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Abstract

Background: Genomic prediction of breeding values from dense single nucleotide polymorphisms (SNP) genotypes is
used for livestock and crop breeding, and can also be used to predict disease risk in humans. For some traits, the most
accurate genomic predictions are achieved with non-linear estimates of SNP effects from Bayesian methods that treat
SNP effects as random effects from a heavy tailed prior distribution. These Bayesian methods are usually implemented
via Markov chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of SNP effects, which is
computationally expensive. Our aim was to develop an efficient expectation–maximisation algorithm (emBayesR) that
gives similar estimates of SNP effects and accuracies of genomic prediction than the MCMC implementation of BayesR
(a Bayesian method for genomic prediction), but with greatly reduced computation time.

Methods: emBayesR is an approximate EM algorithm that retains the BayesR model assumption with SNP effects
sampled from a mixture of normal distributions with increasing variance. emBayesR differs from other proposed
non-MCMC implementations of Bayesian methods for genomic prediction in that it estimates the effect of each
SNP while allowing for the error associated with estimation of all other SNP effects. emBayesR was compared to
BayesR using simulated data, and real dairy cattle data with 632 003 SNPs genotyped, to determine if the MCMC
and the expectation-maximisation approaches give similar accuracies of genomic prediction.

Results: We were able to demonstrate that allowing for the error associated with estimation of other SNP effects
when estimating the effect of each SNP in emBayesR improved the accuracy of genomic prediction over emBayesR
without including this error correction, with both simulated and real data. When averaged over nine dairy traits, the
accuracy of genomic prediction with emBayesR was only 0.5% lower than that from BayesR. However, emBayesR
reduced computing time up to 8-fold compared to BayesR.

Conclusions: The emBayesR algorithm described here achieved similar accuracies of genomic prediction to BayesR for
a range of simulated and real 630 K dairy SNP data. emBayesR needs less computing time than BayesR, which will
allow it to be applied to larger datasets.
Background
Genomic prediction uses information from high-density
genetic polymorphisms, such as single nucleotide poly-
morphisms (SNP) panels, to predict the genetic merit of
individuals for quantitative traits. Selection based on these
estimated breeding values could substantially increase the
rates of genetic improvement for quantitative traits in
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animal and plant species [1]. Implementation of genomic
selection is a two-step process: (1) estimation of the effects
of SNPs in a reference population given the phenotypes
and SNP genotypes of reference individuals and (2) calcu-
lation of genomic estimated breeding values (GEBV) for
selection candidates based on their genotypes [1]. If the
SNP effects are random variables drawn from a prior
distribution, the accuracy of GEBV is maximised if, in
step (1), SNP effects are estimated by their expected
value conditional on the data.
Several methods, which differ in the assumed prior

distribution of SNP effects, have been proposed to estimate
SNP effects for genomic prediction. The prior assumption
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that SNP effects are all drawn from the same normal dis-
tribution results in the statistical method called best linear
unbiased prediction (BLUP). BLUP for genomic prediction
can be implemented using two equivalent models [2].
Either the SNP effects are estimated directly, termed
SNP_BLUP (e.g. [1]), or a genomic relationship matrix is
calculated from SNP genotypes, termed genomic BLUP
(GBLUP) [2,3]. Other models assume that the SNP effects
follow a non-normal distribution. For example, in the
model called BayesA, the SNP effects follow a Student’s t
distribution [1], while mixture distributions are used in
BayesB [1], BayesC, BayesCπ [4] and BayesR [5], and
exponential distributions are used in BayesLASSO [6].
With real data and for some traits, GBLUP methods
achieve levels of accuracy of genomic prediction similar to
non-normal distributions methods such as BayesA,
BayesB, and BayesR when moderate SNP densities (e.g.
50 K in dairy cattle; less in some crop species with ex-
tensive linkage disequilibrium) were used [7-11]. As de-
scribed by several authors, GBLUP has the advantage
that it is computationally efficient [12-14]. However, for
traits with quantitative traits loci (QTL) of large to
moderate effect, the Bayesian methods can give higher
accuracies of prediction than GBLUP [15-17]. Moreover,
genomic prediction models that assume non-normal
distributions of effects in some cases give higher accur-
acies than GBLUP when very large numbers of SNPs
(e.g. 630 K or whole-genome sequence data) are used,
particularly for multi-breed and across-breed predictions
[5,18-22]. A disadvantage of these methods, however, is
that it is difficult, if not impossible, to write closed form
solutions for estimates of SNP effects or other parameters,
so Markov chain Monte Carlo (MCMC) sampling is used
to derive posterior distributions for these effects (e.g. [1]).
However, this is computationally expensive, particularly
when the number of SNPs is large. For example, the
BayesB method can result in the highest accuracy of gen-
omic prediction in some situations, but, since it uses a
Metropolis Hastings algorithm, computing time with large
numbers of SNPs (e.g. 800 000 SNPs) is very long. Other
methods, such as BayesA, BayesLASSO, and BayesR, are
usually implemented using Gibbs sampling. While Gibbs
sampling is faster than the Metropolis Hasting algorithm,
it is still slow with very large numbers of SNPs genotyped
in large numbers of individuals.
In dairy cattle routine genomic evaluations, different

genomic prediction methods have been implemented by
different countries and organisations [23]. According to
Mantysaari [23], GBLUP, or its single-step implementation
[24,25], is one of the most popular genomic prediction
methods implemented for official genomic evaluation in
many countries, including Canada, New Zealand, Australia,
Germany and Ireland. By contrast, only two countries, i.e.
The Netherlands and Switzerland have implemented
MCMC non-linear models (BayesA and BayesC) for
genomic prediction. In addition, non MCMC versions
of BayesA (also termed nonlinear A [2]) are used for
genomic prediction in the USA. In the future, genomic
evaluations may be based on whole-genome sequence
data and Bayesian methods may be required to take advan-
tage of this data [26,27]. Therefore, a way to implement
Bayesian models that is faster to compute than the MCMC
methods is desirable.
There have been a number of proposals to reduce the

computing time required to arrive at satisfactory estimates
of the SNP effects from Bayesian methods (e.g. [28-30]).
These proposals use algorithms other than Gibbs sam-
pling. For instance, VanRaden [2] described an iterative
method to implement approximations of both BayesA and
BayesB. Meuwissen [29] described a method termed fas-
tBayesB by using iterative conditional expectation (ICE) in
the BayesLASSO model. FastBayesB iteratively calculated
each SNP’s posterior mean, conditioning on current es-
timates of all other SNPs as if they were true effects.
FastBayesB greatly reduces computing time but several
parameters required to describe the prior distribution of
SNP effects are assumed to be known. This issue was
dealt with in a later publication by an expectation-
maximisation (EM) algorithm that estimated those pa-
rameters by maximising a joint posterior probability
based on the prior distribution of SNP effects, in a
method called EmBayesB [31]. Lower prediction accur-
acies were observed for these methods compared with
MCMC implementations [29,31]. Two potential reasons
for this are: (1) the errors in the estimates of SNP effects
other than the SNP for which the effect is being esti-
mated were ignored [29], and (2) the prior distribution
of SNP effects that they assume (a double exponential)
may not match the true distribution of SNP effects as
well as the mixture distribution assumed by BayesB and
BayesR.
Our aim in this paper was to develop a fast EM coun-

