article.

2.1 Holder spaces, rough paths and rough differential equations

For an arbitrary real interval I, a vector space V and an integer k > 1, we denote by Ci(I; V) the set of
functions g : I* - V such that 9t,--t, = 0 whenever ¢; = t;41 for some ¢ < k— 1. Such a function is called a
(k — 1)-increment. Then, for every f € C1(I;V) and g € C3(I; V), we successively define

(6f)st = ft - fs and (6g)sut = 0gst — 9su — Gut >

forany s<u<tel.

Our analysis will rely on some regularity consideration related to Holder spaces. We thus start by
introducing Holder type norms for 1-increments: for every f € Co(I; V), we set

N[f;C5(I; V)] := sup Il fstll

s,tel |t - S|'u,

and  Cy(I;V) = {f€Ca(I;V); N[f;C5(I; V)] < 0},

Observe now that the usual Holder spaces C{'(I; V') are determined in the following way: for a continuous
function f € C1(I; V), define

NIfCH I V) = N[of;C5(I; V)], and CY(I;V) = {f € Ci(I;V); N[f;CY (I3 V)] < o0}

We shall also use the supremum norm on spaces C(I; V), which will be denoted by N[-;C2(I;V)]. Notice
that when the context is clear, we will simply write C}/(I) for C}(I; V).

The rough path theory can be seen as a differential calculus with respect to a Hélder continuous noise x,
under a set of abstract assumptions. These assumptions are summarized in the following definition.

Definition 2.1. Let v be a constant greater than 1/3 and consider a R%-valued ~-Hélder path x on some
fized interval [0,T]. We call a Lévy area above = any two-index map x* € C57 ([0, T]; R®9), which satisfies,
foralls <u<te[0,1] and all i,j € {1,...,d},

215

PRYEE i J 251 _ i J
0x5,; = oz, o0xl, and x5;7 +x37" =z, dxl, . (2.6)
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The couple x := (x,x2) is then called a y-rough path above , and we will use the short notation
[z := Na; €Y (LR + NP 67 (LRY)]
for any interval I < [0,T1].

When the rough path x can be approximated by smooth functions, one talks about a canonical lift, whose
precise definition is given below.

Definition 2.2. Given a path x € C]([0,1];R%), we denote by a™ = a7 the sequence of (piecewise) smooth
paths obtained through the linear interpolation of x along the dyadic partition P, of [0,1]. Then we will say
that x can be canonically lifted into a rough path if there exists a y-rough path x := (x,x2) above x such
that the sequence x™ := (z™,x%™) defined by

t
X?in = J (62")su @ daiy (2.7)

S

converges to x with respect to the norm
%l 0.:10,17 2= N € ([0, 11 RY)] + N a; €7 ([0, 1, RD)] + N[ 657 ([0, 1; R
for every 0 <~ <. In this case, we will also denote this (necessarily unique) limit x as £(x).

We finally give the definition of solution to a noisy differential equation, such as our main object of
interest (1.3). We are adopting here Davie’s point of view (see [6]). Namely, we characterize the solution y
by a Taylor expansion up to a remainder term whose Hélder regularity is strictly greater than 1.

Definition 2.3. (Davie) Let x := (x,%x2) be a y-rough path. Then, for all smooth vector fields
b:R* > R? and o:R?— LER™;RY),
we call y € C] (I;R?) a solution (on I) of the equation
dyy =b(y) dt + o(y)dx, , y, =a, (2.8)
if the two-parameter path RY defined as
RY, = ()5t — b(ys) (t — 5) — 0;(ys) (627 )5t — (Do - ox) (ys) X2

belongs to C4 (I;R?), for some parameter u > 1. Here, the notation Do - oy stands for

(Doi - 1) (v) = (Do) () (o (v) , for every v e RY. (2.9)

Applications of the abstract rough paths setting to a fractional Brownian motion X depends on a proper
construction of the Lévy area X2. The reader is referred to [12, Chapter 15] for a complete review of the
methods enabling this construction. It can be summarized in the following way:

Proposition 2.4. Let 1/3 < H < 1/2 be a fized Hurst parameter. Then the fBm X belongs almost surely
to any space C] for v < H, and can be lifted as a canonical rough path according to Definitions 2.1 and 2.2.

Furthermore, for any 0 < s <t < T, the random variable X2, satisfies the following inequality:

E [|X§t p] <ecp(t—s)*P. p>1.

As we shall see in the next section, Proposition 2.4 will allow us to solve equation (1.3) under reasonable
assumptions on the coefficients b and o.



2.2 Assumptions and Main Result

Having defined the notion of solution to equation (1.3), we can now proceed to a description of our main
result. We first have to introduce a set of hypothesis on b and o, beginning with a boundedness assumption.

Hypothesis (H1): b: R? - R? and o : R? — L(R? R?) are smooth vector fields such that

sup [[(DWD)(v)|| < oo, and for every £ =0, sup|(DWo)(v)| < o . (2.10)

veRE veERD

The second hypothesis is the Lyapunov-type assumption alluded to in the introduction, which is classically
needed for the existence of an invariant distribution.

Hypothesis (H2): There exist Cy,Cy > 0 such that for every v € R?, one has
(v, b(v)) < Cy — Colv||* . (2.11)

Finally, one needs a non-degeneracy assumption on o.

Hypothesis (H3): For every z € R?, o(z) is invertible and

sup |o(z) 7| < +oo.
zeR?

We are now in a position to state our main result. One denotes by L£((Y}**);=0) the distribution of the
process Y on C([0, +m0), R?) starting from a (generalized) initial condition s (see Subsection 3.1.2 below for
detailed definitions of initial condition and invariant distribution). We also denote by Qu the distribution
of the stationary solution (starting from an invariant distribution p). The distribution fig(dz) denotes the
first marginal of pg(dzx, dw).

Theorem 2.5. Let H € (1/3,1/2), and assume (H1), (H2), (H3) hold true. Then:
(i) There exists a unique solution of equation (1.3) in the sense of Definition 2.3.
(ii) Existence and uniqueness hold for the invariant distribution .

(iil) Let po be an initial distribution such that there exists r > 0 satisfying §|z|"fio(dz) < 00. Then for each
€ > 0 there exists C. > 0 such that

1LY/ s=0) — Qulrv < .t~ (),

REMARK 2.1. Item (i) in Theorem 2.5 is classical in rough path theory, since Proposition 2.4 holds true
for our fBm X. We refer to [12] for the general theory of differential equations driven by a rough path. We
prove existence of the invariant distribution below in Theorem 3.4 and Corollary 3.5. It is worth noting that
even though this type of result is classical, its proof is highly technical in our rough and non-Markovian
context. The main part of our work is then obviously to prove item (iii) which in turns implies uniqueness
and achieves the proof of (i7). Also notice that the reinforcing assumption (H2) is fundamental for both the
Lyapunov and the coupling steps in our proofs.

REMARK 2.2. As mentioned before, when H > 1/2, Theorem 2.5 has already be shown in [9]. However,
an additional gradient type assumption on o was needed therein, that is: ¢~! is the Jacobian matrix of a
function h : R? — R4, Up to slight adaptations (involving in particular the non-integrability of u — u = —3
when H > 1/2), the proof developed in this paper when H € (1/3,1/2) (especially in Step 1) extends to the
case H > 1/2 (and does not require the gradient assumption). In other words, the above result is still true
when H > 1/2. For the sake of simplicity, we however choose to only consider the real new case H < 1/2 in
the sequel.

3 Existence of invariant distribution

The main result of this section is Theorem 3.4 where we establish a new Lyapunov property for rough
equations and deduce that existence holds for the invariant distribution under (H1) and (H2). Before, we
need to recall some background about ergodic theory for rough equations. We assume that H < 1/2.
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3.1 Markovian structure and invariant distribution
3.1.1 Background on the Markov structure above the solutions

As shown in [20] (going back to [17] and [19]), (1.3) can be endowed with a Markovian structure. Let us
briefly recall the construction. The starting point is to build an appropriate Holder space on which (B} );er
can be realized through a Markov transformation. Let CF°(R_) the space of C*-functions with compact
support w on R_ with values in R satisfying w(0) = 0. Let W, denote the Holder-type space being the
(Polish) closure of Ci°(R_) for the norm | . defined by

v,

t —
lzl,y. = sup —2D =2 (3.12)
T seRo [t —s[Y (1 + [t + |s])2

For any « € (1/3, H), there exists a probability P_ on W, such that the canonical process is a standard
d-dimensional H-fBm indexed by R_. In the following, we set W_ = W, and consider x_ € W_. Set W, =
DY7([0,1]) the closure of C§°([0, 1]) for the norm | |;j0,17- Then, with the help of operators related to the
Mandelbrot representation (see [20] for more precise statements), one can define a Feller transition kernel P
on W_ x W, such that (with a slight abuse of notation), P(x_,dx ) = P((Bf )ieo,1] € dx4 |(Bf )ter_ = z_).
Then, denoting by W = W_ x Wy, Il : W + C((—o0, 1], R?) the map that concatenates z_ with the path
component z of x4, and P the probability measure on W defined by P(dz_ x dz) = P_(dz_)P(z_, dz),
IT*P corresponds to the law of (Bff)e(_op 1) on C((—o0,1],R?). Denoting by © the —1-time shift from
C((—o0,1],R%) to C((—o0,0],R%), the previous construction implies that a two-sided fBm (on R?) can be
realized through the (discrete-time) Feller Markov transition kernel P on W defined by

P(x,.) = do@) @P(O(z),.).

The triplet (W, P, P) is called the noise space. Then, for a given initial condition z and a given realization
x = (z_,x4) of the driving noise, we denote by (®:(z,X))ie[0,1], the unique solution to (1.3) with initial
condition z. Owing to [12] and Assumption (H1), (z,x;) + ®;(2,x4) is continuous on R? x W, . Tt follows
that the solution to (1.3) can be viewed as a Feller Markov process on R? x W with transition kernel Q
defined by : Q(z,z,.) = U¥P(x,.) where ¥, (z) = (P1(2,x4), 2).

REMARK 3.3. In [17], the construction of the Markov structure is directly realized with the underlying
Wiener process. Note that such a construction would be closer to the coupling viewpoint which is introduced
below.

The reader can observe that the above construction only ensures the Markovian structure above the discrete-
time process (X, )nen and not for the whole process (X;);>0. However, an adaptation of the previous strategy
leads to the construction of a Feller Markov semi-group (Q;)s>0 above (Y;)i=o (on R? x W,).

3.1.2 Invariant distribution

Following [19], a probability x on R x W_ is called a generalized initial condition if Tlyy_u = P_ (defined
in the previous section).

Definition 3.1. Let v be a generalized initial condition. We say that v is an invariant distribution for
(Y=o if for every t =20, vQy = v.

Definition 3.2. We say that V : R? — R is a Lyapunov function for Q if V is continuous and positive, if
lim ;|40 V() = +00 and if there exist C > 0 and p € (0,1) such that for every t € [0,1],

f V() (1Q)(dz, dw) < C + p f V() u(dz, dw) (3.13)

for any generalized initial condition p on RE x W_.

We have the following (classical) result:



Proposition 3.3. The existence of a Lyapunov function V' for the Feller semi-group (Qi)i=0 implies the
existence of an invariant distribution for (Yi)i=o. Furthermore, for any generalized initial condition p such
that SV (z)p(dz, dw) < 400, sup,so E,[V(Y;)] < +o0.

Proof. Let p denote an initial condition on R% x W_ such that { V(z)u(dz, dw) < 400 and denote by (p1¢)s>1
the sequence defined by

1 t
e = ;ZuQsds,t >1. (3.14)
0

By construction and by the Feller property, every weak limit of (u:);>1 is an invariant distribution for
(Qt)t=0. It is thus enough to prove the tightness of (ut):>1: owing to the stationarity of the increments of
the fBm, the second marginal of y; does not depend on ¢t. W_ being Polish, we are thus reduced to prove the
tightness of (1¢)¢=0, v+ being the first marginal of p;. But the definition of the Lyapunov function implies
(by an iteration) sup,~, v4(V) < +00 which in turn implies the tightness (using that V—'([0, K]) is compact
for any K > 0). O

The aim of the next subsection is the exhibition of such a Lyapunov function V for ). The result will
actually be derived from a general (deterministic) Lyapunov property for rough differential equations.
3.2 A Lyapunov property for rough differential equations
We go back here to the general case of a rough equation
dy; = b(y) dt + o(y;)dx, , te[0,1] , wyo=aeR?, (3.15)

where x is a given (deterministic) y-rough path on [0,1], for some fixed parameter v € (3,1). In what
follows, we will write ||x||, for |x||;[0,1-

Theorem 3.4. Under Hypothesis (H1) and for every initial condition yo € RY, Equation (3.15) admits a
unique solution y on [0, 1], in the sense of Definition 2.3. Besides, if we assume in addition that Hypothesis
(H2) holds true, then there exists a constant C (which depends on b,o,v,C1,Ca, but not on x) such that

8

lyall* < e 2llyol|* + C{1+ Ixll5} ,  with p:= 31

(3.16)

Injecting this result into the stochastic setting of Section 3.1.1 (where x := X is the canonical rough path
above the fBm), the derivation of (3.13) is immediate. It is indeed a well-known fact (see for instance [12,
Theorem 15.33]) that the random variable | X[, admits finite moments of any order, and we are therefore
in a position to state the desired property:

Corollary 3.5. In the setting of Section 3.1.1 and assuming that both Hypotheses (H1) and (H2) hold true,
the map V : x — ||z||? defines a Lyapunov function for Q, for any p = 1. As a consequence, there exists at
least one invariant distribution v for (Y;)i=o0, which additionally admits finite moments of any order.

The rest of this section is devoted to the proof of Theorem 3.4. Under Hypothesis (H1), the fact that
there exists at most one solution to (3.15) (in other words, the uniqueness part of our statement) is a standard
result, which can for instance be found to [6, Theorem 3.3]. On the opposite, due to the unboundedness of
b, it seems that the proof of existence of a global solution on [0, 1] cannot be found as such in the literature,
and we shall therefore provide a few details below.

