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Abstract. Parsing efficiency within the context of tree adjoining gram-
mars (TAGs) depends not only on the size of the input sentence but also,
linearly, on the size of the input TAG, which can attain several thousands
of elementary trees. We propose a factorized, finite-state TAG represen-
tation which copes with this combinatorial explosion. The associated
parsing algorithm substantially increases the parsing performance on a
real-size French TAG grammar.
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1 Introduction

High lexicalization and the so-called extended domain of locality1 of TAGs [9],
while beneficial for grammar development, are known to lead to very large gram-
mars with up to several thousands of elementary trees [16]. This poses problems
of the practical nature – parsing algorithms for TAGs are polynomial in the
size of the input sentence but also at least linear in the size of the underlying
grammar. While many parsing algorithms for speeding up TAG parsing exist,
we propose a novel approach in which redundancy is captured by combining and
optimizing several previously proposed techniques: grammar flattening, subtree
sharing, rule compression into a unique finite-state automaton, and adaptation
of parsing inference rules to this representation. Experiments show that these
measures lead to a substantial gain in space and time efficiency.

2 Tree Adjoining Grammars

Let Σ and N0 be disjoint sets of terminal and non-terminal symbols. An ini-
tial tree (IT) is a tree with non-terminals in non-leaf nodes and terminals/non-
terminals in leaf nodes. An auxiliary tree (AT) is similar to an IT but it has one

? This work has been supported by the PARSEME European COST Action (IC1207).
1 The former meaning that elementary grammar units are typically attached to one or

more lexical items, the latter that many syntactic phenomena can be conveniently
represented locally, at the level of individual elementary units.



2 J. Waszczuk, A. Savary, Y. Parmentier

distinguished leaf (usually marked with an asterisk), called a foot, containing
the same non-terminal as the root. For instance, in Fig. 2, t1, t5 and t6 are ITs,
while t2, t3 and t4 are ATs. A TAG is defined as a tuple (Σ,N0, I,A,S) where I
is the set of elementary initial trees (EITs), A is the set of elementary auxiliary
trees (EATs), and S is the start non-terminal.

A derived tree is created from EITs and EATs by substitution and adjunction.
Given an IT t, and any tree t′, substitution replaces a non-terminal leaf l in t′

by t provided that labels in l and in t’s root are equal. Given an AT t, and any
tree t′, adjunction replaces t’s foot by a subtree t′′ of t′ and then inserts this
modified t in place of t′′ in t′ , provided that the root non-terminals in t and t′′

are identical, as shown in Fig. 2. A derivation tree keeps track of the operations
and the elementary trees (ETs) involved in the creation of a derived tree.
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N N*
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Fig. 1. Adjunction of the tree t2 to the
tree t5 from Fig. 2

A sequence of terminals obtained by
an in-order traversal of a tree t is called
a projection of t, written proj(t). We also
define projA(t), specialized to ATs, as a
pair of terminal sequences on the left and
on the right of the foot node, respectively.

We say that a tree t can be derived
from a non-trivial subtree2 t0 (auxiliary or
not) of an ET iff (i) tree t can be derived
from the grammar extended with t0 as an ET and (ii) a derivation tree d of
t exists such that t0 occurs in d’s root and, unless t0 is already part of the
grammar, nowhere else in d. We will also say that a non-auxiliary subtree t0
of an ET is recognized over a span (i, l) of the input sentence s iff a tree t can
be derived from t0 such that proj(t) = s(i,l), where s(i,l) is a part of sentence
s containing its words between positions i and l. Similarly, we will say that an
auxiliary subtree t0 of an ET is recognized over a span (i, j, k, l) iff a tree t can
be derived from t0 such that projA(t) = (s(i,j), s(k,l)).

3 Grammar factorization

Consider the sentence in example (1) and the toy lexicalized TAG (LTAG) con-
taining trees t1,. . . ,t6 from Fig. 2 covering several competing interpretations for
the two initial words.

(1) Set points in tennis belong to official scoring.

The IT t1 represents set as a phrasal verb in imperative mode requiring a
direct object and a prepositional complement governed by in. ATs t2, t3 and
t4 consider set as a nominal, adjectival and past participle modifier of a head
noun, respectively. In the IT t5 points is a nominal phrase, while t6, having
two anchors, corresponds to the idiomatic interpretation of set points as an NN
compound.