terpart to MCMC BayesR (emBayesR). BayesR assumes
that SNP effects are drawn from a mixture of normal
distributions, one with zero variance (and hence zero
effects). BayesR shares some of the advantages of BayesB,
in that SNP effects can be zero, moderate, or large, but is
more computationally efficient since it can be imple-
mented with Gibbs sampling [5]. In BayesR, the propor-
tion of SNPs in each normal distribution is estimated
from the data, instead of being pre-set as a constant value
in BayesB. Consequently, BayesR is able to approximate a
wide range of possible true distributions of SNP effects.
With real data, BayesR achieves accuracies comparable to
BayesA [5] and BayesB (Goddard and Meuwissen, unpub-
lished data).
Our EM algorithm retains the BayesR model assump-

tion that SNP effects are assumed to be derived from



Wang et al. Genetics Selection Evolution  (2015) 47:34 Page 3 of 16
four different normal distributions, but requires much
less computing time than BayesR. It also differs from
other EM methods by estimating the effect of each SNP
while accounting for the errors in the estimates of all
other SNPs. It does this by treating the combined effect
of the other SNPs as a residual breeding value, and
approximating its prediction error variance from a
GBLUP prediction. To compare speed and accuracy of
prediction of emBayesR with that from BayesR, we used
both a simulated dataset and a real dataset on 630 K
SNPs for dairy cattle.

Methods
In this section, we first describe the model of BayesR
(here also named MCMC_BayesR) for genomic prediction
and second, an EM algorithm named emBayesR. Finally,
the 10 K simulated data and 630 K real dairy data that
were used to evaluate the performance of emBayesR, are
described.

Statistical model for emBayesR and prior distributions of
parameters
The linear model for phenotypes is:

y ¼ 1nμþ Zgþ e; ð1Þ

where, y is a n × 1 vector of phenotypic records (n is
the number of animals); 1n is a n x 1 vector of 1 s, μ is
the population mean; Z is a n ×m design matrix with ele-

ments Zi ¼ xi−2pið Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1−pið Þ2

p
, in which xi is the n × 1

vector of genotypes for the ith SNP (0, 1 or 2 copies of the
second allele), and pi is the allele frequency of each SNP i
(m is the number of SNPs); e is a n × 1vector of random
normal deviates, eeN 0; Iσ2e

� �
; g is a m × 1 vector of SNP

effects.
For convenience, polygenic effects were not included

in the model but they can be readily added (and have
been added in the MCMC version of BayesR, e.g. [5]).
BayesR [5] assumes that SNP effects (g) are drawn from a

mixture of four normal distributions N 0; σ2
k

� �
according

to the proportion vector Pr = {Prk|k = 1, 2, 3, 4}. Variances

used were σ2
k ¼ 0; 0:0001 � σ2g ; 0:001 � σ2

g ; 0:01 � σ2g

n o
for the analysis of the real dairy data and σ2

k ¼
0; 0:0006 � σ2g ; 0:006 � σ2g ; 0:06 � σ2g

n o
for the ana-

lysis of the simulated data, where σ2g is total genetic vari-

ance [5]. Here, the coefficients of σ2
g used to define σ2

k for

the simulated data were different to those used for the real
data because of the criterion that the sum of the variance
across all SNPs approaches the overall genetic variance
explained by SNPs. In the simulation data, with 10 050
SNPs, there were only 50 QTL (17 QTL in σ2k 2½ �, 16 QTL
in σ2k 3½ � and 17 QTL in σ2k 4½ �). To make the overall variance
summed over all the SNPs approximately equal to
σ2g , vector σ2

k for the simulated data was set to

0; 0:0006 � σ2g ; 0:006 � σ2g ; 0:06 � σ2g

n o
. For the

real data (with high-density SNP panels), the value of

σ2
k that is 0; 0:0001 � σ2g ; 0:001 � σ2g ; 0:01 � σ2g

n o
was assumed as in [5]. In addition, the proportion of SNPs
in each normal distribution Prk ; Σ4

k ¼ 1 Prk ¼ 1
� �

was
assumed to follow a Dirichlet distribution with parameter
α = (1, 1, 1, 1)T, which is a 4 × 1 vector of the pseudo-
counts of the number of SNPs in each distribution. There-
fore, the BayesR model has two fixed parameters as input:
σ2
k and α (the prior for Pr).
For each SNP i, there is a latent binary variable bik

(bik = 0 or 1) that indicates whether or not the effect of
SNP i follows the normal distribution with variance σ2

k

k ¼ 1; 2 ; 3 ; 4ð Þ. Therefore:
p bik ¼ 1 PrkÞ ¼ Prkjð ð2Þ

Then, the prior distribution of each SNP effect (gi)
conditional on variable bik is:

p gijbik
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2πσ2k

q exp −
g2i
2σ2

k

� �
; if bik ¼ 1 k ¼ 2; 3; 4ð Þ

δ gi
� �

; if bi1 ¼ 1 ;

8><>:
ð3Þ

where δ(gi) denotes the Dirac delta function with all
probability mass at gi = 0.
Then, the joint distribution p(gi, bi) conditional on Pr

is:

p gi; bijPr
� � ¼Y4

k¼1

p gijbik
� �� p bik jPrkð Þ

¼ δ gi
� �

Pr1
� �bi1 Q4

k¼2
1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

q exp −
g2i
2σ2

k

� �
Prk

0B@
1CA

bik

ð4Þ

Expectation-maximisation steps for emBayesR
An EM algorithm is applied to BayesR to obtain estimates
of parameters, including SNP effects (ĝ) and the propor-

tion of SNP effects in each distribution cPr� �
. The aim of

emBayesR is to predict Zg by Zĝ as accurately as possible.
The best predictor for gi would be gi = E(gi|y), but we ap-
proximated this by estimating ĝi by the value of gi that

maximises the posterior probability Pðgijy; cPr; μ̂; σ̂2e Þ ,
where cPr, μ̂ and σ̂2e are the MAP (Maximum A Posterior)
estimator of Pr, μ, and σ2e , conditional on y. In the follow-

ing, we first deal with estimating ĝi and then return tocPr.
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For estimation of gi, we maximised the marginal pos-
terior of gi rather than the joint posterior of all g. To do
this, we first introduce two vectors of missing data (u, bi),
and use the EM algorithm to integrate them out of the
posterior distributions. Here, u is the combined effects of
all other SNPs except the current SNP, i.e. u =Zg −Zigi,
and the other vector bi = {bik|k = 1, 2, 3, 4} is for indicator
variables that determine which normal distribution each
SNP effect is derived from, as described above. Then
Equation (1) can be re-written as:

y ¼ 1nμþ Zigi þ uþ e: ð5Þ
The full posterior distribution with the missing data, p

gi;u; μ;bi y; P̂rÞ
		�

is (following Bayes’ theorem):

p gi;u; bijy; μ̂; cσ2
e ;
cPr� �

¼
f yjgi;u; μ̂; cσ2e ; cPr� �

p gi; bijcPr� �
p y;uð Þ

∝f yjgi;u; μ̂; cσ2
e ;
cPr� �

p gi; bijcPr� �
ð6Þ

Where

f yjgi;u; μ̂; cσ2e ; cPr� �
¼ 1

2π cσ2e� �n
2
exp −

1cσ2e y�−u−Zigi
� �0

y�−u−Zigi
� �" #

is the likelihood of the data given y* and u, and y� ¼
y−1nμ̂. Then, the log of the posterior is:

logp gi;u;bijy; μ̂; cσ2
e ;
cPr� �

¼ logf yjgi;u; μ̂; cσ2e ; cPr� �
þ logp gi; bijcPr� �

þ constant

This can be re-written as:

logf yjgi;u; μ̂; cσ2e ; cPr� �
¼ −0:5nlogcσ2

e−
1

2cσ2e y�−u−Zigi
� �0

y� −u−Zigi
� �

ð6aÞ

logp gi; bijcPr� �
¼ bi1log δ gi

� � cPr1� �
þ
X4
k¼2

bik −
1
2
logσ2k−

g2i
2σ2

k

þ logdPrk� �
:

