Appendix 1 - Calculation of $\mathbf{P}_{\mathrm{ik}}=\boldsymbol{E}\left(\mathbf{b}_{\mathrm{ik}} \mid \mathbf{y}, \widehat{\mathrm{Pr}}_{k}\right)$

In the expectation step of the EM algorithm we require the $\mathrm{E}_{\mathrm{b} \mid \mathrm{y}}$ of equation 6 b . This requires the $\boldsymbol{E}\left(\mathbf{b}_{\mathbf{i k}} \mid \mathbf{y}, \widehat{\mathbf{P r}}_{\boldsymbol{k}}\right)$ which is derived in this appendix.

The model is $\mathbf{y}=\mathbf{1}_{\boldsymbol{n}} \mu+\mathbf{Z}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}+\mathbf{u}+\mathbf{e}$,
Then,

$$
\begin{align*}
E_{\mathbf{u}}\left(\mathrm{b}_{\mathrm{ik}} \mid \mathbf{y}, \widehat{\operatorname{Pr}}_{k}\right) & =p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \mathbf{y}, \widehat{\operatorname{Pr}}_{k}\right) \\
& =\frac{p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right) \times p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \widehat{\mathrm{P}}_{k}\right)}{p(\mathbf{y})} \\
& \propto p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right) \times p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \widehat{\mathrm{Pr}}_{k}\right) \tag{A1}
\end{align*}
$$

where,
$p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \widehat{\mathbf{P r}}_{k}\right)=\widehat{\mathbf{P r}}_{k}$, and
$p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)=\frac{1}{\sqrt{\left|\mathbf{w}_{\mathbf{k}}\right|}} \exp \left(-\frac{1}{2}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)^{\prime} \mathbf{W}_{\mathrm{k}}{ }^{-1}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)\right)$, so
$\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)=-0.5\left(\log \left|\mathbf{W}_{\mathrm{k}}\right|+\left(\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)^{\prime} \mathbf{W}_{\mathrm{k}}{ }^{-1}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)\right)\right.$
based on $\left(\mathrm{y}-\mathbf{1}_{\boldsymbol{n}} \boldsymbol{\mu}-\mathbf{u}\right) \mid\left(\mathrm{b}_{\mathrm{ik}}=1\right) \sim \mathrm{N}\left(0, \mathbf{W}_{\mathbf{k}}\right)$, and $\mathbf{W}_{\mathbf{k}}=\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}{ }^{\prime} \sigma_{\mathrm{k}}^{2}+\mathbf{I} \sigma_{\mathrm{e}}^{2}$.

Therefore,

$$
\log l_{i k}=\log p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \mathbf{y}, \widehat{\mathrm{Pr}}_{k}\right)=\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)+\log p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \widehat{\mathbf{P r}}_{k}\right)+\text { constant }
$$

constant appear on both denominator term and numerator term of equation (A7), and therefore could be ignored.

The expression above for $\log p\left(\mathbf{y}, \mid \mathrm{b}_{\mathrm{ik}}=1\right)$ involves the unknown \mathbf{u}. Therefore, we take the expectation over $\mathbf{u} \mid \mathbf{y}$. That is,
$\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)=-0.5 \boldsymbol{E}_{\mathbf{u} \mid \mathbf{y}}\left\{\log \left|\mathbf{W}_{\mathrm{k}}\right|+\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \boldsymbol{\mu}-\mathbf{u}\right)^{\prime} \mathbf{W}_{\mathrm{k}}{ }^{-1}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)\right\}$

Only the quadratic form $Q=\left(\mathbf{y}-\mathbf{1}_{n} \mu-\mathbf{u}\right)^{\prime} \mathbf{W}_{\mathrm{k}}{ }^{-1}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\mathbf{u}\right)$ of $\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)$ involves \mathbf{u}. Therefore, apply Searle's expectation rule[32] for Q as follows:

$$
\mathrm{E}_{\widehat{\mathbf{u}}} Q=\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\widehat{\mathbf{u}}\right)^{\prime} \mathbf{W}_{\mathrm{k}}^{-1}\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \mu-\widehat{\mathbf{u}}\right)+\operatorname{tr}\left(\mathbf{W}_{\mathrm{k}}^{-1} P E V((\widehat{\mathbf{u}}))\right.
$$