In brief, our strategy towards Theorem 3.4 is based on a careful analysis of the natural discrete associated
with (3.15), in the same spirit as in [6]. Let us thus introduce the sequence of dyadic partitions Py, := {t; =
tf =573 4=0,...,2"} of [0, 1], and consider the discrete path ™ defined on P, along the iterative formula

y(r)z =a o, 5y?iti+1 = b(yZ) 67;iti+l + U(yZ) 6Ititi+l + (DU ! U)(yZ)Xiti+1 : (317)
8



We shall also be led to handle the following quantities associated with y™: for s,t € Py,

LY™ =y —o(yy) s — (Do - o) (ys) X5
RY™ = Syl —b(yl) 6Tet — o(y2) 6zt — (Do - 0)(y2) X2,
G = Sy — oY) dxst

For every s < t € [0, 1], we will write [s,t] = [s,t]n := [s,t] N Py, and we extend the norms introduced in
Section 2.1 to discrete paths in a natural way, namely

[ fstl

S<t€ﬂél,ég]] |t - S|M

NTf;CE([0r, bor A1])] =

s NLCE([6r, b A1) == N6 £5C5 ([6r, L2 A 1])]

The starting point of our analysis is the following local estimate for RY"", which can be obtained as a
straightforward application of our forthcoming general Proposition 5.9:

Proposition 3.6. Fir k := %(% + "y). Then, under Hypothesis (H1), there exists a constant co (which
depends only on b,o,7) such that if we set

To = To(]|x]]) := min (1, (co{l + ”X”V})—l/(v—n)) 7

one has, for every T € Py, satisfying 0 < 7 < Ty and every k < 1/7,

NRY™ C3%([kT, (k + 1) A 1])] < co{1 + |y |} - (3.18)

Corollary 3.7. In the setting of Proposition 3.6, there exists a constant ¢i (which depends only on b,0,7)
such that for every T € Py, satisfying 0 < 7 < Ty and every k < 1/7, one has

NTy™ G ([T, (k+ D)7 A D] < e {1+ w1} (3.19)
Ny ¢l ([kr, (k + )7 A 1D] < {1 + [lyg, ({1 + (x5} (3.20)

and
NIQU™ C3 ([kr, (k + 1)r A1) < er{l + [lyp 131 + [1x]l4} - (3.21)

Proof. For every t € [kr, (k + 1) A 1], write

Ui = Ypr +0Wir) 0Tkrt + 0(yir) 6%kr e + (Do - o) (yyy) XkT ¢ T Rth )

so that using (3.1

(3.18), we get [lyf|| < 1+ [lyp ||+ %], Zy , and (3.19) now follows from the fact that ||x||,7) <
75" < 1.

Then, in a more general way, we have for every s < t € [k7, (k + 1)7 A 1]
Sy, = b(ys) 0Tst + o(ys) dwst + (Do - 0)(y) x% + RY"
and
G = b(Y) 0T + (Do - o) (y]) x5, + RY™ .
Injecting (3.18) and (3.19) into these expressions easily yields (3.20) and (3.21). O

Corollary 3.8. Under Hypothesis (H1), Equation (3.15) admits a unique global solution y on [0,1]. Besides,
with the previous notations, there exists a subsequence of (y™), that we still denote by (y™), such that

n—o0

cmax iy, =yl = 0. (3.22)

.....



Proof. Although the two local estimates (3.19)-(3.20) are not uniform as such (that is, the right-hand side
still depends on y™), they easily give rise, via an obvious iterative procedure, to a uniform estimate for
Ny Y7 ([0,1])] := Ny™; C2([0, 1)) +N[y™; €7 ([0, 1])]. Still denoting by 4™ the continuous path obtained
through the linear interpolation of (y; )io,... 2n, we thus get a uniform estimate for Ny"; CY7([0,1])], which,
by a standard compactness argument, allows us to conclude about the existence of a path y € C{ ([0, 1]), as

well as a subsequence of y™ (that we still denote by y™), such that y” — y in C?”Y,([O, 1]) for every 0 < v/ < 7.

The fact that y actually defines a solution of (3.15) is then an easy consequence of the bound (3.18). The
details of this procedure can for instance be found at the end of [7, Section 3.3]. O

Let us now turn to the proof of the second part of Theorem 3.4, that is to the proof of (3.16) under
Hypotheses (H1) and (H2). To this end, we introduce, for every n = 0, the additional discrete path
z" : Pp — R defined for every t € P,, as

2= —|Iyt [

In the same vein as above, we will lean on the following quantities related to z™: for every s,t € Py,

RG" = 8zl — Yyl b(yl)) 6Tee — (Yl o (y2)) wse — X(yl) x2
LI o= 6zl =yt o(yl)) bwe — X(yl) x2
QY = 0zl —(yi o(yl))dxy

where we have set
X(yg) == o(ys), o(ys)) + ys', (Do - o)(ys)) -
Just to be clear, the notation for the second-order term in R*™, L*™ specifically refers to the sum

Sy x2, = {oi (), on(y?)) + e, (Do - o) (i)} x27°

Finally, along the same lines as in the subsequent Section 5, we set, if s = &% and t = 5% and G : [0,1] — R?,

ME[G T, ] 2= sup Ot

p<isq |t1+1 — 1 |“
Let us start with a few estimates on R*"™, for which Hypothesis (H2) is still not required:

Lemma 3.9. Under Hypothesis (H1) and with the above notations, there exists a constant ca (which depends
only on b,o,v) such that for every s <t € P,, one has

MPRZ™; [, 1] < {1 + [[x]I23H{1 + Ny™; CP ([, tD)]?} - (3.23)
Proof. We have
n n n 1 n n
02t = WYros OUrs )+ §<5ytiti+lv OYtitiin) s

and so, injecting (3.17) into the first term immediately gives, thanks to the second identity in (2.6),

1 n n n n s
Rt tig1 §<5ytiti+1v5ytiti+1> - <U(yti)aa(yti)>xt2iti+1 =(o (yt ) 6y, tigr T Qmwla tyiti+1> . (3.24)

Finally, since Q71" = b(y}) 0T;t,,, + (Do - 0)(yit) X7, ,, it is immediate that

1@z N = Ttin — {1 + [lyz, .

Going back to (3.24), we get the conclusion. O

Proposition 3.10. Assume Hypothesis (H1) holds true and let Ty = To(||x||y) be the time defined in
Proposition 3.6. Then there exists a constant cs (which depends only on b,o,v) such that for every T € P,
satisfying 0 < 7 < Ty and every k < 1/7, one has

NTR™C3 (Tkr, (k + )7 A )] < eafl + [x[SHL+ 27} -
10



Proof. Thanks to Lemma 5.6, we can rely on the estimate
NIR="™:CY ([kr, (k + 1)1 A 1])] < MPY[R*™; [k, (k + 1)7 A 1] + N[6R*™;C37 ([kT, (k + 1)T A 1])] -
As far as the first term is concerned, combining (3.23) and (3.19) allows us to assert that
MR [kr, (k + 1)1 A 1]] < {1+ |[x|2H1 + 27} -
Then, for every s < u < t € [kT, (k + 1)7 A 1], decompose JR.; as
GRS = —0(Y"™, b(y"))su 0Tur + 0T -
On the one hand, one has, by (3.19) and (3.20),

[6(Cy™ D™D su] < [K0Yz by )] + [<yE, 0b(y™)se)] < Ju— s["{1 + [lxll 1L + 25, -

On the other hand, combining Chen’s identity with elementary Taylor expansions easily leads us to the
decomposition _ _ N
Loh = {Il, + II', + III!, + IV} } 62ty + 6 555 (y"™) su X0y

ut
with

Ziiy™) = o (y"),0;(y")) + {y", (Do; - o) (y™)) ,
1
zz;@%mwmmzm;@wwzﬁ,H&:f%@wmw+w%>w
0
and finally
1
IWw=Jd&£JHM£+€®&%JMﬂ®M%@®»M@
0

With the above expressions in mind and using the three estimates (3.19), (3.20) and (3.21), it is not hard
to check that
DL < 16— sPH{1+ XIS HL + 2,

which achieves the proof of our assertion.

Let us finally involve Hypothesis (H2) into the picture:

Corollary 3.11. Assume Hypotheses (H1) and (H2) hold true and let Ty = Ty(||x||y) be the time defined
in Proposition 3.6. Then there exist constants cy,cs (both depending only on b, 0,7, C1,Cs) such that if we

set 2 1 M@=
T, =T += min ( T el + |3}
1= Ta(||x[ly) := min < Oy <C4{1 + ||X||?y’}) > ,

one has, for every T € P, satisfying 0 < 7 < Ty and every k < 1/7,

Cs

Zeryear < (1= 507) o + eafl + x| 2327 (3.25)

where we recall that the two parameters Cp, Cy have been introduced in Hypothesis (H2).
Proof. Using Hypothesis (H2), we get that for every 7 € P, and every such that k < 1/7,
Z?kJrl)‘rAl = ZI?T + <yl7cl7'7 b(yl?‘r)> 577@7’, k+1)T Al
+<y7kl7'5 (yk‘r)> 517/@7’,(/@4—1)7'/\1 + E(ykT) Xkr (k+1)T A1 + Rk-,— (k+1)7 A1

(1 — CQT)ZkT + C1
+<y27-7 U(yl?‘r)> 6$k7’,(1€+1)7’/\1 + E(yZT) Xz7,(k+l)7'/\l + szn(kJrl)TAl s

N

11



and so, thanks to Proposition 3.10, we can conclude that for every 0 < 7 < min (To, C%) and every k < 1/,
one has

Firtyrar < (1= Com)afly + O1 4 eIl {1+ )T} + Zrrin + IS+ 2]
for some constant ¢4 = c4(b, 0,7, C3). Now, by the very definition of T}, we know that if 0 < 7 < T3, then
{1 + ||x||,3y} < 7'(047'37_1{1 + ||x||,3y}) <T.

To achieve the proof, it now suffices to use the basic inequality

eulil (R )b < Lo + Sz
K 4 4 T Cy v

O

At this point, we are very close to (3.16). With the notations of Corollary 3.11, consider n large enough
such that we can exhibit 79 € P, satisfying %Tl < 19 < Th, and then let K be the integer such that
(K —1)10 < 1 < K7p. Iterating the bound (3.25) with 7 = 7 yields that

Cy \K _
G < (1-F5m) a5+ e K+ x|
< (1-& %zuc K{1+ ||x|2}ra7 !
x 2 70 0 5 o To
< e O s K{1+ ||x||i}7'§771 )
Thanks to (3.22), the conclusion is now immediate, by noting that KTOQV_l < T12"Y_2 and then using the
explicit description of 11, Ty in terms of ||x||,.

4 Sketch of the strategy

We now turn to the second part of Theorem 2.5 about the convergence in total variation of the process
towards the stationary solution. This result is based on a coupling method first introduced in [17]. We
thus begin by recalling the details of the strategy. To this end, we first introduce some notations about the
Mandelbrot-Van Ness representation of the fBm.

4.1 Decomposition of the fBm

As recalled in (1.4), the Mandelbrot-Van Ness formula allows us to realize any fBm (X;);>¢ (with Hurst
parameter H € (0,1)) through a standard two-sided Brownian motion (W;):er. The representations imme-
diately gives rise to the decomposition

Xy =Dy + 7y, (4.26)

where .

0
D, = QHJ {((t—r)F=2 — (=) 2}dW, and Z, := ozHJ (t — )3 dw, . (4.27)
—00 0

is seen a the 'past’ component encoding the 'memory’ of W, while

t
Zy = aHJ (t — )72 dw,
0

stands for the 'innovation’ process (when looking at X after time 0).

It turns out that, away from 0, the process D so defined is smooth (see Lemma 6.5 for details), so that
the roughness of X is essentially inherited from that of Z. This basic observation will be one the keys of

12



our analysis, at every step of the strategy (it is worth noting that similar ideas already appear in [20]). All
along the procedure, we will thus be led to control the past of the process through the quantity

I Dlll1 = sup t'=7[D'(1)] (4.28)
te(0,1]

for some fixed parameter vy € (0, H). Let us more generally introduce the following class of functions:

€
Notation 4.1. For every k = 1 and every v € (0,1), we denote by 5,’; the space of paths f : [0,1] — R?
which are continuous on [0,1], k-times differentiable on (0,1], and such that

flllgsy := max  sup O < o 4.29
51l = o sup #7170 (429)

4.2 The general 3-step scheme

Let (X¢)ter and ()?t)teR denote two fractional Brownian motions with common Hurst parameter H € (1/3,1).
Then, denote by (Yz,Y:), a couple of solutions to (1.3):

{dYt = b(Yy)dt + o(Y;) dX; (4.30)

dY; = b(Y3)dt + o(Y;) dX,

with initial conditions (Yo, (X¢)i<o), (Yo, (X¢)e<o). We denote by (F)i=o the usual augmentation of the
filtration (o(Xs, Xs, (Yo, Y0))s<t)t=0- To initiate the coupling procedure without “weight of the past”, we
will certainly assume that a.s,

(Xe)e<o = (Xt)e<o
and that the initial distribution Ji of (Yg, Yp) is of the form

(dx, dZ, dw) = vo(w, dz)v(w, dZ)Py (dw) (4.31)

where Py denotes the distribution of a fBm (X;)i<o on C(R™,R%) and the transitions probabilities vg(., dz)
and v(., dZ) correspond respectively to the conditional distributions of Y; and Y given (X):<o. Furthermore,
we assume that

vo(w, dZ)Pg(dw) = po and that v(w, dZ)Py(dw) = p. (4.32)
In other words, Y is a stationary solution whereas Y starts with a given initial condition .
The processes (X)ter and ()N(t)teR can be realized through the decomposition introduced in the previ-
ous subsection with respect to some two-sided Brownian motions respectively denoted by W and W. In
particular, the filtration (F;);>0 is also generated by (o(Ws, W, (Yo, Y0))s<t)t=0-

Furthermore, we will assume in all the proof that on [0,00), W and W (resp. X and X) differ by a
(random) drift term denoted by g, (resp. gx):

AW, = dW, + g,, (t)dt and dX, = dX; + gx (t)dt. (4.33)

Note that the functions g,, and gx are linked by the following formulas when make sense (see [17], Lemma
4.2 for details):

d t

gw(t) = an— | (1= 5)* Tgx(s)ds (4.34)
gx(t) = e n G [ (=) dgy (5)ds. (4.35)

The idea is to build g,, (resp. gx) in order to stick Y and Y. We set
T i=inf{t >0, Y, =Y, forall s>t} .

As usual, this coupling will be achieved after a series of trials. As mentioned in the introduction, each trial
is decomposed in three steps:

13



e Step 1: Try to couple the positions with a controlled cost (in a sense made precise below).

e Step 2 (specific to non-Markov processes): Try to keep the paths fastened together (i.e. to ensure that
g9x(t) = 0)

e Step 3: If Step 2 fails, wait a sufficiently long time in order that in the next trial, Step 1 be achieved
with a controlled cost and with (uniformly lower-bounded away from 0) probability. During this step,
we suppose that g, (t) = 0.

Let us make a few precisions:

> We denote by 79 > 0 the beginning of the first trial and by 7, k > 1, the end of each trial. We will assume
in the sequel that 7y = 0.

If 7, = +00, the coupling tentative has been successful. Otherwise, 73 is the end of Step 3 of trial k. We
will assume that

forallte R_, W, =W, a.s. orequivalently that 9w () =gx(t)=0 onR_.

> Step 1 is carried out on each interval [7,_1, 7x,—1 +1]. The “cost” of coupling is represented by the function
gy that one needs to build on [75x—1,7k—1 + 1] in order to get Y and Y stuck together at time Th—1 + 1.
Oppositely to the Markovian case, this cost does not only depend on the positions of Y, _, and YTk 5 but
also on the past of the Brownian motions, which have a (strong) influence on the dynamics of X and X.

If Step 1 fails (which includes the case where one does not attempt the coupling), one begins Step 3 (see
below). Otherwise, one begins Step 2.