ð6bÞ

In the E-step of emBayesR, we will take expectation of
the log posterior function of Equation (6) over the missing
data (u, b). Only the second term (6b) in the equation logp

gi;u; bijy; μ̂; cσ2e ; cPr� �
involves bi. Therefore:

Ebi logp g i; bijcPr� �
¼ Ebi

"
bi1log δ gi

� �cPr1� �
þ
X4
k¼2

bik −
1
2
logσ2k−

g2i
2σ2k

þ logdPrk� �#

¼ Pi1log δ gi
� �

P̂r1
� �

þP4
k¼2Pik −

1
2
logσ2k−

g2i
2σ2k

þ logdPrk� �

where Pik ¼ E bik jy;dPrk� �
, which is the posterior prob-

ability for each SNP to belong to each of the four nor-
mal distributions. The derivation of Pik is explained in
Additional file 1.
Next, we take the expectation over missing data u.

Only the quadratic form Q = (y* − u − Zigi) ' (y* − u − Zigi)
in the first term of Equation (6a) is related to u. To cal-
culate the expectation of Equation (6a) over u, we only
need to take the expectation of Q over u. Applying
Searle’s expectation rule [32] to Eû(Q), we obtain:

Eû Qð Þ ¼ Eû y�−u−Zigi
� �0

y�−u−Zigi
� �h i

¼ y�−û−Zigi
� �0

y�−û−Zigi
� �þ tr PEV ûð Þð Þ ;

Where û = ∑j ≠ iZjĝj and PEV is the predicted error
variance.
Substituting Pik = E(bik|y) and using the above Eû(Q),

the expectation of Equation (6) over û, b is:

Ebi;ujylogp gi;u; bijy; μ̂; cσ2
e ;
cPr� �

¼ −
n
2
logcσ2

e−
y�−û−Zigi
� �0

y�−û−Zigi
� �þ tr PEV ûð Þð Þ

2σ̂2
e

þ Pi1log δ gi
� �cPr1� �

þ
X4
k¼2

Pik logdPrk−0:5 � logσ2k− g2i
2σ2

k


 �
þ constant:

ð7Þ

The calculation of PEV(û) is approximated from a
GBLUP model, and is explained in Additional file 2.
The M-step of emBayesR involved estimation of the SNP

effect0073 (gi). Differentiating Equation (7) with regard to gi
gives:

∂Ebi;ujylogp gi;u; bijy; μ̂; cσ2e ; cPr� �
∂gi

¼ −
X4
k¼2

Pik

σ2
k

−
Z

0
iZi

σ2e
^

" #
gi þ

Z
0
y−û−1nμ̂ð Þ

σ2e
^

¼ 0:
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Setting this equal to 0 results in the following posterior
mode estimate for each SNP effect (gi).

ĝ i ¼ Z
0
iZi þ Pi2

cσ2
e

σ2
2
þ Pi3

cσ2
e

σ23
þ Pi4

cσ2
e

σ24

 !" #−1
Z

0
y†

h i
; ð8aÞ

where, Zi is the ith column of matrix Z, and y† ¼ y−
û−1nμ̂.
The mean of the posterior distribution can also be cal-

culated as follows:

E p gijy;Prk
� �� � ¼

Z þ∞

−∞
ð
X4

k¼1
Pikp gijbik ¼ 1; y; Pr

� �
gidgiZ þ∞

−∞
ð
X4

k¼1
Pikp gijbik ¼ 1; y; Pr

� �
dgi

;

which reduces to:

�g i ¼
X4

k¼1
Pik Z

0
iZi þ σ2e

σ2k

� �
 �−1
Z

0
y†

h i
: ð8bÞ

The mode estimation of SNP effects (Equation 8a) was
implemented in our EM iterations, unless otherwise
stated. The posterior mean of Equation (8b) was used in
some cases to evaluate the accuracy of genomic prediction
using either the mode or mean estimates of SNP effects.
Furthermore, to investigate the degree of shrinkage, the
least square estimate of the SNP effect was also calculated
for some examples:

glsi ¼ Zi
0Zið Þ−1Zi

0 y−1nμð Þ:
Similar EM steps used for estimating ĝi (but with dif-

ferent full models) are applied to estimate other pa-
rameters, including the proportion of SNP effects in
each distribution (Pr), the error variance σ2e

� �
, and the

mean (μ).

To obtain cPr , we return to the full model Equation (1)
with all SNP effects (g) included. We introduce the miss-
ing variables b, so the full likelihood is:

p Pr; b y; μÞ∝p y bÞp b PrÞp Prð Þ;jðjðjð
Note that p(y|b) does not involve Pr, so when we dif-

ferentiate with respect to Pr, this term drops out and
can, therefore, be ignored, resulting in:

p bjPrð Þ ¼ Qn
i¼1

Q4
k¼1 Prkð Þbik

p Prð Þ ¼Q4
k¼1Prk ;

logp bjPrð Þ ¼Pn
i¼1

P4
k¼1bik logPrk ;

logp Prð Þ ¼P4
k¼1logPrk ; and

Ebjylogp bjPrð Þ ¼Pn
i¼1

P4
k¼1Pik logPrk ;where

Pik ¼ E bik y; PrkÞ:jð
Then, considering that
P4

k¼1Prk ¼ 1 , we use La-
grange multiplier λ and differentiate with respect to Prk.
Given that Pr follows a Dirichlet distribution:

∂Ebjylogp g;Pr; bik jy; μð Þ þ λ
X4

k¼1
Prk−1

� �
�

∂Prk

¼
Xm

i¼1
Pik

Prk
þ 1
Prk

þ λ ¼ 0:

Therefore, the solution is:

Prk ¼
Xm

i¼1
Pik þ 1X4

k¼1

Xm

i¼1
Pik þ 1

� � : ð9Þ

Finally, to estimate the error variance σ2e and μ, we
simplify Equation (5) into y ¼ 1nμþ u� þ e; u� ¼Pm

i¼0

Ziĝ i and then the full likelihood based on this model is:

p σ2
e ; μ;u

�jy� � ¼ 1

2πσ2
e

� �n
2

exp −
1
2σ2

e
y−u�−1nμð Þ0 y−u�−1nμð Þ


 �
:

The expectation for the full log likelihood based on
this model is:

Eu�jy logp σ2e ; μ;u
�jy� �

¼ Eu�jy −
n
2
logσ2e þ

1
2σ2e

y−u�−1nμð Þ0 y−u�−1nμð Þ

 �

¼ −
n
2
logσ2e þ

1
2σ2

e

h
y− bu�−1nμ
� �0

y− bu�−1nμ
� �

þ tr PEV bu�� �� �i
: ð10Þ

Therefore, differentiating Equation (10) with regard to
σ2e and μ, we get:

σ2e ¼
1
n

y− bu�−1nμ
� �0

y− bu�−1nμ
� �þ tr PEV bu�� �� �h i

;

ð11Þ

μ ¼ 1
n

1nð Þ0 y− bu�� � ð12Þ

for which computation of the term tr PEV cu�
� ��

is

explained in Additional file 2.
In order to demonstrate the importance of the PEV

correction for SNP effect estimates, the accuracy of
emBayesR with and without accounting for PEV will be
compared in the Results section. emBayesR without
PEV has a similar EM step as emBayesR with PEV to de-
rive the parameters Pik ; ĝ i; Prk ; σ2e and μ but differs
in the equations of emBayesR with PEV to calculate Pik
(Equation A3 in Additional file 1) and σ2e (Equation 11)
in that the term tr(PEV(û)) is not included in emBayesR
without PEV.
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The emBayesR algorithm
The emBayesR algorithm can be described as follows:

Step 1
Initialise starting values for g; Pr; σ2e ; σ2g ; α and σ2

k .