Hence,

$$
\begin{aligned}
\log p\left(\mathbf{y}, \mid \mathrm{b}_{\mathrm{ik}}=1\right) & =-0.5\left\{\log \left|\mathbf{W}_{\mathrm{k}}\right|+\mathrm{E}_{\widehat{\mathbf{u}}} Q\right\} \\
& =-0.5\left\{\log \left|\mathbf{W}_{\mathrm{k}}\right|+\mathbf{y}^{\dagger^{\prime}} \mathbf{W}_{\mathrm{k}}^{-1} \mathbf{y}^{\dagger}+\operatorname{tr}\left(\mathbf{W}_{\mathrm{k}}^{-1} P E V((\widehat{\mathbf{u}}))\right\}\right.
\end{aligned}
$$

where, $\mathbf{y}^{\dagger}=\left(\mathbf{y}-\mathbf{1}_{\boldsymbol{n}} \boldsymbol{\mu}-\widehat{\mathbf{u}}\right)$.

Although \mathbf{W}_{k} is an $n \times n$ matrix. the calculation of $\log \left|\mathbf{W}_{\mathrm{k}}\right|$ and $\mathbf{W}_{\mathrm{k}}{ }^{-1}$ can be simplified by using the Woodbury identity so that

$$
\begin{align*}
& \mathbf{W}_{\mathrm{k}}{ }^{-1}=\left(\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime} \sigma_{\mathrm{k}}^{2}+\mathbf{I} \sigma_{\mathrm{e}}^{2}\right)^{-1}=\sigma_{\mathrm{e}}^{-2}\left(I-\frac{\mathbf{z}_{\mathbf{z}^{\prime}} \mathbf{Z}_{\mathrm{i}}^{2} \sigma_{\mathrm{k}}^{2}}{\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathrm{i}} \mathbf{Z}_{\mathrm{i}}+\sigma_{\mathrm{e}}^{2}}\right) \tag{A2}\\
& \left|\mathbf{W}_{\mathrm{k}}\right|=\sigma_{\mathrm{e}}^{(2 \mathrm{n}-2)}\left(\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathrm{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}+\sigma_{\mathrm{e}}^{2}\right), \text { so } \\
& \log \left|\mathbf{W}_{\mathrm{k}}\right|=(2 \mathrm{n}-2) \log \sigma_{\mathrm{e}}^{2}+\log \left(\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathrm{i}}^{\prime} \mathbf{Z}_{\mathrm{i}}+\sigma_{\mathrm{e}}^{2}\right) \tag{A3}
\end{align*}
$$

Such transformation could transfer the inverse calculation of a large matrix \mathbf{W}_{k} to the multiplication of the vectors, which could reduce the cost for matrix calculation.

Therefore, substitute (A3) and (A4) into $\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}, \widehat{\mathbf{u}}\right)$ as follow:

$$
\begin{align*}
\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right) & =-0.5\left\{(\mathrm{n}-1) \log \sigma_{\mathrm{e}}^{2}+\log \left(\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathrm{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}+\sigma_{\mathrm{e}}^{2}\right)\right\} \\
& -0.5\left\{\left(\mathbf{y}^{*^{\prime}} \mathbf{y}^{*}\right) \sigma_{\mathrm{e}}^{-2}-\left(\mathbf{y}^{*^{\prime}} \mathbf{Z}_{\mathbf{i}}\right)^{2} \sigma_{\mathrm{k}}^{2} \sigma_{\mathrm{e}}^{-2} /\left(\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}+\sigma_{\mathrm{e}}^{2}\right)\right\} \\
& -0.5\left\{\operatorname{tr}(\operatorname{PEV}(\widehat{\mathbf{u}})) \sigma_{\mathrm{e}}^{-2}-\operatorname{tr}\left(\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime} \operatorname{PEV}(\widehat{\mathbf{u}})\right) \sigma_{\mathrm{k}}^{2} \sigma_{\mathrm{e}}^{-2} /\left(\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}+\sigma_{\mathrm{e}}^{2}\right)\right\} \tag{A4}
\end{align*}
$$