> Step 2 is in fact a series of trials on some intervals I, with length
|Ig| = cp2° (4.36)

where ¢3 is a constant greater than one which will be calibrated in the sequel More plremsely7 one successwely
tries to keep Y and Y as being equal on intervals [1x—1 + 1 + ¢2 Z 2 s Te—1 + 1+ co Z 2%] (with the
convention )’ 5 = = 0). Equivalently, this means that on these successwe intervals,

gx(t) =0 a.s.

Thus, the first natural question is the following: how to build the coupling (W, f/IV/') of the innovations in
order to ensure this property, i.e. what is the corresponding function g,, on these successive intervals which
ensures that gx = 0 7 The answer is given by Lemma 4.3 of [17] that we choose to recall here in a slightly
different way:

LeMmMaA 4.1. Let 7, tg and € be some positive numbers. Assume that g, (t) = 0 on (—0,0] U [T —¢,7].
Then, gx () = 0 for all t € [1,7 + to] if and only if

Vte (1,7 +to], g, (t) = (Rog;,)(t) (4.37)

where g7 (.) = g, (7 +.) and for T' > 0, for a given function g (for which the definition below makes sense)

tz~H(T — 5)H—2

Vit >0, (Rrg)(t)=Cy J_O g(s)ds, te(0,4+0)

where Cy is a constant (depending only on H).
REMARK 4.4. The fact that g, (t) = 0 on (—0,0] U [T — &, 7] implies that Rpg is well-defined for every

T > 0. Also, note that R is a linear operator; this property will be convenient to separate each contribution
of the past, i.e. coming from each attempt.

The attempt is successful if Step 1 and Step 2 (i.e. all the sub-attempts of this step) are. To ensure a
positive probability to the success of the k-th attempt, one needs certainly to impose some conditions on the
system at time 73,_1.

In the continuity of [17] and [9], we thus introduce an admissibility condition:
14



Definition 4.2. Let K and « be some positive constants, v € (0, H), and fiz a time 7 = 0. Then we will
say that a state w := (a,a,w,w) € (RY)? x C(] — o, 7];RY)? is (K, a,y)-admissible (at time 7) if T < +00
and if the following conditions are satisfied:

(¢) It holds that @ = w + §"__ gy, (s)ds, with g, satisfying

+o0
sup f (1+ 02| (RelgT, ) (O)Pdt < 1 (4.38)
T=0Jo

(1) It holds that
lal + la| + || DT (w) |

where we have set, for t € [0,1],

1y + 1DT (@)

1;')/ < K (4.39)

H-1 H-}

D(w), == JTOO ((t +7—-r)y 2 —(-r);} ) dw, .

Remark 4.3. We are aware that, following the subsequent Lemma 6.5, the above transformation D7) is
only defined on a subspace Q7 < C(] — o0, 7]; R%) of full Wiener measure (obtained through a shifting of
Q_). Nevertheless, using the stability properties reported in the very same Lemma 6.5, it is readily checked
that, on top of being of full Wiener measure, such a space is left invariant by the successive constructions
of our strategy. We can therefore assume that at any time 7, the noise component of the system under
consideration takes value in Q7 , which allows us to justify this slight abuse of notation.

If the system is admissible, that is if
(Y(w)‘rk,l(w)a Y(w)‘rk,l(w)a (W(w)t)tg‘rk,l(w)a (W(w)t)tSTk,l(w))

defines a (K, «, v)-admissible state at time 7,_1 (w), one attempts the coupling. Otherwise, one waits for the
next one, i.e. one sets g,, (t) = 0 on [75—1,7k] (One will come back below on the duration A7y, := 75, — T,—1).

Regarding Lemma 4.1, one can remark that Condition 4.38 plays a fundamental role in Step 2. More precisely,
it can be understood as a sufficient condition to ensure the success of the series of attempts involved by Step
2.

The second assumption is mainly linked to Step 1. Roughly, it ensures that each marginal is in a sufficiently
controllable state to couple the positions with a bounded cost. The fact that the positions live in a compact
set at the beginning of the attempt is classical. The second condition (on D(7)) is of course specific to this
non-Markovian setting.
Finally, note that the first condition will be ensured with probability 1 at the beginning of the attempt,
whereas, of course, the second one will occur only with a (lower-bounded) positive probability. We denote
by

Ap(K,a,v) = {w : system (K, a,)-admissible at time 75,1 (w)}. (4.40)

> If the coupling attempt fails, one begins Step 3, i.e. one waits sufficiently before another attempt. This
waiting time will be chosen exponentially proportional to the length of the failing attempt. More precisely,
let £ > 1 denote the numbers of trials in Step 2 and adopt the convention, that £ = 0 if Step 1 fails (including
the case where the coupling is not attempted since the system is not admissible at time 75_1). Set

Fr¢ = {At trial k, Step 2 fails after £ attempts}. (4.41)
One assumes in the sequel that for every w € Fj ¢,
T —To_, = Ag(0, k) with As(l, k) := c3a,2°" (4.42)

where 7_, denotes the beginning of Step 3 (in the k-th attempt). where c3 > 2¢2, 8 € [1,400) and (ag)g=1
is an increasing deterministic sequence. These quantities will be calibrate these quantities later. At this
stage, we can however remark that conditionally to F} ¢, the length of each step is deterministic. During
this waiting time, one certainly assumes that

gw () =0 on [P _, 7], ie W;— WT& =Wy —W_s

1 (4.43)
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4.3 Heuristic description of the coupling system in Step 1

and a1 = Y,

At time 751, set ap := Y; S

As reported in the previous section, our aim in Step 1 (the

~

hitting step) will be to build gx on the interval [75_1,7;—1 + 1] in such a way that Y;,_, 11 =Y, _,+1 with
strictly positive probability. This construction will actually be the topic of both Sections 5 and 6. However,
let us try here to give an idea, at some heuristic level, of the motivations behind this forthcoming strategy.

k—1

To this end, let us simplify the framework by assuming that 7,1 = 0, d = 1, and consider for the
moment the case of a smooth deterministic driver . In brief, our purpose is to exhibit a triplet of paths
(y?v ytlv gt)te[o,l] satisfying the system

)

dy? = b(y?) dt + o(yf) day
dyt = b(y}) dt + o(yt) (day + g¢ dt)

as well as the constraints y = ag, y§ = a1 and 3¥ = yi. Using our invertibility assumptions on o (that is,
Hypothesis (H3)), this amounts to finding (7, 4}, ht)se[o,1] such that

3

dyy = b(yy) dt + o (yy) dx,
dyf = b(y})dt + o(y;) dey + hy dt

and y§ = ao, y§ = a1, ¥ = yi. In fact, let us consider the slightly more general issue of exhibiting a family
of paths (yf, hg)te[071]7ge[0)11 that satisfy the equation

dys = b(yS) dt + o(y?) day + R dt (4.44)

as well as the constraints yg = ap + &(a1 — ao), ¥ = yf and h° = 0. Then, using the basic identity
Yy —yt = Sé d€ 55yf, we are led to the following sufficient formulation of the problem: finding a family
(yf’ hf)te[();l],fe[ql] that satisfies both (4.44) and the constraints yg =ao + &(a1 — ap), Oey; =0, WY = 0.

A natural way to answer the latter question is to let the so-called tangent path (associated with y) come
into the picture. Namely, set hf =— Sg dn 77, where for each &, j¢ stands for the solution of the equation

dgg = V' (y)g5 dt + o' (yi)sf dzy . 5§ =a1—ag .

With this specific choice of hg, it is readily checked that the two paths t — Ogyf and t — j§(1 — t) satisfy
the very same equation
dzy = [V (y5)2s — g¢] dt + o' (yf) = day .

Accordingly, deyf = 5*(1 —t) and the above constraints dey; = 0, h% = 0 are indeed satisfied.

As a conclusion of these considerations, the problem now reduces to solving the parametric (or functional-
valued) system

{dyf = [b(y§) — §5 dng7] dt + o(4§) daxy 7 (4.45)

dg; = b'(y5)g5 dt + o' (y;) 55 dae

with initial conditions yg = ag + &(a1 —agp), jg = a1 — ag, and & varying in [0, 1]. This new expression of the
problem can of course be extended to the case of rough z (and to any dimension d), with (y¢, 5%) understood
as a rough solution of (4.45), in the sense of Definition 2.3. Just as above, once endowed with such a solution
(y,7), defining gx as gx(t) := —o(y})! S(l) dn 77 would then close the procedure.

Unfortunately, as the reader can easily check it, the vector fields involved in (4.45) do not meet the usual
boundedness assumptions that guarantee the existence of a global rough solution defined on [0, 1] (compare
for instance with the conditions in [6, Theorem 6.1] or in [12, Theorem 10.26]). In fact, we have not been
able to establish such a global existence in the general situation, and we even suspect that an explosion
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phenomenon might occur in some cases. What we will prove in the next section is a weaker result according
to which global existence on [0, 1] holds provided the norm |[|x][.[0,1] is small enough (depending on ag and

al).

Going back to the stochastic setting of our study (where z = X is a fBm), the latter existence result
is still not satisfying though, because the required smallness condition on || X[|,;[0,1] implicitly involves the
past trajectory (Wp)i<o, which is somehow fixed (and not necessarily small) at this stage of our three-
step procedure. In order to overcome this difficulty, we shall appeal (once again) to the ’past-innovation’
decomposition (4.26) of X, and rewrite the hitting system as

£ _ 3 RS n 13 3
dyY; [b(K5 )dt So dn Ji' dt + o(Y; )th] dt + o(Yy) dZy (4.46)
dJ; = [V/(Y0)J; dt + o' (Yy)J: dDy| + o' (Y{)Jf dZy ’ '

with initial conditions Y(f =agp + &(a1 — ap), Jg = a1 — ag, £ € [0,1]. Now recall that, at the sole price of a
singularity at time 0, the process D can be considered as smooth and therefore the whole terms into brackets
in (4.46) can somehow be seen as drift terms, to be distinguished from the real rough perturbation driven by
Z. Based on these properties and still using a pathwise approach (as developed in Section 5 below), we will
derive the following refined version of the previous existence statement: there exists a unique global solution
to (4.46) on [0, 1] provided the norm of || Z||;j0,1] (Which no longer depends on (W;);<o) is small enough.
This result, essentially summed up by Proposition 6.2, will turn out to be sufficient for our purpose.

5 Singular rough equations

This section is devoted to the presentation of a natural setting to study the hitting system (4.46) (properly
extended to R?) and exhibit sharp conditions on (D, Z) for this system to admit a unique global solution on
[0,1]. To this end, it will turn out to be fundamental that the trajectories of the process D should somehow
be considered as differentiable paths that induce some drift term in the equation. However, as we have
evoked it in Section 4.1 (see also Lemma 6.5 below), this differentiability assumption is not exactly satisfied,
due to a possible singularity at time 0 for the derivative of D.

With these observations in mind, the purpose of the section is essentially twofold:

e Introduce appropriate singular extensions of the Holder spaces defined in Section 2.1 and then extend
the classical study of rough systems to this setting, for general Banach-valued equations;

e Exhibit sufficient conditions on the driver for these rough singular equations to have a unique global
solution, even in situations where the usual boundedness requirements on the vector fields are not met (see
Hypothesis (VF2) below), which is the case for (4.46).

The effective application of these general (pathwise) considerations to the particular fractional system
(4.46) will then be analyzed in Section 6.1.

From now on and for the rest of the section, we fix two parameters: v € (%, %) (for the general Holder
roughness) and S € [, 1] (encoding the singularity at time 0).

5.1 Singular rough solutions and well-posedness results

Our singular extensions of the usual Holder spaces are specifically defined through the following seminorms:
given a Banach space V, an interval I < [0,1] and two parameters a € (0,1], 4 > «, set, for any map
f:I? >V, resp. f: I3 >V,

NI Cop (V)] = max( sup |£stlv sup M) , (5.47)

s<tel |t - 5|a , O<s<tel |t - 5|# sP=1
resp.

fsutHV HfsutHV
N|f;Caot(I; V)] := max ( sup Hia, sup —— ——, 5.48
[ 38 ( )] s<u<tel |t - 3| O<s<u<tel |t - 5|M sB—1 ( )
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and then
CO‘“(IV —{feCllV): 5feC°"“(I V)} (5.49)

Of course, it holds that Ci13"(I; V) = C(I; V) and C3i"(I; V) = C/'(I; V). What actually led us to the
above definitions is the followmg readily-checked (and relatwely sharp) inclusion:

Lemma 5.1. It holds that E1([0,1];RY) ¢ Cf;’,y([(), 1];R?) and for every g € £([0,1];RY),

NT6g:C3 ([0, 1 RD] < e lllgllusy - (5.50)

Let us now introduce the related notion of a singular rough solution. In the sequel, given two Banach
spaces V, W and a smooth map F : V — W, we will denote by DO F : V — L(V®; W) the (-th derivative
of F, understood in the usual Fréchet sense.

Definition 5.2. Consider a path h € C;;’é([(), 1];R™) and a y-rough path z = (z,22), in the sense of
Definition 2.1. Then, for any fized Banach space V, any interval I = [to,t1] < [0,1], any vop € V and all

smooth vector fields
B:V->LR™V) , X:V-o>LRYV),

we call y € C{(I; V) a solution (on I) of the equation
dyy = B(y) dhy + X(y1) dze ,  yiy = vo , (5.51)
if the two-parameter path RY defined as
Rl = (89)st = Bilys) (6h') s — Zj(ys) (027)st — (DX - Z) () 2y’
belongs to CV “(I V), for some parameter > 1. Here, the notation DX - X}, stands for

(DX - Xi)(v) :== (DXZ})(v)(Zk(v)) , for everyveV .

Remark 5.3. We are aware that the space 8,1 could also be continuously embedded into the space of paths
with finite 1-variation, so that the whole problem could certainly receive an analog treatment (with A still
considered as inducing a drift term) in the p-variation setting used in [6] or in [12], instead of our singular
Holder setting. Nevertheless, switching the equation to a p-variation framework could expose us to the risk
of a loss of topological sharpness in the results, with solutions possibly leaving the space of Holder paths
(see for instance the general definition of a solution in [6, Definition 3.1]). This is not the case in the above
formulation, where the solution is still expected to belong to C7'.

Let us now turn to the presentation of the main results of this section about existence/uniqueness of
a solution for the rough singular equation (5.51). We will either be concerned with the classical situation
of bounded vector fields (Hypothesis (VF1)) or the more general possibility of linear growth (Hypothesis
(VF2)).

Hypothesis (VF1). The vector field X' and all its derivatives are uniformly bounded on V. Besides,
the derivative DVB : V — L£(V; L(R™;V)) is uniformly bounded on V.

Hypothesis (VF2). The following bounds on B and X hold true: for all £ > 0
[(DUB) W) <1+ o] , (DY) ()] <1+ o], (5.52)
and also, for every v,w eV,

(DX - Z)(@)| s 1+ o], [(DX-Z)(v) = (DX Z)(w)] 5 v —w[{L + [v]} . (5.53)
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Theorem 5.4 ((VF1)-situation). Under Hypothesis (VF1), and for any vo € V, Equation (5.51) admits a
unique solution on [0, 1] with initial condition vy, in the sense of Definition 5.2.