There are two groups of parameters: fixed parameters
and changing parameters. α ¼ 1; 1; 1; 1ð Þ; σ2

g and σ2
k are

fixed parameters, where α is the prior parameter for Pr,
and σ2g is used to set the value of σ2

k . The other variables

g;Pr; σ2e
� �

are updated during EM iterations. We used
g = 0.01 and Pr = {0.5, 0.487, 0.01, 0.003}, as in [5]. To
initialise σ2e and σ2g , we used GBLUP implemented

through ASREML3.0 [33] to estimate the error variance σ2
e

and the genetic variance σ2
g as inputs for the next steps.

Then, as mentioned before, the value of σ2g defines σ
2
k , using

σ2
k ¼ 0; 0:0001 � σ2

g ; 0:001 � σ2g ; 0:01 � σ2
g

n o
for the real

data and σ2
k ¼ 0; 0:0006 � σ2g ; 0:006 � σ2

g ; 0:06 � σ2g

n o
for the simulated data.

Step 2
Calculate PEV with Equation (A7) of Additional file 2
(or it can be taken from ASREML in the step above).
Then for each SNP i (i in 1:m):

Step 3
Correct y for the effects of all other SNPs except the
current SNP i, using:

y† ¼ y−
X

j≠i
Zjĝ j−1nμ̂

Step 4
Estimate the probability that the effect of SNP i is from
one of four normal distributions loglik with Equation
(A5) of Additional file 1.

Step 5
Calculate Pik with Equation (A6) of Additional file 1.

Step 6
Estimate the effect of SNP i with Equation (8a).

Step 7
After all SNP effects have been estimated, calculate Prk
with Equation (9), update σ2e with Equation (11), and up-
date μ with Equation (12).

Step 8
Return to Step 3 and iterate until convergence. Here, the
convergence criterion evaluated at each iteration q was
(ĝq − ĝq − 1) ' (ĝq − ĝq− 1)/((ĝq'ĝq) < γ. The criterion γ = 10− 10
was selected after trialling the algorithm in a number of
datasets and investigating changes in SNP effect estimates
across iterations.
We calculated the time complexity of the algorithm

(the function with parameters number of SNPs and
number of animals that determines the time taken for
the algorithm to run) based on the above eight steps.
Time complexity is estimated in computer science appli-
cations by counting the number of innermost loops for
elementary operations, which is notated O. For example,
O(n) means the elementary operations in the algorithm
need to be looped n times.
emBayesR need q loops to be converged. For each

loop, Equation (A5) of Additional file 1 (Step 4 in the
EM loop of emBayesR algorithm), is located in the in-
nermost loop for the iteration. To be mentioned, both tr

(PEV(û)) and tr ZiZ
0
iPEV ûð Þ� �

in Equation (A5) are re-
quired, but fortunately they can be calculated outside EM
iterations [See Additional file 1 for details]. Then, except

for these two terms tr(PEV(û)) and tr ZiZ
0
iPEV ûð Þ� �

, the
calculation number of Equation (A5) is the number of
SNPs (m) × the number of animals (n). Therefore, the time
complexity of each iteration in emBayesR is O(mn).
Simulated data
Simulated data were used to determine how close the
genomic prediction accuracy of emBayesR was to that of
BayesR. The simulated dataset described in [21] was
used. Briefly, FREGENE was used to simulate whole-
genome sequence data in a population with an effective
size (Ne) of 25 900 and a genome size of 50 Mb split
equally over 10 chromosomes. The genome size of
50 Mb was chosen for computing efficiency. The accur-
acy of prediction in a c times larger genome (i.e. 50c
Mb) would be approximately the same as found in our
50 Mb genome, provided the number of animals was c
times larger than used here (i.e. 5000c) [27]. The muta-
tion rate per bp was 9.38 × 10−9 and the recombination
rate was 1 × 10−8 per base pair per generation [21],
based on estimates for these rates in mammals. To en-
sure a drift-recombination-mutation equilibrium, the
population was run for 370 000 generations. A total of
10 050 markers (including 50 QTL) were randomly se-
lected as SNPs for genomic prediction. The SNP density
was equivalent to ~600 000 SNPs on a 3000 Mb genome,
similar to many mammals. Fifty QTL were randomly
picked from the segregating loci, which is equivalent to
3000 QTL on a human or bovine genome. To evaluate
the genomic prediction performance of emBayesR,
BayesR and other algorithms, we generated two genetic
architectures that differed in the distribution of true
QTL effects. For this first dataset, named HD_Mix, the
50 QTL allele substitution effects were sampled from an



Table 1 Numbers of Holstein bulls in the reference and
validation sets for functional traits and production traits

Reference set Validation set

Milk 3049 262

Protein 3049 262

Fertility 2806 396

Protein% 3049 262

Fat% 3049 262

Angularity 1484 251

Mammary conformation 1484 251

Stature 1484 251

Somatic cell count 2662 410

Figure 1 Convergence of estimated SNP effects, error variance
and Pr over 5000 iterations. The x axis represents the number of
iterations that range from 0 to 5000; the y axis represents the estimated
SNP effects, error variance and the first element of Pr (the proportion of
SNPs in the distribution with zero variance).
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equal mixture of three normal distributions with vari-

ances 0; 0:0006σ2g ; 0:006σ
2
g ; 0:06σ

2
g

� �
. For the second

genetic architecture (referred to as HD_One), QTL allele
substitution effects were sampled from a single normal
distribution. For the breeding values on simulation data,
true breeding values (TBV) for individuals were obtained
by summing genetic values across QTL. For each genetic
architecture, heritabilities (h2) of either 0.45 or 0.1 were
used. For each set, phenotypes of 5000 individuals were
generated by adding a random residual value to the TBV
of each individual. This residual value was sampled from a
normal distribution, N (0, σ2e), here σ2e = [σ2TBV(1-h

2)]/h2,
where σ2TBV is the variance of TBV in the population.
Thus, we generated four datasets named HD_Mix_45
(five replicates following the mixture data model with
heritability 0.45), HD_Mix_10 (five replicates follow-
ing the mixture data model with heritability 0.10),
HD_One_45 (five replicates following the one normal
data distribution with heritability 0.45) and HD_One_10
(five replicates following the one normal distribution with
heritability 0.10). Each replicate entailed sampling new
SNP effects and generating new phenotypes.
To compare prediction accuracies and computing effi-

ciencies of emBayesR, BayesR, GBLUP and fastBayesB,
5000 individuals were randomly separated into reference
sets and validation sets. With an h2 of 0.45, there were
2500 individuals in the reference set and 2500 in the valid-
ation set. With an h2 of 0.1, there were 3750 individuals in
the reference set and 1250 in the validation set. Accuracies
were the correlations between GEBV and TBV.