Then,

$$
\begin{aligned}
\log l_{i k} & =\log p\left(\mathbf{y} \mid \mathrm{b}_{\mathrm{ik}}=1\right)+\log p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \widehat{\mathbf{P r}}_{k}\right) \\
& =-0.5\left\{2(\mathrm{n}-1) \log \sigma_{\mathrm{e}}^{2}+\log \mathrm{V}\right\}
\end{aligned}
$$

$$
\begin{align*}
& -0.5\left\{\left(\mathbf{y}^{\left.\left.\dagger^{\prime} \mathbf{y}^{\dagger}\right) \sigma_{\mathrm{e}}^{-2}-\left(\mathbf{y}^{\dagger^{\prime}} \mathbf{Z}_{\mathbf{i}}\right)^{2} \sigma_{\mathrm{k}}^{2} \sigma_{\mathrm{e}}^{-2} / V\right\}}\right.\right. \\
& -0.5\left\{\operatorname{tr}(\operatorname{PEV}(\widehat{\mathbf{u}})) \sigma_{\mathrm{e}}^{-2}-\operatorname{tr}\left(\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime} \operatorname{PEV}(\widehat{\mathbf{u}})\right) \sigma_{\mathrm{k}}^{2} \sigma_{\mathrm{e}}^{-2} / V\right\} \\
& +\log \operatorname{Pr}_{\mathrm{k}} \tag{A5}
\end{align*}
$$

where, $\mathbf{y}^{\dagger}=\mathbf{y}-\mathbf{1}_{n} \boldsymbol{\mu}-\widehat{\mathbf{u}}, V=\sigma_{\mathrm{k}}^{2} \mathbf{Z}_{\mathbf{i}}^{\prime} \mathbf{Z}_{\mathbf{i}}+\sigma_{\mathrm{e}}^{2}$ and n is the number of animals. $\operatorname{PEV}(\widehat{\mathbf{u}})(n \times n$ symmetric matrix) could be approximated by $\operatorname{PEV}\left(\widehat{u}^{*}\right)$ as derived in appendix 2 and could be calculated based on GBLUP, outside the iterations of EM algorithm. $\operatorname{tr}\left(\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime} \operatorname{PEV}(\widehat{\mathbf{u}})\right)$ means to add up the diagonal elements of symmetric matrix. In other words, we just need to calculate and then add up the diagonal elements of the multiplication of $\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime}$ (also a $n \times n$ symmetric matrix) and $\operatorname{PEV}(\widehat{\mathbf{u}})$. Because $\operatorname{tr}\left(\mathbf{Z}_{\mathbf{i}} \mathbf{Z}_{\mathbf{i}}^{\prime} \operatorname{PEV}(\widehat{\mathbf{u}})\right)$ and $\operatorname{tr}(\operatorname{PEV}(\widehat{\mathbf{u}}))$ does not change each iterations, they could be calculated once and stored in front of the EM steps.

With the expression for $\log _{\mathrm{ik}}=\log p\left(\mathrm{~b}_{\mathrm{ik}}=1 \mid \mathbf{y}, \widehat{\operatorname{Pr}}_{k}\right)$, we can now calculate the probability that each SNP is in one of four normal distributions:

$$
\begin{equation*}
P_{i k}=E_{\mathbf{u}}\left(\mathrm{b}_{\mathrm{ik}} \mid \mathbf{y}, \widehat{\operatorname{Pr}}_{k}\right)=\frac{\exp \left(\log l_{i k}\right)}{\sum_{k=1}^{4} \exp \left(\log _{i k}\right)} \tag{A6}
\end{equation*}
$$