Theorem 5.5 ((VF2)-situation). Under Hypothesis (VF2), the following assertions hold true:

(1) For any vo € V, Equation (5.51) admits at most one solution on [0,1] with initial condition vy, in the
sense of Definition 5.2.

(13) For every K > 1, there exists My > 0 such that if |vol| < K, N[&h;C;’é([O, 1] < K and |z||;[0,17 <
My, then Equation (5.51) admits a unique solution y on [0,1] with initial condition vy, in the sense of
Definition 5.2. Besides,

Ny; €1([0, 1 V)] + Ny; €1 ([0,1]: V)] < C(K) (5.54)

for some growing function C' : Rt — R*.

Just as in Section 3.2, and in the same spirit as in [6], our proof for both Theorem 5.4 and Theorem
5.5 relies on the examination of the discrete scheme associated with the equation. Set ¢; = &} = o,
P :={t;: i=0,...,2"} and define y™ along the iterative formula: y{’ = vy and

(6yn)titi+l = B(yZ) (6h)titi+1 + E(yZ) (6z)titi+1 (DE 2)( )Zt tiy1 °
Then, for every s,t € P,, set
Ry, = (6y™)st — B(y?) (6h)se — 2(y2) (82)st — (DX - X)(y}) 22y
noting in particular that R, = 0. We will also consider the paths

Ly = (0y")st = 2(y) (02)se — (DX - X)(y2) 22, (= RY + B(y2)(0h)se )
and
o0 7= (0y")st = 2(y) (02)st -
Finally, for every s < t € [0, 1], we will write [s,t] = [s, t]n := [s,t] N Py, and we extend (or rather restrict)
the norms (5.47)-(5.49) to discrete paths as

fu'UHV ||fuvHV
N|f;Cok ([s,t]; V)] = max( sup H =, sup ————,
[ %P ([[ ]] ] u<ve[s,t] |U - u| O<u<ve[s,t] |’U - u|M uf=1
with a similar definition for N'[f;C75"([s, t]; V)], i € {1, 3}.

The whole key towards the deswed estimates lies in the following “singular sewing lemma”:

Lemma 5.6. Let 0 <a <A <1, uy =1 and uz > 1. Then there exists a constant co x s > 0 such that
for every path G : P2 — V and all s <t € P, one has

NIG; o3 M2 ([, V)] < o e MG s, 1] + N[OG; C5 4 ([, 6] V)Y

where we have set, if s = 2—n and t = 2% ,
Gi.t. Gi.t.
Miﬁﬂl [G; [[S, t]]] ‘= max ( sup H titita H 7 sup H titita H )\1) '
p<i<q [tit1 —ti]* " pri<izq |t — it
Proof. See Appendix B. O

5.2 Existence of a solution in the (VF2)-situation

Proposition 5.7. Let Hypothesis (VF2) prevail and assume additionally that
N[5h;c;g([0, 1V < K, for some K =1 .

Then there exists a constant ¢o (which depends only on B, X, v and ) such that if we set Ty = To(K) :=
min (1, (oK) ~9G=1)  the following assertion holds true for every k < 1/To: if |2l|:0,17 < (1 + |yps, H)_l,
then
NIL"; €35 ([KTo, (k + 1)To A 1 V)] < co K{1 + ypp, I} - (5.55)
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Proof. The strategy consists in an iteration procedure over the points of the partition. So, assume that
(5.55) holds true on an interval [0,¢,], with ¢, < Ty (for some time Ty to be determined along the proof).

In other words, assume that
n ,1 n
NIL™C([0,t]: V)] < exc {1 + [y} (5.56)

where we denote from now on ck := ¢gK (for some constant ¢y to be fixed later on). Due to (5.52) and
(5.53), it is then easy to check that the following bounds hold true as well:

NTy™ ([0, 81)] < {1+ lyg 31 + ex T3} (5.57)
and
max (N[y"; C7 ([0, t])] NQ™; €357 ([0, t])]) < {1 + w1 + exc} - (5.58)

Now, in order to extend (5.56) on [0,t4+1] (assuming that ty41 < To), let us first apply Lemma 5.6 to L™
and assert that

NTL™C3A(10, tysa])] S ML 0, by ])] + NSL™: €3 ([0, g ])] (5.59)

where we set from now on k := %(% + 7), so that 1 < 3k < 37.
As far as the first term is concerned, we can use the fact that Ry, = 0, and then (5.52) and (5.57), to
deduce that

MEHL" [0, tg41])] NIB(y™) 6h;C3:5([0, tg1])]

K-N[B(y"); € ([0,t,]] < K{1+ lyg|H1 + ex T35} -

N

In order to estimate N [6L"; C;’gﬁ([[o, tg+1])], let us first rely on Chen relation and decompose the incre-
ments of L™ as L™ = I* §z + II' 6z + I117 2% where we have set

Ti= | anDR) 2 + 2600 Q2 (5.60)

1
1, = JO AN [(DX5)(ys + A0y™)st) — (DZ3)(y2)] Zi(ye) (627)st (5.61)
I11Y .= 6(DX; - ) (y™)st - (5.62)

For I' 62", we can combine (5.52), (5.57) and (5.58) to get that

i s 0 3K —K n 2
NI 8250335 ([0,tga )] < ToU ™ (11 + [y 31 + e })” 12]00,1
S U+ I+ TV (104 131 Izlgo )
n 3(v—k
< {4+ 10 ey,

where we have used the assumption {1 + |yg||}[|z]+;[0,1] < 1 to derive the third inequality.

With similar arguments, we can show that

NUT 025 C33MI0 D] S {1+ g IHL + Tk} (0 + 12212 0,11

n 3(vy—k
{1+ JygIHL + T30,

A

Finally, thanks to the second estimate in (5.53), we obtain that
NI 22935710, tar )] < {1+ lyg [HL + 750 ek
Going back to (5.59), we have shown that, for some constant ¢; depending only on B, X and (v, &, ),

NI CRAI0, taaD)] < {1+ Iyl - (e 1+ T30 ek
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Let us now set ¢ := 2¢1, cx := coK and Ty := min(1, (2¢; K)~ =) in such a way that
aK{1+ T2 < e

and accordingly N[L";C;;’é([[(), tgr1])] < exf{l+ |yi|} as desired.

This iteration procedure allows us to extend the bound (5.56) over the interval [0, Tp]. Then it is easy to
see that the very same arguments can be used for any interval [kTp, (k + 1)7Tp], which completes the proof.

o
Corollary 5.8. Let Hypothesis (VF2) prevail and assume additionally that
N[&h;C;’é([O, 1;V)] < K and |v| < K, for some K =1 .
Then there exists Mg > 0 such that if |z|;j0,1) < Mk, one has
sup max (N[y";cﬁ)([[(), D], Ny 7 ([0, 1], N[Q™; €325 ([0, 1)), NTL™; €325([0, 1]])]> <CO(K), (5.63)

for some growing function C' : R* — R*. As a result, under the same assumptions and if |z|.,j01) < Mk,
it holds that
sup MR €3 ([0.1D)] < DIK) (5.64)

n=0
for some growing function D : RT — R*.
Proof. Using (5.55) as well as its spin-offs (5.57) and (5.58), it is not hard to exhibit a growing sequence
(c) that depends only on (B, X,~, ) (and not on K') such that the following property holds true: for every
k=0, if ||z,.[0,1] < (1 + cx{1 + K})~!, then one has both
Ny™;CY(Ik)] < e {1l + K} (5.65)

and
max (Ny"; €7 (Ie)], N Q™ €357 (1)), N L™ €335 (I1)]) < e {1 + K2}, (5.66)

where we have set I, := [kTp, (k + 1)Tp]. As a result, if we denote by Nk the smallest integer such that
ToNk > 1 and assume that |z].,10,1] < Mk := (1+cn, (14 K))™, then both bounds (5.65) and (5.66) hold

true for k = 0,..., Nx — 1. The extension of these local bounds into global ones (that is, on the interval
[0,1]) is then a matter of standard arguments, which achieves the proof of (5.63).
As far as (5.64) is concerned, apply first Lemma 5.6 to the path R™, which, since R}, , =0, entails that

NIR™C357([0,1]; V)] £ N[6R™ 357 ([0,1]: V)]} -
Then, just as in the proof of Proposition 5.7, observe that we can decompose the increments of R™ as

(6R™)sut = 0By ) su(0h)ut + (L") sut = 0B ) su(Oh)ut + 11,025, + 118,62, + I11 2209 (5.67)

su“ut

where the paths (I, II,11I) have been defined through (5.60)-(5.62). The conclusion is now easy to derive
from the bound (5.63).

O

Proof of Theorem 5.5, point (ii). Consider the sequence (still denoted by y™) of continuous paths on [0, 1]
defined through the linear interpolation of the points of the previous (discrete) sequence y™. Define M as in
Corollary 5.8 and assume that |z|.,;j0,1] < Mk. Then it is readily checked that (5.63) gives rise to a uniform
bound for M[y™;C{ ([0, 1]; V)], and we can therefore conclude about the existence of a path y € C{ ([0, 1]; V),
as well as a subsequence of " (that we still denote by y™), such that y™ — y in C{([0,1]; V) for every
0<k<r.

The fact that y actually defines a solution of (5.51) is essentially obtained by passing to the limit in the
uniform estimate (5.64). The details of this (easy) procedure can for instance be found at the end of [7,
Section 3.3]. As for the bound (5.54), it is a straightforward consequence of (5.63). O
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5.3 Existence of a solution in the (VF1)-situation

Under Hypothesis (VF1), the exhibition of a uniform bound for NTR";C325 ([0, 1])] (with u > 1) essentially
follows the same general procedure as in the classical ('non-singular’) situation treated in [6] or [12]. As we
here consider slightly more specific topologies, let us briefly review the result at the core of this procedure.

Proposition 5.9. Let Hypothesis (VF1) prevail and assume additionally that
N[(Sh;C;_’Bl([O, 1;R™] < K, for some K =1 .
Also, fiz a parameter k such that 1 < 3k < 3~y. Then there exists a a constant ¢y (which depends only on B,

X, v, B and k) such that if we set

. —1/(y—K)
To = To(||z||y, K) := min (1, (co{l + Hz|\7}K> > :
the following property holds true: for every 0 < Ty < Ty and every k < 1/T1,
NIR €5 ([kTy, (k + DTy A 1])] < co K{1 + ypp, [} - (5.68)

Proof. Just as in the proof of Proposition 5.7, the strategy consists in an iteration procedure over the points of
Pn. The argument actually relies on the following two readily-checked assertions: (i) If NR™; C;.E’K([[s, t))] <

co K{1+ [y”|}, then one has
max (M [y"; € (Is, D] NTQ™5 €357 ([, tD)]) < e K[llzll + {1+ [y |1 + co {1 + Kt — s[7}]
for some constant ¢; that depends only on (B, X); (i4) With decomposition (5.67) in mind, one has
NIBR™ €5 (s )] < ez |t = P07 [Ny €1 ([s, D1 + K + 1213} + Q"5 €557 (I, tD)] 2l ]

for some constant ¢o that depends only on (B, X).

It is now easy to inject (i) and (4i) into the iteration scheme exhibited in the previous section for L™
(note that we can additionally use the fact that Rf', , = 0 here). The details of the procedure are therefore
left to the reader. O

5.4 Uniqueness of the solution

It is a well-known fact that uniqueness statements are usually less demanding than existence statements as far
as global boundedness of the vector fields is concerned. Accordingly, in opposition with the previous existence
proof (where specific sharp estimates had to be displayed), the strategy towards uniqueness essentially follows
the same lines as in the standard situation. We briefly review the transposition of the main arguments in
this singular setting.

Assume here that either Hypothesis (VF1) or Hypothesis (VF2) prevails and consider two solutions U, U
of (5.51) with identical initial conditions. Then set

Rs = R(y)st = (59)515 - Bi(ys) (5hi)st - Ej(yS) (5Zj)st - (DEj ’ Ek)(yS) Z?ijk )

Qst = Q(Y)st == (0y)st — Ej(ys) (5Zj)st )

and similarly R := R(}), Q := Q(J). Also, fix u, resp. ji > 1 such that NR; C34([0,1])] < oo, resp.
NIR; C;;;;([o, 1])] < o0, as well as a parameter « satisfying both 3 < k <y and 3k < pu A fi.

Lemma 5.10. There exists a finite constant cp, > 0 such that for every s <t € Py, one has
NIR ~ B e ([s. 1] < e - {27 + NIO(R — B): 53 ([, D))} (5.69)

where € := inf(y — k, (u A ft) — 3k) > 0.
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Proof. 1t is a mere application of Lemma 5.6. Observe indeed that

MR- Fils. ] < MR Do) + A5 R ]

< Ch i {2771(7*!1) + 2771(#173/@) + 2771(#273:1)} )

Lemma 5.11. There exists a finite constant Cy 5 > 0 such that for every s <t e Py, one has
NTS(R = R); ¢y ([s, D] < Cylt — s N2 (0, 9): [, 1] (5.70)
where we have set
NE [, 3); [, 1] = Ny = 3 C2([s, tD)] + Ny — 35 C ([s,t)] + N[Q — ;€557 ([, 1)] - (5.71)

Proof. First, note that the increments of R (or R) can be decomposed just as the increments of R" in the
proof of Corollary 5.8 (see (5.67)), which allows us to write

S(R = R)sur = 0(B(y) — B@))su Shus + [I1, — T0,] 024, + [111, — T1,,] 625, + [I117, — TTT0,] 2% |

where the paths I, II, 111, resp. I~, 17, fﬁ, are defined along (5.60)-(5.62) (replace (y™, Q") with (y, @),
resp. (7, Q)). The bound (5.70) is then obtained through standard differential-calculus arguments based on
(5.52)-(5.53). O

Proof of Theorem 5.5, point (i), and uniqueness property of Theorem 5.4. Consider the above setting and
notations. First, going back to the very definitions of (K, R) and (K, R), it is not hard to check that for
every s < t € P, one has, with the notation (5.71),

N2V, 9)5 1, 41) < ep{ s = il + [ = sl NG (539 [, 1] + MR = B C53"([s, 1]

where the constant ¢, 5 does not depend on n. We can then combine (5.69)-(5.69) and assert that for every
s<tePy,

N[5 0)5 1, 41) < ep{ s = el + £ = s 7" N5 (s s [, 2] + 277

The uniqueness result is now immediate. Indeed, for Ty > 0 such that ¢, 3 79" < 3, and since yo = o, we
first get that
~ K2 ~ —n
Ny = 5:¢2([0, To])] < N5 [(y,9); [0, To]] < Cyy- 27",

and accordingly y; = §; for every t € [0,Tp]. The argument can then be repeated on [Ty, 2T0], [27T0, 3T0],
and so on. O

6 Hitting step

Keeping in mind the strategy sketched out in Section 4.3, the route to Step 1, that is the hitting step, is
now quite clear: we need to check that the vector fields involved in the hitting system (4.46) do satisfy the
assumptions of the previous section, and then see how the conditions therein exhibited (for the driver) can
be injected into the general coupling machinery.