Real data
A total of 3354 Holstein-Friesian bulls were genotyped
for both the Illumina Bovine HD SNP array (632 003
SNPs following quality controls as described in [5]), and
the Bovine SNP 50 array (43 025 SNPs). Bulls genotyped
at the lower density were imputed to the higher density
using Beagle 3.0 [34], and applying quality controls as
described in [5]. Phenotypes were daughter trait devia-
tions (DTD) from two groups of traits: functional traits,
including angularity, mammary conformation, stature,
fertility (calving interval) and somatic cell count (SCC),
and production traits, including milk yield, protein yield,
protein % and fat %. For some of these traits, known
QTL with moderate to large effects segregate in this
population, for example a mutation in the DGAT1 gene
affects fat % [35]. Bulls were split into reference and valid-
ation sets by age, with the youngest bulls in the validation
set. The numbers of bulls in the reference and validation
sets for each trait are listed in Table 1. As a surrogate for
prediction accuracy, the correlation of GEBV and DTD in
the validation set was used. To investigate the comput-
ing time required for emBayesR relative to BayesR with
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different numbers of SNPs, we also ran genomic pre-
dictions in the same data but with the 50 K SNP chip
genotypes (38 968 SNPs) extracted from the 630 K data
on 3354 animals, for milk yield.

Results
The results are presented in three sections. First, we in-
vestigated the convergence of parameters estimated by
emBayesR and how close parameter estimates from
emBayesR were to the true parameter values, and those
estimated by BayesR, in terms of SNP effects and Pr, in
the simulated data. We also evaluated the effect of the
PEV correction on estimates of these parameters, and
the accuracy of genomic prediction. Moreover, the ac-
curacy of genomic prediction from the joint posterior
mode estimation from emBayesR was compared to the
accuracy when the posterior mean estimate of SNP ef-
fects was used. The mode estimation for SNP effects
(Equation 8a) of emBayesR was used for the evaluation
of performance of emBayesR. Thus, we also compared
the accuracy of prediction with mode (8a) and mean (8b)
Equations for estimates of SNP effects (Equation 8b). In
the second section of results, we compared the accuracy
of genomic prediction from emBayesR to that of BayesR,
as well as computing speed in simulated and real data-
sets. Finally, the sensitivity of prediction accuracy from
Figure 2 Correlation between SNP effects from BayesR and emBayesR
represents the BayesR estimates of SNP effect; blue line plots emBayesR est
plots BayesR estimates of SNP effects on themselves for four replicates of H
emBayesR to the underlying genetic architecture (multi-
normal distribution, normal distribution of QTL effects,
real 630 K data) was investigated.

Convergence of parameter estimates with emBayesR
The algorithm is considered to have “converged” when es-
timated SNP effects from the previous iteration are very
close to estimated SNP effects in the current iteration.
The convergence criterion of emBayesR was (ĝq − ĝq − 1) '
(ĝq − ĝq − 1)/((ĝq'ĝq) < 10− 10, where q is the current iter-
ation number. Since the convergence criterion assessed
only changes in SNP effect estimates, it does not guar-
antee that the estimates of the other parameters, i.e. Pr
(the proportion of SNPs in each distribution) and the
error variance, have converged. In the simulated data-
set HD_Mix_45, convergence was reached after 2500
iterations, and at that point, there was also very little
change in the error variance and Pr from the previous
iteration (Figure 1).

Comparison of parameter estimates
Estimates of SNP effects and Pr from emBayesR can be
compared to the corresponding estimates from BayesR.
For the HD_Mix simulated data, estimates of large SNP
effects were very similar for BayesR and emBayesR
(Figure 2). The plot of BayesR and emBayesR estimated
SNP effects in four replicates of HD_Mix_45 (h2 = 0.45). The x axis
imates of SNP effects on BayesR estimates of SNP effects; black line
D_Mix with a heritability of 0.45.



Figure 3 Estimates of SNP effects from BayesR and emBayesR
compared with their true effects in one replicate of HD_Mix_45
(HD_Mix_45_2). The x axis represents true effects; blue curve plots
BayesR estimates of SNP effects on true effects; red line plots
emBayesR estimates of SNP effects on true effects; the black line
plots true effects on themselves for one replicate of simulated data
HD_Mix with a heritability of 0.45 (HD_Mix_45_2).

Figure 4 Estimates of SNP effects from SNP-BLUP, BayesR,
emBayesR, FastBayesB against their least square estimates.
The x axis represents the least square estimates of SNP effects; blue
line plots BayesR estimates of SNP effects on the least square estimates;
red line represents emBayesR SNP effect estimates; dotted green line
represents the fastBayesB estimates of SNP effects; black line represents
SNP_BLUP estimates of SNP effects for HD_Mix_45.

Table 2 Estimated mixing proportions (Pr) from BayesR
and emBayesR in the 10 k simulation data (HD_Mix_45)

Five replicates of 10 K simulation data with h2 = 0.45

True value of Pr [0.9950 0.0017 0.0016 0.0017]

BayesR emBayesR

M45_1 [0.9865 0.0110 0.0010 0.0015] [0.9813 0.0163 0.0009 0.0015]

M45_2 [0.9861 0.0127 0.0004 0.0008] [0.9852 0.0136 0.0003 0.0009]

M45_3 [0.9933 0.0046 0.0009 0.0012] [0.9899 0.0083 0.0005 0.0012]

M45_4 [0.9909 0.0055 0.0022 0.0015] [0.9864 0.0110 0.0010 0.0016]

M45_5 [0.9944 0.0043 0.0006 0.0007] [0.9910 0.0078 0.0005 0.0007]

Five replicates of 10 K simulation data with h2 = 0.10

True value of Pr [0.9950 0.0017 0.0016 0.0017]

BayesR emBayesR

M10_1 [0.9759 0.0021 0.0024 0.0010] [0.9243 0.0741 0.0009 0.0008]

M10_2 [0.9624 0.0343 0.0025 0.0009] [0.9086 0.0898 0.0010 0.0007]

M10_3 [0.9757 0.0022 0.0018 0.0008] [0.9284 0.0702 0.0007 0.0007]

M10_4 [0.9620 0.0334 0.0032 0.0014] [0.9146 0.0837 0.0008 0.0010]

M10_5 [0.9664 0.0295 0.0023 0.0018] [0.9265 0.0715 0.0007 0.0014]

Wang et al. Genetics Selection Evolution  (2015) 47:34 Page 9 of 16
effects against true effects is in Figure 3. However, for
smaller effects, emBayesR shrunk effects to a greater
degree than BayesR, in some replicates.
The degree of shrinkage from the BayesR algorithms

relative to other algorithms can be demonstrated by
plotting estimates of SNP effects (HD_Mix data set) from
BayesR, FastBayesB, emBayesR and SNP-BLUP against
their least square estimates (Figure 4). Both BayesR and
emBayesR regressed moderate size SNP effects towards 0
more than SNP-BLUP and FastBayesB. However, BayesR
and emBayesR did not shrink large SNP effects nearly as
much as SNP-BLUP.
Estimates of Pr from emBayesR and BayesR are com-

pared with the true proportion of SNP effects in each of
the four normal distributions in Table 2. The genetic archi-
tecture of the HD_Mix data was such that 50 QTL were
distributed evenly in three normal distributions with non-
zero variances. The true proportion of the SNP effects
(around 10 000 markers) in the four normal distributions

with different variances 0; 0:0006σ2g ; 0:006σ
2
g ; 0:06σ

2
g

� �
was (0.995, 0.0017, 0.0016, 0.0017). As shown in Table 2,
when h2 = 0.45, both BayesR and emBayesR estimated
the proportions of SNP effects from the four distribu-
tions to be roughly 0.99, 0.01, 0.001, and 0.001. How-
ever, when h2 = 0.1, BayesR over-estimated the
proportion of SNP effects in the smallest non-zero

distribution σ22 ¼ 0:0006σ2
g

� �
and this tendency was

even greater with emBayesR. This agrees with results
in Figure 2, where emBayesR shrunk small effects to
very small effects more than BayesR and this may have
contributed to the over-estimation of the proportion of