2 In the rest of this paper, by subtree we mean a non-trivial (of height > 0) subtree,
unless explicitly stated otherwise.
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3.1 Grammar flattening with subtree sharing

We propose to represent each ET in a TAG as a set of flat production rules,
so that common subtrees are shared (cf. Fig.2). Each non-terminal from an
internal (non-root and non-leaf) node receives a unique index, and each non-leaf
node together with its children yields a production rule. E.g., nodes VP and PP
with their children in t1 yield the rules VP1 → V2 NP PP3, PP3 → P4 NP ,
respectively. Additionally, each node on the spine of an AT is marked by an
asterisk, e.g. the root of t2 becomes N∗ in the head of the rule N∗ → N5N

∗.
Note also that the non-terminal N , occurring twice in t6, yields two different

non-terminals N0 and N5 in order to prevent non-compatible rule combinations.
For instance, we should not admit an NN-compound points set, which would
be admitted if these two N terminals were not distinguished. Note, however,
also that as soon as some subtrees are common for different grammar trees, the
indexed non-terminals, and consequently the target rules, can be shared. For
example, the nominal interpretations of set and points common for t2, t5 and t6
can be shared via the common production rules N5 → set and N0 → points.

In what follows, we refer to such a grammar conversion as flattening with
subtree sharing (FSS), and to the conversion result as an FSS grammar (FSSG).

(t1) (t2) (t3) (t4)S
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Fig. 2. A toy LTAG grammar and its FSSG.
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Fig. 3. Compression of the FSSG
from Fig.2 into an FSSA.

Formally, the FSSG constructed from a TAG G = (Σ,N0, I,A,S) takes
form of a set of production rules α ∈ N × (N ∪Σ)+ where the first component
represents the head of the rule and the second element – the non-empty body
of the rule. N0 is the set of FSSG non-terminals and it takes the form of triples
X ∈ N0 × (N ∪ {−})× {−, ∗} where ‘−‘ indicates that the corresponding value
is unbound. Internal nodes are marked with unique identifiers from the set of
natural numbers N. A non-terminal (x, u, a) ∈ N is alternatively written as xau
and unbounded values (−) are ignored. For example, (N,−, ∗) is equivalent to
N∗, (V, 2,−) to V2 and (NP ,−,−) to NP .
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The FSS conversion determines a bijection R0 between non-terminals origi-
nating from internal nodes (X ∈ N0 × N× {−, ∗}) and proper subtrees of ETs.
A subtree common to several ETs (e.g. the subtree rooted at N dominating set
in trees t2 and t6 in Fig. 2) is represented, in the FSSG, by a single non-terminal
(here: N5). We define a 1-to-many correspondence R between non-terminals
(X = (x, u, a) ∈ N ) and TAG subtrees as an extension of this bijection:

R(X) =


{R0(X)} if u 6= −
I|x if (u, a) = (−,−)

A|x if (u, a) = (−, ∗)
(2)

where I|x and A|x are the sets of all EITs and all EATs, respectively, rooted at
x ∈ N0. E.g., in Fig. 2, R(NP) = {t5, t6} and R(N∗) = {t2, t3, t4}.

3.2 Automaton-based grammar compression

Despite subtree sharing applied to the FSSG in Fig. 2, it still shows some degree
of redundancy: the terminal set constitutes the body of 4 rules (headed by V2,
N5, A7 and Pt9), the non-terminal NP occurs in the head of 2 rules, and the spine
non-terminal N∗ appears in the head and in the suffix of 3 rules. This observation
leads to the idea of representing the FSSG as a minimal deterministic finite-state
automaton (DFSA), called here FSSA, as shown in Fig. 3. The FSSA’s alphabet
consists of terminals and non-terminals of the FSSG rules. Each path represents
the right-hand side of a rule followed by its head.3 For instance, the bottom path,
traversing nodes 0, 10, 12, 11 and 1, represents the rule VP1 → V2 NP PP3.
In this representation redundancy is largely avoided: the terminal set and the
head non-terminals NP and N∗, are represented by unique transitions (0, set, 2),
(4,NP , 1) and (14, N∗, 1), respectively. Additionally, transition (13, N∗, 14) is
shared by the suffixes of rules N∗ → A7N

∗ and N∗ → Pt9N
∗.