From now on and for the rest of the section, we fix H € (3,1), v € (3, H), as well as vector fields

1

3
b:R? - R? and o : R? — L(RY RY) satisfying Hypotheses (H1) and (H3) (note that Hypothesis (H2) is
not required at this stage of the procedure).
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6.1 Rough hitting

This first section focuses on the hitting issue at the level of the general (deterministic) rough system, and
therefore it settles the bases for our forthcoming stochastic analysis. Let us fix two paths h € £1([0,1]; R),
z € CY([0,1];R?), and assume that z can be canonically lifted into a y-rough path z := £(z), in the sense of
Definition 2.2.

Lemma 6.1. Consider the Banach space Vo := WH([0,1];RY) x L®([0, 1]; R?), and define the vector fields
(B, X) on V along the following formulas:

; _ [0 w(©) = §5dn g () ; ; {a;i<y<s>>
Boly)(©) {(am(y(s))ﬁ(s) - Bwd© = 200 =1 G enste
fori,j= ,d. Then, under Hypothesis (H1), the pair (B, X)) satisfies Hypothesis (VF2).

Proof. We have the following explicit expressions:

; _ [ @) ) v |
(DE))y, ) 1) {(8k640§)(y)yfj’“+(akof)(y)J’f ’

and more generally, for every ¢ > 1,

(DD Z) (Y, 2)((w1,11)s - Ya» 20))

; k

@y k) ) Yt g
= . k 1 k. ™ k
(Ok0ky O, )W) YT - g™ 3+ Oy -+ Ok, 0 ) () Sy Uy gyt g

In particular,
(Qeot)(y)o,(y)
{(0m0ea}) (y)ot(y) + (2eo)) (y) (Omof) (y)} 5™

Based on these formulas, the two conditions (5.52) and (5.53) for X are immediate. We can then exhibit a
similar expression for D9 By.

O

Combining Lemma 6.1 with the well-posedness results of Theorems 5.4 and 5.5 yields the following
statement:
Proposition 6.2. Under Hypothesis (H1), the following assertions hold true:

(a) Let Vy := L*([0,1];R%)2. Then for every A € Vi and every smooth function ¢ : R? — R? bounded with
bounded derivatives, the rough system

3
dy(€) = [elb(w(€) - j i) dn| dt + o (e (€)) dhe + (1 (©)) (6.72)
dy(§) = (kb)(y(€)e(3¢(E))k dt + (ko) (ye(€))p(3¢(E))k dhe + (ko) (1 (€)) (¢ (E))r dze , (6.73)

with initial condition (yo,30) = A, admits a unique solution

(,0) = Uy, (A, ¢, (h,2)) € C]([0,1]; V1) ,
in the sense of Definition 5.2.

(b) Let Vo := WH([0,1];RY) x L*([0,1]; R?) and pick A € Va. Assume that |Alv, < K and ||h]|1., < K
for some fized K = 1. Then there exists a constant My > 0 such that if |z|..[0,1) < MK, the conclusion of
point (i) is still true for ¢ = Id and Vy replaced with Va, and one has

N[\I/V2 (Av Id? (ha Z)),C?([O, 1]; ‘/2)] < C(K) ) (674)

for some growing function C' : Rt — R*.
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Proof. Point (b) is obtained through the combination of Lemma 6.1 and Theorem 5.5. As for point (a), it
suffices to observe that for every fixed ¢, the vector fields involved in (6.72)-(6.73) satisfy Hypothesis (VF1),
and we can therefore appeal to Theorem 5.4 to conclude in this case.

O

Let us now rigourously check that when ¢ = Id, the hitting system (6.72)-(6.73) indeed satisfies the
desired property, namely offering a way to see two rough solutions (with different initial conditions and
drivers differing from a sole drift term) hit a time 1.

Proposition 6.3. Let V, := W ([0,1];R?) x L®([0,1];RY) and consider a Vz-valued solution (y,7) on
[0,1] (in the sense of Definition 5.2) of the rough system (6.72)-(6.73) with ¢ = Id and inital condition

Yo(§) = (1 =&ao +&ar , jo(§) =a1—ao ,

for fized ag,ay € R%. Then the following assertions hold true:

(a) The R%-valued path y© := y.(0), is the solution on [0,1] (in the sense of Definition 2.3) of the rough
equation
dy, =b(y,)dt + o(y)dxy , Yo =ao, (6.75)

where x is the canonical rough path above x := z + h.

(b) The R-valued path y") := y (1) is the solution on [0,1] (in the sense of Definition 2.3) of the rough
equation

dys = b(ye)dt +o(y)dXe , yo = a1, (6.76)
where X is the canonical rough path above T := z + (h + €), with

ew=f¢a@u»*Lﬁm4m.

0
(¢c) It holds that ygo) = y%l).

Proof. (a) Let y be a solution of (6.75) in the sense of Definition 2.3. Then clearly it is also a solution in the
sense of Definition 5.2, and by Corollary A.2, we can conclude that y is a solution of the equation

dye = [b(ye) dt + o(ys) dhe] + o(ye) dze . yo = ao (6.77)

(that is, in Definition 5.2, we take V := R, m — 1 = n = d, Bo(y) := b(y), Bi(y) := 0i(y), Xi(y) := 0i(y),
hi < (t,ht), z < z). The conclusion then comes from the uniqueness statement contained in Theorem 5.5,
since y.(0) trivially satisfies Equation (6.77) as well.

(b) As above, observe that due to the regularity of the path e and thanks to Corollary A.2, the solution of
(6.76) (in the sense of Definition 2.3) is also the solution of
dy = bly)dt + o(yr)d(h +e)e + o(ye)dze , yo=a1, (6.78)

in the sense of Definition 5.2 (that is, with V := RY m — 1 = n = d, Bo(y) := b(y), Bi(y) := o:i(y),
Xi(y) == 0i(y), by < (t,hy + €), z < z). It turns out that the path w := y (1) satisfies Equation (6.78) as
well. This can be easily derived from the fact that

ot 60ha — (= [ st -9

0

wwﬂjmiyﬁdwwﬁwdw>mmm
16— |77 D 00, 1] M ([0, 11)] + A CT ([0, 1)1}

A

Therefore, just as for point (a), we can conclude with the help of the uniqueness property stated in Theorem
5.5.
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(¢) The assertion relies on the following identity: for every ¢, € [0, 1], one has

(Oeye)(€) = 3e(E)(L — 1) . (6.79)

It can indeed be checked that, when seen as paths with values in V := L% ([0, 1];R9)3, the triplets (y, 7, ¢y)
and (y,7,9) (where we have set ¢:(§) := 7:(£)(1 — t)) are both solution of the system obtained by adding to
(6.72)-(6.73) the third equation

dge = [(0k)(ye)gt — 3e] dt + (0k0) (ye)gt dhs + (Ok0)(ye)gt dz ,  go(§) = a1 —ap -

The conclusion is now immediate:
W '
= =) =) = | g ds =0
0

O

Before we summarize the previous results into a single statement (Theorem 6.4 below), let us introduce
an auxiliary system which will later serve us as an ingredient to ’invert’ the hitting system. This system (or
rather this family of systems) takes values in V; := L®([0,1])?, and is defined for every smooth compactly-
supported ¢ : R — R as follows:

13 1

() = |em©) - [

0

@ (Te(m) dn + o(7:()o (F:(1) ™" L @(7:(n)) dn] dt

+0(5:(8)) dhe + o (5:(£)) dze (6.80)
g (§) = [(akb)(gt(f))¢(jt(§))k + (%U)(ﬂt(5))90(jt(€))k0(17t(1))1L w(jt(n))dn]dt

+(0k0) (7(£)) (3¢ (€)1 dhs + (0r0) (G (£))0(5: (§))r dzs . (6.81)

with initial condition (yo(€),20(§)) = (1 — &)ap + €a1,a1 — ap). It is not hard to see that for every such
fixed ¢, the vector fields involved in (6.80)-(6.81) satisfy the conditions of Theorem 5.4 (that is, Hypothesis
(VF1)), and therefore the system admits a unique solution

(gvj) = \val((ao,al),(p, (h,Z)) € C?([O, 1]; Vl) : (682)

Notation. For all h: [0,1] — R? and g € L'([0,1];RY), we set, for all ¢ € [0, 1],
¢
T(h,g)t:=h + J gs ds .
0

Theorem 6.4. Fiz K > 1 and V; := L®([0,1];R%)2. Then there erists a smooth compactly-supported
function ¢ : R4 — R such that, for all ag,a; € RY, the following assertions hold true:

(i) The system

dye(§) = [@K(b(yt(é“))) - f ex (3e(n)) dn] dt + o (y+(£)) dhs + o (y:(€)) dze
dge(§) = (Owb)(We())er (7¢(E))k db + (Oko) (e (€)) o (3 (€))k dhe + (Ok0) (e (€)) o (3:(€))k dzt
with initial condition (yo(€),70(§)) = (1 — &)ao + Ear, a1 — ap), admits a unique solution
(¥,9) = ¥vi((a0, a1), @K, (h,2)) € C]([0,1]; V1) , (6.83)

in the sense of Definition 5.2.

(i) There exists a constant My > 0 such that if max(|ao|,|a1], a1 —aol) < K, [[|h|l|l1;y < K and ||z];[0,1] <
My, then, defining (y,7) through (6.83), one has: (ii-a) the R*-valued path y©) = y (0) is the solution of

dyt = b(ye) dt + o(ys) dx¢ , Yo = ao ,
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where x is the canonical rough path above x := z + h; (ii-b) the R%-valued path yV) =y (1) is the solution of

dyr = b(y) dt + o(yt) dX; , yo = a1 ,

where X is the canonical rough path above T := z + T'(h, g), with

g(t) == =y (1))~ Ll dner (i) (4,) = Yn((ao, 1), x; (ks 2)) 5 (6.84)
(iic) 91" = 1"
(#4t) With notations (6.82) and (6.83) in mind, we have the following identities:
v, (a0, a1), ox, (hy2)) = Ty (a0, a1), oxc, (T(h, 9),2)) . (6.85)
with g defined just as in (6.84), and
(.7) =Py, ((a0, a1), 9K, (h, 2)) = Wy, (a0, a1), o5, (T(h, ), 2)) , (6.86)
with

1

a(t) == o (1)) j dnox () - (6.87)

Proof. With the notation C'(K) used in Proposition 6.2 point (b), consider any smooth function ¢ : R —
R? such that px = 1 on [~C(K),C(K)]?¢ and ¢x(z) = 0 for every |z| = 2C(K). Then (i) follows
immediately from Proposition 6.2 point (a). Besides, owing to (6.74), it is clear that by defining My just
as in Proposition 6.2 point (b), and under the assumptions of the above point (ii), one has the identity

\I}Vl((a(h al)a PK, (hv Z)) = \I]V2 (AvIdv (hv Z)) with A(f) = ((1 - 5)@0 +&ar, a1 — aO) .

Therefore, the three points (ii-a)-(ii-b)-(ii-¢) can be readily deduced from Proposition 6.3.
In order to prove (iii), observe first that with the notations in (6.84), one has, at least at a formal level,

€ 1

©(7:(n) dn + o (ye(€))o(ye (1)) L ©(2:(n)) dn]

+o(y:(£)) d(T(h,g))t +o(ye(§)) dzy ,

with a similar transformation for the equation involving 7. Given the regularity of g, the latter transfor-
mations can actually be justified in a rigourous way, that is in the framework settled through Definition
5.2: one can for instance mimick the arguments of the proof of Proposition 6.3 point (b). Identity (6.85)
now follows from the uniqueness of the solution to the system (6.80)-(6.81) (with fixed ¢ := ¢k ). Identity
(6.86) can then be derived from a similar transformation of (6.80)-(6.81), which completes the proof of our
statement. o

an(© = |em©) - [

0

6.2 Toward a Girsanov transformation

Let us go back to our stochastic setting, where z = X stands for a H-fBm. The aim now is to translate the
previous results at the level of the underlying Wiener paths, so as to construct the expected coupling (W, W)
on [7g, Tk + 1] via a Girsanov-type argument. To this end, we will deduce from Theorem 6.4 how to build an
appropriate drift function g,, for the hitting objective to be achieved. This property is the topic of Theorem
6.7 below, that we write (without loss of generality) with 7, = 0. Just before we state this result, we need
to specify, through the following technical lemma, how the Wiener space can be somehow ’decomposed’ in
accordance with the past-innovation splitting (4.26).

Let us recall that we have fixed H € (3, %) and v € (3, H) for the whole section. Besides, in the sequel,
we will indifferently denote by Py, and call the Wiener measure, the Wiener measure on C((—oo, O];Rd)
(reversed Brownian motion), the Wiener measure on C([0, 1];RY), as well as the law of a two-sided Brownian
motion on C((—oo,1];RY).
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Lemma 6.5. There exist two spaces 2 < C(] — 0,0];R?) and Q4 < C([0,1];R?) of full Wiener measure
such that the following properties are satisfied:

(i) Let Dy be defined for every smooth compactly-supported ¢ :] — 0, 0] — R vanishing at 0 by

Dxo(t) == any J_OOO ((t — r)H_% — (—T)H_%) dp(r) ifte(0,1]

and Dxp(0) = 0. Then Dy extends to Q_ as an application with values in 83. Besides, for every
w_ € Q_ and every bounded function g, :] —0,0] — R? with compact support, the path W_ :=
w_ +§ g, (s)ds still belongs to Q_.

(i) Let ’D;} be defined for every smooth compactly-supported ¢ : [0,1] — R? vanishing at 0 by

t

DEo(t) = aHL(t—r)H*%dw(r) tefo.1].

Then DY extends to Q4 as an application with values in C7([0,1];RY), and for every wy € Q4, Dhw,
can be canonically lifted into a rough path £(DYw..), in the sense of Definition 2.2. Besides, for every
wy € Q4 and every continuous g, : [0,1] —> R?, the path @4 := w, + §o 9 (s) ds still belongs to Q.

(iii) For every e > 0, it holds that
Pw(ws € Q4 @ |S(DRws)

|’Y§[071] < E) >0.

(iv) Set Q:={w_ vuwy: w_eQ_jw, €Qy}cC(]—o0,1];RY) and for every w = w_ L wy € Q,
Dxw :=Dyw_ + Djwy .

Then Dxw belongs to CY([0,1];RY) and can be canonically lifted as a rough path, in the sense of
Definition 2.2. Furthermore, as a random variable on (Q,Pw), Dx has the law of a fBm of Hurst
index H.

(v) It holds that ©_1(Q) < Q_, where © stands for the shift operator, that is ©,(w); = Wity

Proof. Let us fix € € (0, H — 7).