Table 4 Pr estimates (proportion of SNP in each distribution)
with different prior values α for the HD_Mix_45 simulated
data

α Pr_emBayesR

0 0:0006 � σ2
g 0:006 � σ2

g 0:06 � σ2
g

(1, 1, 1, 1) 0.9861 0.0127 0.0004 0.0008

(1, 1, 1, 100) 0.9801 0.0130 0.0042 0.0027

(1, 1, 100, 1) 0.9863 0.0101 0.0028 0.0008

(100,1, 1, 1) 0.9883 0.0105 0.0003 0.0009

The prior α was (1, 1, 1, 1), (1, 1, 1, 100), (1, 100, 1, 1) or (100, 1, 1, 1).
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SNP effects from the distribution with the smallest

non-zero variance 0:0006σ2
g

� �
. In the 630 K dairy cattle

data, the posterior mean estimates of Pr from emBayesR
were similar to those from BayesR, as shown in Table 3.

Sensitivity to the prior for the Dirichlet distribution
Another feature of estimates of Pr, may be sensitivity to
its prior parameter α (the pseudo-count of SNPs in each
distribution in the Dirichlet distribution). To evaluate
the sensitivity of emBayesR to α, we used different
values for α and investigated the effect on Pr with the
dataset HD_Mix_45 (Table 4). When the prior param-
eter α was changed from (1, 1, 1, 1) to (100, 1, 1, 1), es-
timates of Pr from emBayesR changed only slightly.
Although α = (100, 1, 1, 1) was closer to the true situation
in the simulated datasets, estimates for Pr (especially Pr
[2], Pr[3], Pr[4]) deviated from the true values [0.9950
0.0017 0.0016 0.0017]. When α was changed to (1, 1, 1,
100) and (1, 1, 100, 1), the estimate of Pr was affected,
with the proportion of SNP effects estimated to be in the
distribution with α[4] = 100 increasing to 0.0027 and
0.0028, respectively, instead of the simulated 0.0017. It is
not surprising that a pseudo-count of 100 affected the es-
timate of Pr, since the true number of SNP effects in these
distributions was equal to 17 only. Interestingly, the pre-
diction accuracy remained at 0.97 in spite of these changes
in the prior α.

Effect of PEV
We also compared estimates of parameters and accur-
acies of genomic prediction with and without accounting
for PEV or estimates of all other SNPs in the emBayesR
algorithm. When the PEV was accounted for in the
emBayesR algorithm, there was a 6% improvement in
the accuracy of genomic prediction in the simulated data
when h2 = 0.45, and 5% when h2 = 0.1 (Table 5), com-
pared to when PEV was not accounted for. Estimates of
SNP effects from emBayesR with and without PEV were
plotted against estimates of SNP effects from BayesR
Table 3 Estimated mixing proportions (Pr) from BayesR and e

BayesR

Milk [0.99291 0.00690 0.00018

Protein [0.99161 0.00831 0.00005

Fertility [0.98863 0.01034 0.00092

Protein% [0.99602 0.00378 0.00019

Fat% [0.99480 0.00485 0.00021

Angularity [0.99221 0.00739 0.00039

Mammary conformation [0.99091 0.00859 0.00047

Stature [0.99013 0.00927 0.00052

Somatic cell count [0.98688 0.01272 0.00039
(Figure 5A). Estimates of SNP effects from emBayesR
without accounting for PEV were considerably shrunken,
particularly for small effects, compared with estimates of
SNP effect from BayesR. Estimates of SNP effects with
emBayesR when PEV were accounted for were much
closer to those from BayesR, although there was still some
over-shrinkage, particularly of small effects. Figure 5B, in
which estimates of SNP effects obtained with BayesR,
emBayesR, emBayesR_without_PEV are plotted, illustrates
this result.
We also compared the accuracy of prediction based on

the joint posterior mean (Equation 8b) versus the mode
(Equation 8a) in the simulated data (Table 6). As shown
in Table 6, using either the mean (emBayesR_Mean) or
the mode (emBayesR_Mode) for estimates of SNP effect
gave similar prediction accuracies.

Accuracy of genomic prediction with emBayesR and BayesR
In the simulation data, the accuracy of genomic predic-
tion with emBayesR was the same as with BayesR when
heritability was 0.10, but 1% lower when heritability was
0.45 (Table 7). However, both methods resulted in GEBV
that were close to unbiased, based on the regression of
TBV on GEBV being close to 1, although for HD_Mix_10,
the regression was 0.89 with both BayesR and emBayesR.
Accuracies of genomic prediction with BayesR, GBLUP,

FastBayesB, and emBayesR on the 630 K dairy data are in
Table 8. The average accuracy of genomic prediction with
mBayesR for the 630 k real dairy cattle data

emBayesR

0.00001] [0.99511 0.00480 0.00006 0.00003]

0.00003] [0.99480 0.00511 0.00007 0.00002]

0.00011] [0.99184 0.00806 0.00009 0.00001]

0.00001] [0.99902 0.00078 0.00004 0.00016]

0.00014] [0.99786 0.00204 0.00001 0.00009]

0.00001] [0.98514 0.01475 0.00009 0.00002]

0.00003] [0.99276 0.00714 0.00009 0.00001]

0.00008] [0.99305 0.00684 0.00006 0.00005]

0.00001] [0.98761 0.01229 0.00008 0.00002]



Table 5 Accuracy of genomic prediction from emBayesR_without_PEV and emBayesR on HD_Mix dataset

Correlation (GEBV,TBV)

Five replicates with h2 = 0.45 (HD_Mix_45) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

emBayesR_without_PEV 0.91 0.90 0.85 0.90 0.91

emBayesR 0.97 0.96 0.93 0.97 0.97

Five replicates with h2 = 0.10 (HD_Mix_10) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

emBayesR_without_PEV 0.89 0.82 0.87 0.81 0.79

emBayesR 0.91 0.87 0.93 0.86 0.87
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emBayesR across the nine dairy cattle traits was 0.4%
lower than with BayesR. The accuracy with emBayesR was
on average 5% better than with FastBayesB. The average
accuracy of BayesR across the nine traits was 3% higher
than with GBLUP, which was due to very similar accur-
acies for four of the nine traits, and only protein % and fat
% showing clear improvements in accuracy compared to
GBLUP. For these traits, several QTL with moderate to
large effects are known to exist [35,36].