(i) Note first that, using an elementary integration-by-parts formula, D can be equivalently defined as

1 O
Dyo(t) = ay (H - 5) J ((t _p)H-R (—T)H-%) o) dr ifte(0,1] (6.88)
— 00
and Dy p(0) = 0, for every test-function ¢ vanishing at 0. Then fix ¢/ > 0 and consider the subspace
Q_ :=C. o of paths w_ : (—0,0] — R? which are (3 — ¢)-Holder continuous on compacts intervals, vanish
at 0, and satisfy
w_(t)

t——00 |t|%+8’

Owing to some classical properties on the Wiener process, this subspace is of Wiener measure 1 for any fixed
¢’ > 0, and from (6.88), it is easy to check that Dy continuously extends to Q_, as an application with
values in 5,3. Indeed, for every test-function ¢ vanishing at 0, every k > 1 and every t € (0, 1], it holds that,
for some constant ¢, = 0,

(Do) P (1) cpthTY

0 3
| =t omar

—1 0
< k{ [ e=nritemiar o | <t—r>H-3-k|w<r>|dr}

o -1

lo(r)] Jl dr k— JO He1—k—

< - oty t— €d
N (ilpuﬂéw e e ) '

o(r)]
< 1l -

re-t [r[E
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(ii) Just as above, note that D} can be equivalently defined as

1

Dio(t) == app(t) =7 + ay <H - _) J (t = )72 (o(t) — (r)) dr if t e (0,1] (6.89)

2) Jo

and Dy p(0) = 0, for every test-function ¢ on [0, 1] vanishing at 0. From this expression, it is easy to check

that, as a map with values in C?([0,1]), D% continuously extends to the (full-Wiener-measure) space Q.
of (3 — e)-Hélder paths on [0,1] which vanish at 0. We can also check that the covariance function of the

Gaussian process DY, : (€4, Pw) — C7([0,1]) so defined satisfies the conditions of [12, Theorem 15.33],
which allows us to assert that the subspace
Q= {wJr € £~2+ : Dfw, can be canonically lifted as a y-rough path}

is of full Wiener measure. Finally, the stability of Q2 through the transformation wy — wy + §; g} (s) ds
follows from the definition of §~2+ and the result of Proposition A.1.

(#4¢) By [12, Theorem 15.60] (and using the terminology therein introduced), the assertion reduces to show-
ing that the Gaussian process D% : (Q4,Pw) — C7([0,1]) satisfies the complementary Young regularity
condition. It turns out that this specific result has been proved in [10, Example 2.11], which immediately
yields the conclusion.

(iv) Tt holds that £} = C7([0,1]), and so Dxw does belong to C7([0,1]), for every w € Q. The fact that it can

be canonically lifted as a y-rough path follows from point (ii) (that is, we can lift D%w,) and Proposition
A1 (due to Dyw_ € £2). Finally, when dealing with a two-sided Brownian motion W on (—o0, 1], and

starting from the explicit formulas (6.88)-(6.89) for Dy and D, we can apply Ité formula to identify DxW
with the Mandelbrot-Van Ness transformation of W.

(v) Tt can be immediately checked from the previous constructions. (]

We will also rely on the following inversion formula, borrowed from [17, p. 741]:
Lemma 6.6. Let H < 1/2. Let w_,W_ € Q_, wy, W4 € Q4 be such that
W_ = w_ +J gy (8)ds , Wy =wy +J g5 (s)ds
o 0
and .
D@ o = Dx(w- Lws)o + [ at(s)ds
0
where g : (—0,0] — R? is a bounded function with compact support on (—0,0) and g;"v,g;r( . [0,1] — R?
is also bounded. Then it holds that g“; = ’H(gv_v,g;}) where
tzH(—s)H 2

t—s

=

[[ =9+ 0at5)a5)

0
H(g1,92)t := le
—00 0

d
g1(s)ds + QHE (
¢

= OlRogl(t) + Cy L (t — S)i

N

“Hgo(s)ds .

The above formula can be interpreted as follows: in the spirit of (4.34), the second term of H(g,,,g%)
corresponds to the the drift on the Wiener component induced by the “fractional drift” g} whereas by
Lemma 4.1, the first term is the drift on the Wiener component on [0, 1] which ensures that, given a past
g, the corresponding fractional drift is equal to 0.

In the next statement, we denote by ®(a;x) the unique solution on [0, 1] of the rough equation

dys = by)dt +o(ye)dxy , yo=a,

understood in the sense of Definition 2.3. Let us recall that b and o are assumed to satisfy Hypothesis (H1),
so that the above equation indeed admits a unique solution on [0, 1].
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Theorem 6.7. Fiz two parameters K,a > 0, as well as a (K, «,v)-admissible state 7 = (a,a,w_,W_) €
(R%)? x Q2. Also, consider g, :] — 0,0] — R? such that @_ = w_ + {_ (s)ds. Then there exists an
application A = A : Qy — Q. such that:

o Jw
(i) For every wy € Q4 and every t € [0,1], Awy): = wi(t) + Sé g (wy,s)ds, for some (Gt)sefo,1]-adapted

function g*

(i1) There exists a positive constant dx depending only on K such that

Py (wi € Q : ®(a; £(Dx (w- wwy)))1 = ®(@; £(Dx (0- 1 Alwy)))1) =k -

(iii) A is bijective with inverse A= satisfying A= (wy ) = w4 () + Sé g (wy,s)ds, for some (Gt)iefo,1]-
adapted function g,

(iv) There exists Cx > 0 depending only on K such that for Py -every wy € Q4

1
| P+ lgs o sy ds < e
0

(v) For every fized wy € Qy, consider the function g,, (wy,.) :]—o0,1] — R? defined as g, (w4, t) = g, (t)
ift <0 and g, (wy,t) = gt (wy,t) ift € (0,1], and denote by gx (w4, .) the image of g, (wy,.) through
the transformation (4.35). Then there exists Cx > 0 depending only on K such that for Py -every

w4 € Q+,
sup lgx(wst)] < Crc -
te[0,1]
Proof. Set h,, = Dyw_ and write, for every wy € Q, z,, = £(Dfwy) (see Lemma 6.5(ii)).

7 1th the notations o eorem 6.4, consider the function gx : x 10,1 — iven by
With th i f Th 6.4 ider the f ion gx : Q4 0,1 R? gi b
1
gX(era t) = 70’((%5(1))71 J d77 @K(]t(n))v with (yvj) = \I/V1 ((a7 &)a PK, (hw7 ; Zw+)) . (690)
0

Then, with the notations of Lemma 6.6, we define A as
t
A(w+)t =Wy (t) + f H(gv_vng(w-H ))S ds = T(w+7H(gV_V7.gX(w+7 )))t , te [07 1]
0
(i4) By the very definition of H, we have, for every w; € Q,

Dx (- 1 A(w+))jo,11 = Dx (w— 1w )jpo,1] +J gx (w4, s)ds .
0

Besides, by the admissibility condition, we know that ||k |1,y < K and max(|al,|al,|a — a]) < 2K.
Therefore, we are exactly in a position to apply Theorem 6.4 and deduce the existence of a positive constant
My > 0 such that

Py (w4 € Q4+ ®(a; £(Dx (w- Lwy)))1 = Y(a; L(Dx (D- u Alwy)))1)

= Pw(ws € Qy : 2w, [ly;0,17 < Mk) -
The conclusion now comes from Lemma 6.5, point (ii4).
(i47) Set hg_ := Dyw_ and with the notations of Theorem 6.4(¢i), define, for every wy € Q,
1

gx (wy, 1) == U(?Jt(l))_lj0 dn ok (je(n), with  (7,J) == Py, ((a,8), K, (ha_ Zw.)) -
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Then consider the application A : Q, — €, given by

A(wy)r = wy () + L H(=9y» 9x (Wi, ))s ds = Ti(wy, H(=gy,, gx (wy, 1)) -

Let us check that A is actually the inverse of A, by showing first that A o A = Id. To this end, fix wy € Q
and set wy = A(wy) = T(wy, g (wy,.)), where, according to (i), gt (wy,.) := H(g,,,9x(wy,.)), with
gx (wy,.) given by (6.90). Then consider the functions G, = {* g, (s) ds and G, (wy,.) := §; g} (wy,s) ds
(defined respectively on (—o0, 0] and [0, 1]), so that, by construction,

Zoy = 2w, + DE(GT (wy,.) .

Thus, using Corollary A.2, we get

\I]V1 ((a7 a)v PK, (huw;, y Z1D+)) = @Vl ((a, 6), PK, (hﬁ), + D}(Gj‘/ (w+7 ))7 zw+))
= Uy, ((a,d), ¢x, (hw_ + DG, + ’D};(G; (Wgs.)) B, ) - (6.91)

At this point, observe that by the inversion formula (4.35), one has for any ¢ € (0, 1],

% (Dx G, + DG (wy, ) (t)

d (° 1 _1\ - U
—ang ([ (=9t - o) @+ [ -9 oy ax (). ds)
t \J-w 0
= gX(w-ﬁ-at) .
Therefore, hy_ + D1Gyy, + D2G, = T(hw_, gx (wy,.)), which, going back to (6.91), gives us

\ile ((CL, a)v PK, (hﬂu )y L )) = \ile ((av a)a YK, T(hwf ) gX(era ))a Zyw, )) .

We can now apply identity (6.85) to assert that

\I/VI (((L, a)v PK, (hw7 ) Z717+)) = \IJVl((aa a)a YK (hwf ) Zw+)) )

which readily entails that gx (@,.) = —gx(w4,.). The conclusion is immediate:

Awy) = T(wy,H(—g,,,9x(Wy,.)))
= T(wi, H(gy s 9x (W) + H(=gy» gx (W4, .))) = T(w4,0) = wy .
The fact that A o A = Id follows from symmetric arguments (by using (6.86) instead of (6.85)).
(tv) Let us recall that

t

gy (W) = H(g,, . gx (w, ) = Cr(Rogy ) (t) + Ca JO (t=s)" 2 Mgx(wy,5)ds .

The desired uniform bound on the L?-norm of g;f(w,,.) then follows from the admissibility condition,
Hypothesis (H3) and the definition of px. The same arguments can be used for the bound on the L2-norm

of gIJ/E/(w-H )

(v) Just as above, it is an immediate consequence of Hypothesis (H3) and the definition of .

6.3 Achievement of Step 1
As a conclusion of this section, we obtain the following result.

Proposition 6.8. Assume (H1) and (H3). Let o be a positive constant. Then, for every K > 0, there

exists a positive constant Cx such that for each k = 1, (W, W) can be built on [Ti—1,Tk—1 + 1] in such a way
that the following properties hold:
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(a) There exists 5 > 0 depending only on K, o and ~ € (1/3, H) such that for all k > 0,

~

]P)(YTJC71+1 = ff‘rk71+1|Ak(Kao‘a’7)) = 50'

(b) Ifw € Ak(Ka 0557)7 suptE[O,l] |gX(t + Tk*1)| < CK

(c) {7 g w(8)|?ds < Ck a.s.

Tk—1

Proof. At the price of a change of variable, we can assume that 7,1 = 0. Then, with the notations of
Theorem 6.7, let m denote the current state and let A denote the related coupling function. Let Py, denote
the Wiener measure on [0,1] and A*Py, be the image measure of Py, by the mapping A. By Girsanov
Theorem, A*Py (dw) = Dp(w)Pw (dw) where, with the notations of Theorem 6.7,

Daw) = exo ([ g3 . s)du(s) — 3 i ot sas). (6.92)

The construction of the coupling then follows the lines of [17] and [9]. For the sake of completeness, one
however recalls the principle below.

First, if w ¢ Ak (K, «,7), one does not attempt Step 1. In other words, in this case, g, = 0 on [75—1, Tk—1+1].

Second, assume that w € Ak (K, a, ). For positive measures p1 and po with densities Dy and Ds with respect
to another measure p, denote by u1 A po the measure defined by (p1 A p2)(dw) = Di(w) A Da(w)p(dw).
With the help of the invertibility of A proved in Theorem 6.7, we define a non-negative measure P; on
C([0,1],R%)? by

P1 = %AT]P)W N A;]P)W
where A; and Ay are the functions a.s. defined on C([0,1],R%) by
Ar(w) = (w,A(w)) and  Az(w) = (A (w),w).

Let us recall here that, even though this is not suggested by the notation, P; strongly depends on the current
state 7 (via A). By construction,

AT]P’W(dwl, d’LUQ) = 1{(A71(w)yw)}(w1, ’LUQ)DA(U))]P)W (dw),

where Dy is defined by (6.92). This implies that P satisfies
1
Pl(dwl,dUJQ) = 51{(A—1(w)7w)}(w1,UJQ)(DA('LU) A\ I)Pw(dw) (693)

Write S(w1,ws) = (w2, w1) and denote by f’l the symmetnzed” non-negative measure induced by Py,
P, := Py + 5*P;. We then define the coupling (W, W;’“ Y= Wipr, — Wryo 17Wt+m L= Wfkfl) as
follows: N N R

L((W;kil,wg—kil)te[o)l]) =P+ A*(]P)W — HTPl) =P+ Py

with A(w) = (w,w), I; (w1, ws) = wy and Py = S*P + A*(Py — H]“f’l). Using (6.93), we check that for

nonnegative functions f,

~ 1

Py (f) < 5 [ (74 @)Dalw) + F(w) P (dw) < Pw(£),

hence Pj is the sum of two non-negative measures. Thanks to the symmetry property of P, and to the fact
that II; o A is the identity, one can also check that the marginals of P; + Py are both equal to Py .

Statement (b) is a direct consequence of the last statement of Theorem 6.7. For (¢), the result is obvious
if wé¢ Ap(K,a,v). Otherwise, the construction of P; + Py implies that one has only three possibilities:
we = A(wy) or wy = A1 (wy) or wy = wy (so that g, = 0 in this case). Thus, the property follows from the
fourth statement of Theorem 6.7.
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Lower-bound for the probability of coupling: We deduce from Theorem 6.7 that
P(Yr, 141 = Yo 1lA(K, 0,7)) = [1rxaw)Pilrv

with R := {(w, (y™* (1) = g™ (1)}, where (y™*,y™*(®)) stands for a coupled solution to the SDE on
[0, 1] with initial condition 7 and couple of Wiener innovations (w, A(w)). By Theorem 6.7 , there exists a
positive § depending only on K such that Py (R) = 4.

Now, by (6.93) and Lemma C.1. of [23] (applied to p = 2, u; = A*Pyw, g2 = Py and X = R) we have

[SA(R) Da (w)PW(dw)] i
4 SA(R) D (w)?*Pw (dw) -

Mrxar)Pilry =
Following the lines of the proof of [9] (Lemma 3.1) and using that w — g(w, s) is bounded by a constant
depending only on K, one deduces that
|1z «am)Pilrv = C[Pw(R)]? = C8 > 0.

7 About Step 2

As explained before, Step 2 is a series of trials on some intervals I, of length co2¢ (the first one of length 2c,
the second one of length 4cs,...). We denote by s ¢ the left extreme of each interval I,. More precisely, for
every k > 1, we define (sx.¢)e=0 by

Sk0=5k1 =Tk—1+1 andforevery { =1 Spp1 =58ke+ 2" (7.94)

Also denote by £} the (first) trial after time 7;,_; where Step 2 fails. The case £} = 0 and ¢} = 400 correspond
respectively to the failure of Step 1 and to the success of Step 2. For some given positive a and K, we set

By = Ap(K,a,y) A (05> 0}, k>1, (>0 (7.95)
With this definition,
- +o0
P(7i = +0 | Ap(K, ,7)) = P(Yo,_, 11 = Yo, 1| Ak(K, 0,7)) | [ P(Bkt|Br.e—1). (7.96)
=1

Consequently, the aim is now to lower-bound P(By, ¢|Bj ¢—1). The scheme of coupling being identical to [9], we
only state the result. To this end, let us introduce some notations. Owing to the one-to-one correspondence
between g, and gx, there is a unique choice for function g,, in [rx—1 + 1,0) which ensures that gx(t) =0
after 7,_1 + 1 (or equivalently that Y; = lN/t after 7,1 + 1). We denote it by g,:

LEMMA 7.2. Let K > 0 and assume that . € (0, H). There exists a constant C'x > 1 which does not depend
on k such that,

+00
J (1 +1)2¥gs(Th1 + 1+ 1)|?dt < Ok.
0

Then, (W, W) can be constructed during Step 2 in such a way that for all £ > 0 and ¢ > 2,
ok <SP(Bra|Bro) < p%k and (1 —p327%) < P(Byy|Bry1) < (1 —p%272 (7.97)

1
where pl, p% € (0,1) do not depend on k and p3 = c; *v/Ck. In particular, if co = CZ%, p3 = 1 and in
this case, if 2 < £} < +00 one has

Sk, 0¥ 1 9 9 Skt 2 —2al
J lgw ()]7dt < (2065 + 3))* and for all £€ {2,...,0;}, J lgy, (0)|7dt < 27°%°

S S —
ko0 ke—1

while if £ =1, Sz:f |9 (8)2dt < C%, for some finite constant C'.
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REMARK 7.5. Going back to (7.96), the lower-bounds in (7.97), combined with the result of Proposition

6.8, ensure that
P(7 = +o0 | Ap(K, o, 7)) > 0.

The other properties will be needed for the sequel. Note that ¢y can be chosen in such a way that the
involved quantities do not depend on K except if £ = 1.

8 (K, «,v)-admissibility condition

In this section, we assume that Steps 1 and 2 are carried out as described previously, and the aim is to ensure
that the system is (K, «, y)-admissible with positive probability at every time 7. This is the purpose of the
next proposition:

Proposition 8.1. Assume (H1), (H2) and (H3). Let (Y;,Y:)i=0 denote a solution to (4.30) with initial
condition i satisfying (4.31) and (4.32) and such that there exists r > 0 for which §|z|" po(dz, dw) < +c0.
Let o € (0,1/2). Assume that for each K > 0, co defined in (4.36) satisfies co = C’f’fa (where Ck is a
constant greater than 1 defined in Lemma 7.2) and that for every k = 1 and £ = 0, As(¢, k) introduced in
(4.42) is defined by Az(4, k) = c3a,25¢ with B > (1 —2a)7Y, ai, = ¢* for some (arbitrary) fized s > 1, and
cs an appropriate constant depending on the previous parameters. Then, for every e > 0 and v € (1/3, H),
there exists K. > 0 such that for every k = 0,

P(Ak+1(K€,a,7) ’Tk < +oo) =>1—c.
where Ap+1(K, «,7) is defined by (4.40). More precisely, for every k = 0,
+o0
P (supj (L+ 1) ((Rrlglk|)(t)*dt < 1 ‘ T < +OO) =1, (8.98)
T=>0Jo

and

P (|Yfk (@)] + [V @) + [IDT (W) 1 + DT (W) 15 < K-

T < —|—oo> >1-e. (8.99)

The last two statements refer to the two admissibility conditions introduced before.

The proof of (8.98) is identical to the one of Proposition 4.6 of [9]. Thus, we do not reprove it in this paper.
However, it worth noting that the condition 8 > (1 —2a)~!, which is of first importance in the upper-bound
on the exponent of the rate, appears in this proof.

We thus focus on the second admissibility condition and thus, on the property (8.99). Using that for every

events Ay, A2, Az and Ay, P(n?_ A4;) > Z?Zl P(A;) — 3 and the Markov inequality, one can easily check

that it is enough to prove that there exists C' > 0 independent of K such that,

iuplE[HIDT’“(W)IHmIm < +u] <C, iupE[IHDT" (W) |7 < +o0] < C (8.100)
=0 =0

and that there exists p > 0 such that

supE[|Y;, [P|7 < 40] < C and  supE[|Y;, [P|m < +o0] < C. (8.101)
k=0 k=0

We focus successively on these two properties.

8.1 Admissibility and Lyapunov bounds

In this subsection, the aim is to prove (8.101). This property will be obtained as a consequence of the
Lyapunov control established in Theorem 3.4 combined with the control of the law of the noise conditionally
to the failure of the previous attempts. The result is given below:
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Proposition 8.2. Let v € (1/3, H) and suppose that the assumptions of Proposition 8.1 hold true. Then,
there exist some positive constants C' and p > 0 such that for every k € N U {0} and K > 0,

E[|Y;[P|E] < C and  E[|V,|P|&] < C. (8.102)
where & = {1, < 400} = {1y < +00,¢ < k}.
Proof. Since the arguments are identical for Y and }7, we only prove the statement for Y. By Theorem 3.4,

for every t € R,
8

3v—1

Vi < e PPy + c{1+ XD} with pe= (8.103)

where X is defined by X{" = X,,, — X;, s > 0. By the elementary inequalities lu+ v|P < |ulP + |v|P for
p € (0,1], applied with p = £, we deduce that there exist p € (0,1) and C' > 0 such that for every t € R,

D
Yiea|P < p|Vil? + C{1+ | XD, 2}, (8.104)
An induction yields
ATk—l up
Yo P < o2 Yo P+ € 3 pAT (L X O,
£=0

First, since A7y > M, we deduce that pA7 < %1. Thus,

log p
51 ) +0o0 AT up
B[y, 1€x] < SE[PE I +C 3, p" + CE | ), pt X0, 2 e,
u=0 £=0

Since &, < Er—1 and P(E;|Ek—1) = 61, E[| X7, [P|Ek] < 51_1E[|X7k71|p|5k,1]. It follows that

1 c N (rh140)) T
E[IY:, P1€66] < GBIV ikl + 7= + CELY, p7 /X0, ¥ gy]
=1
and by induction,
sup E[|Y7, '1€4] < E[[¥-, 6] + C, = E[Yol"] + C.
>
where
ATk up
Cpi=supE | ' pA7 XMt 0| 2 g | (8.105)
k=1 | =0

On the one hand, if p < 7, E[|Yy[?] = §|z[Pdpo < 4o (For Y, one knows that E[|Y;|P] < +o0 for every p > 0
since the invariant measure has moments of any order). It thus remains to show that there exists a choice
for p such that C, can be bounded independently of K. This result is achieved in Proposition 8.4 below.

O

8.2 Bounds for the memory component of the fBm

The aim of this section is to prove (8.100), i.e. the part of the admissibility condition involving the components
D and D of the fBms X and X. Let us remark that (D(7))’ is well-defined and satisfies:

O =au (-3) [ @rr-ntaw.
-0

Set Y
Dy ,(t) = J t+7-— T)Hf%dWT.
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For k > 1, we thus decompose D(™) in a series of terms depending on the sequence () o

k—1
(DY, = ay (H _ %) (D:kooo( )+ Z DI Tm(t)) ' (8.106)

m=1

The idea of the sequel is to control each term of the right-hand side separately. We begin by a simple lemma:
LemwMA 8.3. For every u < v < 7, for every ¢t > 0,

DL (1) < C ((t L | A UA RS (TR Lo A dT) |

u

Proof. This result is a straightforward consequence of an integration by parts. O

We now state some controls related to the decomposition (8.106).
LEMMA 8.4. Assume that there exists §; > 0 and o > 0 such that for all k,/ € N* and K > 0

P(Ek|Ek—1) = 61 >0 P(Fr|lEk—1) < 27 and AT = ag

where (a)r>1 is a deterministic sequence such that ay, = 1 for every k > 1. Then, for every ¢ > 1 v € (0, H)
and € € (0,1 — H), there exists C'€ R¥ such that for every k > 1 and every m € {1,...,k},

(S @ v DF 14

5§k7m)(17%)

[(m . 1Tm|||1;'y)q|5k] <C

REMARK 8.6. The assumption on P(Fy ¢|Ek—1) is ensured by Lemma 7.2 (when ¢z is chosen correctly).
Actually,
P(FrelEx—1) < P(B 4| Bre—1) < 27

Proof. Step 1. The aim of this step is to “make deterministic” the duration of Attempt m and to go back to
a conditioning by &,,_1. First, remark that on the event F,, ¢, ATy, is deterministic. Denote it by A(m, ¢).
One can thus check that for a given non-negative random variable depending on 7, denoted by R,

E[R7m|5m] = Z E[erfl-i—A(m,f)|Fm,l]P(Fm,l|gm)-
£=0
By the Cauchy-Schwarz inequality and the fact that F},, ; < £,,—1, one can check that
E[R:, i +a0m,01F,|Em-1]
]P)(Fm,dgm—l)
E[R72'm—1 +A(m,€)|5m*1] %]P)(Fmﬁdgmfl)i%'

E[RTm,lJrA(m,l) |Fm,€] =

N

Since Fi, ¢ < Em < Em—1, one checks that

_ P(Fm,€|gm—l)

FEndlen) = )

so that

E[R,, |Em] <077 DIEIRZ | amp|€m—1]7P(Fomelém—1)®.
£=0

Under the assumptions of the lemma, we deduce that

,; ar N
[ Tmlg : Z 2 ¥ E Tm 1+A(m,0) |gm 1]2
£20
so that )
E[R, [Em] < OiggE[R Ay Em—]? (8.107)
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Finally, since & < &,,, a similar argument as before implies that for a given random variable S, for every p
and ¢ > 1 such that p~t + ¢~ ! =1,

1
_ E[ISPIEn]

[E[S|E]] < . (8.108)
P(ExlEm)!
Using that P(Ex|&,,) = 68~™, we can conclude this step with the following control:
(k=m)(1—72) 2% L
E[R,, |&] < C§ sup E[| R, s A(m,0)|F|Em—1]77. (8.109)

£=0

where C' depends on « only.

Step 2. Case m < k. Let e € (0,1 — H) and v € (0, H). By Lemma 8.3 and the fact that A7, > a, for
every v € N, we have for every t € [0, 1],

k H—1+¢
sup t'7YDIE (1)) < C( Z av) R, (8.110)
te[0,1] e v=m+1
with .
R, = (T — Tm_1) 2 ¢ W, = Ws,. |+ J (14 7o — 1) 2 |W,, — W,|dr.
Tm—1

Since S:::,l I+7m—7)"1°<ec = #E, one can first check by the Jensen inequality that

Tm—1 Tm—1

P
Tm Tm P
(J (14 7o — )" 2| Wy, — W, dr) < csvpf (147 —r)"17¢ ((1 T — )2 Wy, — WT|) dr.

Then, it follows from the scaling property of the Brownian motion that

E[|R7m,1+A(m,E)|2P|gm—l] <C

where C' depends on € and p only. The result then follows (in this case) from (8.110) and (8.109).

Step 3. Case m = k. In this case, we cut the interval [7x—1, 7%] in two parts [7x—1, 7 — 1] and [7 — 1, 7]
On the one hand, the fact that

p
E[(ID7, allin) 18] < C

independent of K, follows from similar arguments as in the previous step. On the other hand, for |7 — 1, 7%],
applying (8.107) leads to the inequality:

E [(mD;"—:fl,Tk |||1;w)p |5k] < CiggE[Rik,ﬁA(m,éﬂgkfl]

with Ry, := (|ID7F_, .. | 1;7)]0. But, owing to the independence of the increments of the Brownian motion,

one can check that for every ¢ > 0,

E[R2,_ s aemol€-1] = E | (D% oll1)" ] (8.111)
0 s p
=E| sup tl—WJ (t—rzdaw,| |. (8.112)
te[0,1] -1

But by Lemma 8.3 and the fact that for every r € [—1,0), t=7 < (¢t — r)!~7, one checks that

0 0
tlﬂf (t—r)f=2aw, <c<|wl|+f (tr)H_g_”|WT|dr>.

Since H — 3 — v < 0, we have for every t € (0,1] (¢t — rYH=3=7 < (—r)H=2=7. This implies that
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Since v < H, one can proceed as at the end of Step 2 by making use of the Jensen inequality with respect
to the the finite measure (—r)#~1=71 1y(—r)dr to obtain

P

0 0
E [ sup tl_WJ (t—r)"=32aw,| | <C (1 +J (=) 1VE[(—r) "2 |Wr|p]dr> < C < 4.
—1 -1

te[0,1]

This concludes the proof. O

Proposition 8.3. Suppose that the assumptions of Lemma 8.4 hold with ay, = ags® for some ¢ > 1. Then,
for any v € (0, H), there exists a constant C > 0 such that for every k > 1,

sup E[|| D™ (W) |15 |7 < +00] < €, sup E[| D™ (W) 15|17 < +0] < C.
k=0 k=0
Proof. Once again, we only prove the result for W. First, assume that & > 1. By the decomposition (8.106),

E[[[D™ (W) |

k
1y [Ek] < C (E[HDT%,O 17 [Ex] + Z E[D7E_, -, 1y |gk]> .

(=1

On the one hand, by the assumption on ag, one remarks that for every m € {1,...,k—1}, Zif:m“ ay = aosk.
By Lemma 8.4, one deduces that

k

K B Gmm(-) (H-1+e)
SUE[IDE o ey 18] < C 14 HH-1 Y <—) <ol [
= ' 51 6;76

m=1 m=1

Using that H — 1 4+ ¢ < 0, one then checks that for ¢ large enough,

<(H—l-&—a)

~x

1—1
q
61

so that there exists a constant C > 0 such that

k
Z EH”’DZZ,I,TM |||1w |5k] <C.

m=1

Let us now focus on [[|D™ o[l[1;y with & > 0. In this case, one deduces from (8.108) and from a variant of

Lemma 8.3 with u = —co and v = 0 (involving the fact that lim,_,_, uf~2|W,| = 0 a.s.) that for every
k=0,

Th k(1=3) 1=y ’ H—-3 7
BP0 0 iy [Ek] <6, “E | sup ¢ (t—r)" "2 [W_[dr :
—©

te(0,1]
3 5,;(1,%) E [(I;(_T)H_%lW_AdT’)p] +E l(Jol(—r)H_l_”(—r)_%W_r|dr)p1%

The control of the two above terms follows from similar arguments as in Steps 2 and 3 of the proof of Lemma
8.4, involving Jensen inequality and the scaling property of the Brownian motion. The result follows. O

1
P

In the next proposition, we now states a result which achieves the proof of Proposition 8.2 (see (8.105)).