Computing performance of emBayesR compared
with BayesR
We compared the speed of emBayesR with BayesR and
fastBayesB using three criteria: the time complexity of
each iteration (the function in terms of number of SNPs
and individuals that determines the time taken to do one
iteration), the number of iterations to convergence (or in
the case of BayesR until changes in SNP estimates were
sufficiently small so that the accuracy of genomic predic-
tion did not change), and total computing time required
with the 630 K real data.
First, as mentioned in the method section, the time

complexity for emBayesR is O(nm), which is the same
as with the MCMC method for BayesR and with ICE
Figure 5 Comparison of SNP effect estimates from emBayesR with an
x axis represents BayesR estimates of SNP effects; blue line plots emBayesR
plots emBayesR_Without_PEV estimates of SNP effect on BayesR estimates
themselves. B: The x axis represents true effects; blue line plots BayesR estim
estimates of SNP effects on true effect; red line plots emBayesR_without_P
against themselves.
iterations for fastBayesB, and with the nonlinear A
method of VanRaden [2] and SNP_BLUP [1].
Second, for BayesR, the accuracy of prediction exceeded

0.61 at 20 000 iterations, and did not improve with a larger
number of iterations, as shown in Figure 6. For five traits
(milk, protein, fertility, fat % and protein %) and using the
630 K real data, the numbers of iterations required for
convergence for emBayesR and fastBayesB are given in
Table 9. FastBayesB required slightly more iterations to
reach convergence than emBayesR for most traits.
Finally, the overall computing times for emBayesR,

BayesR and fastBayesB with the same implementation
(each trait on one processor) were compared (Figure 7).
The algorithms were implemented on a range of data-
sets with different sizes, including 10 K simulated data
(HD_Mix model, 2500 animals with around 10 000
SNPs), 50 K data (3049 animals with 38 968 SNPs), and
630 K data (3049 animals with 632 003 SNPs). As shown
in Figure 7, the speed advantage of emBayesR compared
to BayesR was greater as the number of SNPs in the data-
set increases. For example, with the 630 K data, BayesR
needed approximately 4 days of real computing time,
while emBayesR required just 4 hours (including the time
to calculate PEV in GBLUP) to achieve the final solutions.
d without accounting for PEV with estimates from BayesR. A: The
estimates of SNP effects on BayesR estimates of SNP effects; red line
of SNP effects; black line plots BayesR estimates of SNP effects against
ates of SNP effects on true effects; green line plots emBayesR

EV estimates of SNP effects on true effects; black line plots true effects



Table 6 Accuracy of genomic prediction using the
algorithm posterior mode (emBayesR_Mode, Equation
8a) or posterior mean estimates of SNP effects
(emBayesR_Mean, Equation 8b), in the HD_Mix dataset

Correlation (GEBV,TBV)

Five replicates with h2 = 0.45 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

emBayesR_Mode 0.97 0.96 0.93 0.97 0.97

emBayesR_Mean 0.97 0.95 0.93 0.97 0.97

Five replicates with h2 = 0.10 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

emBayesR_Mode 0.91 0.87 0.93 0.86 0.87

emBayesR_Mean 0.91 0.88 0.93 0.87 0.87
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Sensitivity of parameter estimates from emBayesR to the
underlying genetic model
In this final Results section, we investigate the sensitivity
of the accuracy of genomic prediction and estimates of
Pr with emBayesR and BayesR to the underlying data
model. Three underlying models for QTL effects were
investigated: (1) an equal mixture of three non-zero nor-
mal distributions in HD_Mix; (2) all QTL effects follow
a normal distribution in HD_One; and (3) an unknown
model of QTL effects in the 630 K real data.
emBayesR and BayesR gave higher accuracies than

GBLUP for the HD_Mix model data (M45_2), while for
the HD_One data, the advantage of emBayesR and
BayesR was smaller than that of GBLUP (Table 10), as
might be expected given that the HD_Mix data has a
proportion of QTL with larger effects. In estimating Pr,
emBayesR generally had somewhat poorer agreement
with the underlying data model than BayesR (Table 10),
especially for the HD_One_45 data.
However, on 630 K real data, emBayesR gave very

similar estimates of Pr and accuracy of genomic predic-
tion than BayesR and GBLUP (accuracy only for the
later comparison) (Tables 3 and 8). One conclusion from
the relative performance of emBayesR to BayesR in the
10 K simulated data and in the 630 K real data, is that
emBayesR cannot distinguish SNP effects with zero vari-
ance from those with a very small variance when there is
little information in small datasets, as in the HD_One
simulated data. However, among the 630 K SNPs there
are likely more SNPs in the non-zero distributions,
which should increase the precision of estimates of Pr.
Table 7 Accuracy of genomic prediction and the regression c
estimated breeding value (GEBV) for different methods for th

Correlation (GEBV,TBV)

h2 = 0.45 h2 = 0.10

2500 animals 3750 animals

BayesR 0.97 ± 0.01 0.89 ± 0.03

emBayesR 0.96 ± 0.03 0.89 ± 0.02
Discussion
Genomic prediction with non-linear Bayesian methods,
including BayesR, can be more accurate than GBLUP in
some situations, such as when QTL with moderate to
large effects segregate [2,3], but at the cost of longer
computing time. To retain the accuracy of BayesR while
reducing computing time, we propose here an EM algo-
rithm, termed emBayesR, for genomic prediction, as an
alternative to the MCMC implementation of BayesR. In
both 10 K SNP simulated data and 630 K real dairy
cattle data, emBayesR gave accuracies of genomic pre-
diction similar to BayesR, with greatly reduced comput-
ing time. As in BayesR, emBayesR estimates SNP effects,
error variances and posterior probabilities of each SNP
belonging to the kth distribution (here, there were four
distributions, one with zero variance).
Results from BayesR and emBayesR differed in three

ways, albeit to a small degree. Estimates of Pr with
emBayesR tended to have more SNP effect estimates in
the smallest non-zero distribution than BayesR; emBayesR
shrunk small SNP effects towards 0 somewhat more than
BayesR; and the accuracy of emBayesR predictions was ap-
proximately 0.5% lower than the accuracy of BayesR. Our
EM algorithm differed from the MCMC BayesR in several
respects, which may explain these results. The EM algo-
rithm estimates the SNP effect (gi) by the mode of the
posterior distribution when the mixing proportions (Pr)
and the error variance σ2

e

� �
are held at their MAP esti-

mates, whereas the MCMC version estimates gi by the
mean of the posterior distribution while Pr and σ2e vary
over their posterior distributions. Also, when we used the
mean instead of the mode of the posterior distribution of
gi as an estimate of gi, we found that it makes no discern-
ible difference in prediction accuracy, as shown in Table 6.
However, varying Pr and σ2e across their posterior dis-
tributions in BayesR, but not emBayesR, may explain
differences in results. In addition, emBayesR uses an
approximation of the prediction error variance of all
other SNPs when estimating gi.
Bayesian estimates are sensitive to the prior if the data

does not contain enough information to overwhelm the
prior. Estimates of Pr with both BayesR and emBayesR
were affected by the prior α but not to a large degree,
considering that the simulated data contained only 50
oefficient of true breeding value (TBV) on genomic
e HD_Mix simulated dataset

Regression coefficient (TBV on GEBV)

h2 = 0.45 h2 = 0.10

2500 animals 3750 animals

1.02 ± 0.02 1.00 ± 0.05

0.95 ± 0.03 1.00 ± 0.04



Table 8 Accuracy of genomic prediction from GBLUP, BayesR, fastBayesB and emBayesR for the 630 K dairy cattle data
for production and functional traits

Production traits

Milk Protein Fertility Protein% Fat%

GBLUP 0.57 0.63 0.40 0.63 0.77

BayesR 0.63 0.64 0.41 0.79 0.83

FastBayesB 0.57 0.60 0.35 0.70 0.80

emBayesR 0.62 0.65 0.40 0.76 0.83

Functional traits

Angularity Mammary conformation Stature Somatic cell count

GBLUP 0.45 0.28 0.47 0.71

BayesR 0.44 0.28 0.47 0.71

FastBayesB 0.39 0.25 0.43 0.61

emBayesR 0.45 0.30 0.47 0.69
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causal mutations and the prior had little effect on the
accuracy of genomic predictions. Results from using
emBayesR with the simulated data indicate the algorithm
was unable to consistently distinguish a SNP with no
effect from a SNP with a very small effect. We would
expect that, in data in which more causal mutations are
segregating and with many more animals, estimates of
Pr would be less sensitive to the prior.
Other EM algorithms for genomic prediction have

been described using thick-tailed t-distributions or expo-
nential distributions as priors for the SNP effects. These
include EM-BSR [37] and FastBayesA [38], which aim at
enhancing the computing efficiency of BayesA. emBayesR
differs from most previous non-MCMC implementations
of Bayesian methods for genomic prediction in two re-
spects, i.e. it uses the BayesR model with a mixture of four
normal distributions for SNP effects and it accounts for
errors in all other estimated SNP effects when estimating
the effect of the current SNP by including the PEV term
Figure 6 Accuracy of genomic prediction and running time for Bayes
in the model. When we implemented the EM algorithm
without the PEV term, the accuracy of prediction declined
by 8%. The accuracy of fastBayesB was, on average, 9%
lower than that of emBayesR, suggesting that much of the
loss in accuracy of fastBayesB is due to ignoring the errors
in all other SNP effects when estimating a particular SNP
effect. Consistent with this interpretation, both fastBayesB
and our EM algorithm without accounting for the PEV
shrink estimates of SNP effects more severely than
emBayesR or BayesR. Most of the current fast algo-
rithms, such as fastBayesB [29], emBayesB [31], em_BSR
[37], and MixP [39], ignore the error produced by the
estimation of other SNP effects. That is, they use an un-
realistic assumption that the current solutions of all
other SNPs effects are known without error when esti-
mating the current SNP effect, which is one of the rea-
sons why accuracies of prediction from these algorithms
are typically lower than that of their counterpart MCMC
methods. MCMC methods account for the error in the
R with an increasing number of iterations.



Table 9 Number of iterations required for emBayesR and
fastBayesB to reach convergence for five traits with the
630 K dairy cattle data

Milk Protein Fertility Protein % Fat %

emBayesR 460 476 920 572 496

FastBayesB 410 540 856 848 564

Table 10 Estimated mixing proportions (Pr) and genomic
prediction accuracy from BayesR, emBayesR and GBLUP
with the HD_Mix_45 and HD_One_45 datasets

HD_Mix_45 (h2 = 0.45)

Pr Accuracy

True [0.9950 0.0017 0.0016 0.0017]

BayesR [0.9861 0.0127 0.0004 0.0008] 0.97

emBayesR [0.9852 0.0136 0.0003 0.0009] 0.97

GBLUP - 0.67

HD_One_45 (h2 = 0.45)

Pr Accuracy

True [0 0 0 1]

BayesR [0.722 0.2621 0.0115 0.0044] 0.80

emBayesR [0.012 0.986 0.0007 0.0013] 0.80

GBLUP - 0.78
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estimates of other SNP effects by sampling them from
their posterior distributions. For the calculation of PEV,
the inverse of a matrix with dimensions (number of ani-
mals × the number of animals) is required (Equation
(A7) of Additional file 2). When the number of animals
exceeds 50 000, this will hinder the computing efficiency
of emBayesR. To reduce the computing burden of the
PEV calculation, the efficient genomic recursion algo-
rithms proposed by Misztal et al. [13] could be applied
but this requires further investigation.
Our results demonstrated the computing speed of

emBayesR over the MCMC implementation of BayesR.
The time complexity for emBayesR at each iteration is
proportional to the number of markers and the num-
ber of records, as it is in the MCMC methods. How-
ever, much fewer iterations were required for the
emBayesR SNP effects to converge than for BayesR to
sample sufficiently from the posterior distributions of
SNP effects to achieve maximum accuracy of genomic
prediction. Specifically, compared with 20 000 itera-
tions of MCMC sampling (Figure 6), emBayesR re-
quired only 300 to 1000 iterations with the 630 K real
dairy data (Table 9). As the size of datasets increased,
Figure 7 Computational time required for BayesR, emBayesR and Fas
represents the different sizes of the SNP chips, y axis is the computational
emBayesR’s; green bar is FastBayesB’s computing time.
this advantage could be even greater, as shown in
Figure 7.
With high-density SNP data (630 K), the prediction

accuracy of emBayesR and BayesR was greater than
GBLUP only for yield traits. Similar results (an advan-
tage of a Bayesian approach over GBLUP for yield traits
only) were obtained using the nonlinear iterative A
method with imputed high-density data from 15 842
reference animals and 28 traits [40]. Computing time
with high-density data for this nonlinear A method is
also O(nm), with reported times similar to emBayesR. One
difference between BayesR and the nonlinear A method is
that SNP effects can actually be 0 with BayesR, whereas in
tBayesB on a range of SNP chips (10 K, 50 K and 630 K). The x axis
time in minutes; blue bar is BayesR’s running time; red bar is
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nonlinear A, SNPs will always have a non-zero effect,
although it may be very small. This difference between the
algorithms apparently does not affect accuracies of predic-
tion with the 630 K real data, although it may become
more important with whole-genome sequence data, for
which the number of variants is much larger. However,
this is yet to be demonstrated.
It should also be noted that some reduction in com-

puting time can be achieved by “pruning” SNPs that are
in very high linkage disequilibrium from the dataset,
since these SNPs carry redundant information. For
example, Su et al. [41] reduced a dataset from 770 K to
492 K SNPs by pruning SNPs that were in very high
linkage disequilibrium in a Nordic Holstein population
prior to estimation of SNP effects.
Our aim is to eventually integrate emBayesR into gen-

etic evaluations for Australian dairy cattle. Currently, the
Australian National DNA reference population has more
than 20 000 cattle, including 3719 Holstein bulls, 9630
Holstein cows, 1017 Jersey bulls and 4249 Jersey cows.
For the evaluation of these national reference popula-
tions, GBLUP is currently used to calculate the Australia
Genomic Breeding Value on 50 K SNP genotypes. How-
ever, even with the current data, prediction accuracy is
higher with Bayes R than with GBLUP for some traits
and GBLUP is unable to take advantage of the extra in-
formation that would be contained in whole-genome
sequence data. Therefore, we anticipate moving to a
Bayesian method to take advantage of whole-genome
sequence data and increase prediction accuracies, and
we expect that an EM algorithm will be part of this
methodology in order to limit computing time.
In this paper, we used only bulls in the reference and

validation sets, to avoid the added complexity of weighting
bull and cow trait deviations differently. However, further
development of the method described in this paper is
needed to include appropriate weighting of phenotypes,
multi-breed effects, polygenic effects in the model (as im-
plemented in the MCMC version [19]) and to imbed the
Bayesian method within a single-step genetic evaluation
[42,43], so that it can be applied to the Australian national
dairy evaluations. Also, efficient approaches for inversion
of the animal by animal matrix to obtain the PEV need
to be investigated to retain the efficiency advantage of
emBayesR with very large numbers of animals.

Conclusions
emBayesR uses an EM-based method to estimate the
posterior mode of SNP effects, rather than the MCMC
sampling used in BayesR. emBayesR can reduce comput-
ing time up to 8-fold compared to BayesR. Results with
simulated data and real 630 K SNP dairy cattle data
show that genomic prediction accuracy of emBayesR is
similar to that of BayesR (0.5% accuracy loss averaged
over traits). The computing advantages of emBayesR make
it attractive for implementation of genomic prediction in
very large datasets.
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