Proposition 8.4. Let p € (0,1). Under the assumptions of Proposition 8.3, there exists ¢ > 0 such that

AT;C
supE lZ pmk—e <|‘X(rk71+e)||'qy + HX(TkAM)Hgy) ngl < 400
k=1 | ;2
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REMARK 8.7. In fact, the result could be proved for any ¢ > 0. For the sake of simplicity, we only state
the result for a given ¢ > 0, which is sufficient for our purpose.

Proof. As in the previous results, the proof is identical for X and X. We thus only focus on X. By (8.107),
one first obtains that

ATy, L, PR A(Lk) Al et \2 3
E[ Y o2t (X0, ) Jeg <Csuwp 3, pOE (1x =0, ) ey
£=1 =5 U=1

Nl=

<

szuz?E [HX(nﬁlH) ||3q|5k71]

Second, by Corollary A.3,
|XCE D), < O+ |20+ F92 4 DO ) (8.113)

so that taking ¢ = 1/4 and using the elementary inequality |u + v|P < |u|P + |v|P for p € (0,1] and u,v € R,
we obtain that

SZUEE [|\X(m71+4)”3¢1|gk71] < SéuI?EI:HZ(Tk—l*FE) Iy |Er_1] + SZUIE)EHHD(Tk—l*Fl) s 1Ex—1]-

Owing to the stationarity and the independence of the Brownian increments, it is clear that
E[| 219, |Ex-1] = E[|Z],] ,

where the latter expectation is known to be finite (see [12, Theorem 15.33]).

Second, similarly to (8.106), one remarks that

T 1 Tr—1+4 Tr—1+4
(D( HM)(t))/ =y (H — 5) (Dfao,lm,l(t) + DT:,LT,C,IM(U) ,
the first and second terms being respectively F;, ,-measurable and independent of 7, ,. Then, on the one

hand, the fact that

E| sup #0[DI ()] 166
te[0,1] ’

is uniformly bounded in ¢ and k£ can be proved by following the lines of the proof of Lemma 8.4 and of

Proposition 8.3. More precisely, the idea is to use a similar decomposition as that of (8.106) and to control

each term with the help of Lemma 8.3. But since the right-hand term of this lemma decreases with 7, the

dependency in ¢ can be managed as follows: for every ¢, for every u < v,

D ()| < © ((t + Ty — )5 (W, — W +f (t+ mh1 — 1) H=3 W, — W, | dr) ,
which implies that the sequel of the proof is almost identical to that of Lemma 8.4 and of Proposition 8.3.

Let us finally focus on D:::ti,l +¢(t). Using independency and stationary properties of the Brownian motion

and Lemma 8.3, we obtain that for every ¢ > 1,

¢
< CE

—00,Tk—1
te[0,1]

E [ sup t'7 ”D”’ﬁe (t)‘ |Ek—1
te[0,1] 0

sup t177 ((t+€)H_%|Wg| +f (t+£—r)H_%|WT|dr>] :

For the first term, it is enough to remark that ¢'=7(t + £)2~2|W,| < (¢)~2|W,| whereas for the second one,
one cuts the integral into two parts and the following inequality holds:

Y —1
t“VJ (t+€— )2 |W, — Wyldr < J (€ =) 22| = r) =3 (W, — Weldr
0 0

4
+ J (6 —r) T2 (0 = 1)~ 2 |W, — Woldr.
—1
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Note that for the second term, we used that for every r € [¢ — 1,¢], for every t € (0, 1],
R R A R N O AR (/s Lt

The (uniform) boundedness of E [SUPte[o,u tt= ‘DT’C“H (t)‘ |8k,1] follows. O

—0,Tk—1

9 Proof of Theorem 2.5

Let « € (0,1/2). We enforce the assumptions of Proposition 8.1. Assume that Y and Y have initial
distributions po and p respectively, where p denotes an invariant distribution. First, denoting by f its first
marginal, we recall that §|z|"fi(dz) < +o0 for any positive 7. It is therefore enough to show that for any
initial condition i of (V,Y) satisfying (4.31) and (4.32) and such that 1o (|F|") < 400 for some r > 0, we
have for each € > 0 the existence of a C. > 0 such that P(14 > t) < C.t—(—9).

Set k* := inf{k > 1, A1, = +0}. Using that 7y = 0, we have

+00

]P)(Too>t ZATklk*>k>t)
k=1

Let p € (0,a/8) < (0,1). By the Markov inequality and the elementary inequality |u + v|P < |ul? + |v|?,

+00 1 40
P(Z ATplpssy > 1) < < Z E[[A7g [P1 g1y ]
k=1 k=1
1 +00
< t_p Z E[E[|ATk|p1{A7k<+OO}|]:Tk—1]17'k—1<+00]'

e
Il
—

Let us bound the above conditional expectation. On the one hand, if Step 1 fails (including the case where

we A% o -, G- where Step 1 is not attempted), A7, = 1 + c3s* where ¢ > 1 can be chosen arbitrarily.

On the other hand, by Lemma 7.2, we have for every £ > 2,
P(Fk7g|]:ﬁ,-k71 N {kal < +OC}) < 92—t
Since by construction, Aty < C<*2%¢ (with B> (1 — 2a)™!) on Fj ¢, this yields

+0o0
E[| AT P|L{ar, <oy | Friy 0 {Tms < +00}] < O (Z 2””“”) <G
(=1

Thus, for every p € (0, (1l — 2a)),

ZATklk*>k>t Z(kpp >k—1)
k=1
But
k—1 k—1
P(k* > k—1) = [ [ PEnlém) = [0~ PESIER1))
m=1 m=1

and by Proposition 8.1 the latter applied with (for instance) € = 1/2, we have for every m > 1,

)
(gc |gm 1 (ATm = +OO|AK7a,%Tm71)P(AK,amefl|5m—1) = 50

where Jg is a positive number depending on K 1 It follows that

P(k* > k—1) < (1 — )k

2
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As a consequence,

IS kp * IS pk 50 k—1
DMIPP(R* > k—1) < D¢ (1= )t < 4o
k=1 k=1

if ¢ is chosen in such a way that ¢? < (1 — %0)_1 (This is possible since ¢ is an arbitrary number greater than
1). Finally, for every a € (0,1/2), for every p € a(l — 2a), there exists C' > 0 such that P(ro, > t) < Ct7P.
To conclude the proof, it remains to optimize in a.

Acknowledgements: We are grateful to Martin Hairer for fruitful advices, and to Peter K. Friz for
bringing our attention to the references behind Lemma 6.5(74).

A Singular paths and canonical lift

Let us recall that the space £2([0, 1];R?), as well as the notation ||| f||l1;y, have been introduced in Section
4.1.

Proposition A.1. Let z € C] ([0, 1];R™) be a path that can be canonically lifted into a rough path £(z), in
the sense of Definition 2.2, and let g € 53([0, 1];RY). Then z + g can be canonically lifted into a rough path
£(z + g), and it holds that

NTE(z +9)* = £(2)%C35 ([0, 1 R™™)] < 1+ g T, +N[= 7 ([0, 1;RY)? . (A.114)
Corollary A.2. In the setting of Definition 5.2 (fix 8 :=+), a path y : [0,1] > V is a solution of

dye = B(ye) dhy + X(ye) dL(z + 9): . yo = o ,
if and only if y is a solution of

dyr = [B(yt) dhy + X(y:) dgt] + X(y)dL(2)s ., yo =0 -

Corollary A.3. It holds that

1£(z + 9)]

o) £ L+ 1€ 0,1y + g llT - (A115)

Lemma A.4. Let g€ 53([0, 1]; R?) and denote by g™ the linear interpolation of g along the dyadic partition
Pn of [0,1]. Then it holds that

sup sup  ¢177(g");| < Mgl (A.116)
n te(0,1]\Py
and for every 0 <+ <+, 1ot ' !
sup 7 |(g" — g)l] < gz 27707 (A-117)

te(0,1\ Py

Proof. Pick t € (t},t},,), for some i = 0,...,2". One has

7

— 7

1
_ dr
< |H9|||1w t! WJ n n ny\1—v °
o (EF+rth, —t)

(g™l

= tn 1 |gt?+1 _gt?
i+

Ly Sé A Ifi>1, then £ < 2L < oL =+, and so
1y /)7 < llg 11,y 2177, which completes the proof of (A.116).

If i =0, then ¢ < ¢, —t7 and so t*77[(g™);]| < [llg ||
(g™ < llg |
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For (A.117), note first that if ¢ = 0, then ¢ < 27" and so by (A.116) we get in this case

(" = )il < 27O+ gl < Mg ey 27070
If i > 1, then
1—"1( ’ 1= g / /
N 9kl = {9r — g} dr
L — 4 [ e
1= tr |t —
< gl | u
T =ty ()2
11—y n ny\ 1=(v=7")
t tiv, — L Y
< Ml () (BE) e
i i
As above, we can conclude by using the fact that in this case, one has max (£, 7", — t1') < t7. (|

Proof of Proposition A.1. Denote by 2™, resp. g", the linear interpolation of z, resp. g, along the dyadic
partition P,,. By (A.117), the convergence of ¢g" to g (and accordingly the convergence of 2" + g™ to z + g)

in Cf/([O, 1];RY) is immediate, since

’

< 2*71(7*7’)@ — ).

t ’ 1 d'l"
n__ < no_ o\ < —n(v—") (4 _ f
|5(g g)st' L |(g g)u| du ~ 2 (t S) o (S 4 ’I”(t _ S))lf’y’

Then, by setting x := z+ ¢ and using the notation (2.7), we have the following readily-checked decomposition
t

t t *
N L f (0:") 0 @ dg™ + ( j <6z">ut®dg:z) " f (64™)su ® gt - (A118)

S S S

Now consider the integral Sz (02) su ® dgu, which, due to the regularity of g, can be interpreted in the classical
Lebesgue sense, and use (A.116)-(A.117) to assert that

t t
J (6:") 1w @ dg — J (62)ou @ dga

S S

t t

< [ G- D@ ldgil + [ 162l @ldlg" - 9
n ' d ' |’U, — SP/ v d\19—n(y—") ¢ |U — S|’Y
< N[" = 2;C ([0,1];RY)] = du + Nz C]([0,1];RY)]2 = du
1
’ ! ’ dr

_ gt n_ .o R4 —n(v=7)

<t s N — 2 ([0, 1 RY] + 2 }L e

We can treat the two other summands in (A.118) along the same lines, which leads us to the desired
conclusion, namely N [x2" — z2";C3" ([0,1];R%)] — 0 as n — co. We even get the explicit description

t

(62)su ® dgu + ( f () ® dgu) . Jt(5g)su ® dgn .

S S

S+ 9 - 0% = |

S

With this decomposition in hand, it is now easy to exhibit the bound (A.114): for instance, for every
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0<s<t,

t
f(52)5u®dgu
Elu — 5|7
< gl Mec7(o 3R] [ 2
Nz:¢l ([0, 1]; R? v [ ~ d
< ; ; 1 t—
lg ey AT Q0. R e o+ [
1 1
< gl M€ (@0, i (1= o [ 2ot [ rar )
o’ 0

B Proof of Lemma 5.6

The argument relies on the algorithm introduced in [7, Section 6] and which aims at “removing the points
one by one” between t, and t,41 in a tricky way. First, just as in [7, Section 3.1], and given any (not
necessarily uniform) subpartition IT of P,,, we define the path G as follows: for every s < t € P,

0 if (s,t) "Il =
Ggﬁ = (5G)sut 1f (S,t) M H =1U .
Gut = Gof, = Sy Giinyy — Giyy i (s,8) 0T = {T, .., {4}

With this notation, if s = ¢, and ¢t = ¢441, one has in particular

q
G =G+ Y G, - (B.119)

i=p
As far as the sum is concerned, we have on the one hand, since p; > 1,
q q
ST Gryy | S MG [, t]] - D Jtien — il < MGGy [s 1] - [t — s,

i=p i=p

and on the other hand
q q
H Z Gtiti+1H < Mimul [G7 [[Sa tﬂ] ! { |t;0+1 - S|a + Z ti\_1|ti+1 - ti|#1} )
1=p 1=p+1

with

q q
1 1 1
A1y, Y A
Z A A on(A+ii—1) Z FESYES on(3m—1) la+1=p* S ft—s".
1=p+1 1=p+1

Going back to (B.119), it remains us to bound HGE?tH |. For the sake of clarity, let us temporarily change
the notation by setting, for s,t fixed as above,

k
t =1 — o0 k=0,...,N, where N:=2"(t—s) (=q+1—p). (B.120)
We make this (unnatural) choice to “reverse” the time, that is to consider a decreasing function k — t, in a
such a way that the below notations will be consistent with those of [7, Section 6] (and especially those of [7,
Proposition 6.2]). Consider indeed the algorithm described in [7, Section 6] to remove one by one the points
between 0 and N, and accordingly the points of P,, between s and ¢ (just use the transformation (B.120) to
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connect one with the other). Denote by (II"),,—0,... n—1 the decreasing sequence of partitions of [s,¢] that
is associated with this algorithm. With the notations of [7, Section 6], it is readily checked that

om Hm+1 o HO o |Is,t]] HN—I .
Gst - Gst - (5G)tk+ tem b, — ) Gst - Gst ) Gst =0 )

and so
N-1

Ghid=%» (6G)t, , tit, - (B.121)

m=1

Now, still with the notations of [7, Section 6] in mind, write

M—1 A,
Z 5G k+ tkmt ko - Z { StkAT,1+1tk* + Z (5G)tkj;ltk7n km}
m=0 r=1 Ap—1+1 m=A,_1+2
and so
N
H Z (6G)tk7+ntkmtk;n H
m=0
M-1 Ay
[ « A—1
< NG e ([s, )] - D) {|tkA”H s+ D] b g, — b 2 } . (B.122)
r=1 m=A,_1+2
Observe at this point that
k; _1+1 o
|tkzr,1+1 — S| = |t — S| . ‘1 - T
and
A—1 Apa—1 1 kM + -
O b, — g I < = st T e
Going back to (B.122), we get that
N
H Z (5G)tk7+ntkmt% | <[t = s|* N[6G; C5 ([s, t])] - Qe npes (B.123)
m=0
where we have set
M-—1 k* [e% A, + A—1
N . Ar_1+1 1 km + —
a2 T Z {‘1 - ]\]1 + N2 1-—= |km - kmwz .
r=1 m=A,_1+2

Therefore, we are exactly in a position to apply [7, Proposition 6.2] and assert that supys; QN
The combination of (B.121) and (B.123) then gives us the desired estimate, namely

o <

IGE ) < It = sl MNI6Gs it (I, 4])] -

The estimation of s'~ )‘HGHS ] | is easier. Indeed, with decomposition (B.121) in mind, we simply use the fact
that the above algorithm also satisfies

2N
oy, = P

m|<m foreverym=1,...,N—1,

and consequently
1

N—
R AHG[[St]] < Z 1= )\H 5G

k+ Lk, tk:n H

m=1
N-1
< NG ([s,tD] - ) 1t — s 2 S [t — 8" N0G; C5 ([, ])] -
m=1
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