In what follows we extend the notion of an FSSA-based grammar compression
into the case when the grammar rules are possibly represented as a set of FSSAs
(with disjoint sets of nodes identifiers), according to the particular variant of the
compression technique. For instance, in [12] all grammar rules having the same
head non-terminal are compressed into a separate DFSA. One of the versions of
our parser tested in Sec. 5 implements a similar compression idea.

For a grammar represented as a set of FSSAs, and for any state q therein, let
P (q) be a set of sequences of labels leading from an initial state to q. For instance,
in Fig. 3, P (14) = {N5N

∗, P t9N∗, A7N
∗}. Note that if q is non-final, sequences

in P (q) correspond to prefixes of rules’ bodies. In particular, P (q) ∈ (N ∪ T )∗.

4 Parser

We propose two Earley-style [6] bottom-up TAG parsing algorithms. The first
one, called an FSS parser, is inspired by [14], and differs from this seminal work

3 Head non-terminals are distinguished from others, which is neglected in Fig. 3.
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in that it uses an FSSG instead of the original TAG and ignores prediction. The
other one, called an FSSA parser and inspired by [12], is an extension of the FSS
parser in that it uses the FSSG compressed into FSSAs. In both algorithms pars-
ing can be seen, after [11], as a dynamic construction of a hypergraph [8] whose
nodes are parsing chart items and whose hyperarcs represent applications of
inference rules. The hypergraph representation facilitates comparisons between
the two algorithms, and time efficiency estimations (the number of elementary
parsing steps can be approximated by the number of hyperarcs). It also provides
a compressed representation of all the derived trees for a given input sentence.

4.1 FSS parser

Fig. 4 shows the hypergraph created while parsing the two initial words of sen-
tence (1) by the FSS parser with the FSSG from Fig. 2. Due to space constraints,
we do not formally define the inference rules of the FSS parser here. They can
be seen as simplified versions of those defined in Sec. 4.4. Each item contains a
dotted rule and the span over which the symbols to the left of the dot have been
parsed. E.g., the hyperarc leading from (N5 → •set, 0, 0) to (N5 → set•, 0, 1)
means that the terminal set has been recognized from position 0 to 1. The latter
item can be combined with (NP → •N5N0, 0, 0) yielding (NP → N5 •N0, 0, 1),
etc. The sentence s has been parsed if a goal item has been reached (spanning
from 0 to |s|, with a rule headed by (S,−,−) and terminated by a dot).

(N5 → •set,
0, 0)

(A7 → •set,
0, 0)

(Pt9 → •set,
0, 0)

(V2 → •set,
0, 0)

(N5 → set•,
0, 1)

(NP → •N5N0, 0, 0)

(N∗ → •N5N
∗, 0, 0)

(A7 → set•,
0, 1)

(N∗ → •A7N
∗, 0, 0)

(Pt9 → set•,
0, 1)

(N∗ → •Pt9N
∗, 0, 0)

(N0 → •points, 1, 1)

(V2 → set•,
0, 1)

(V P1 → •V2NP PP3, 0, 0)

(NP → N5 •N0, 0, 1)

(N∗ → N5 •N∗,
0, 1)

(N∗ → A7 •N∗,
0, 1)

(N∗ → Pt9 •N∗,
0, 1)

(N0 → points•,
1, 2)

(NP → •N0, 1, 1)

(V P1 → V2 •NP PP3,
0, 1)

(NP → N5N0•,
0, 2)

(N∗ → N5N
∗•,

0, 1, 2, 2)

(N∗ → A7N
∗•,

0, 1, 2, 2)

(N∗ → Pt9N
∗•,

0, 1, 2, 2)

(NP → N0•, 1, 2)

(N0 → points•,
0, 2)

(NP → •N0,
0, 0)

(V P1 → V2NP • PP3,
0, 2)

(NP → N0•,
0, 2)

Fig. 4. Hypergraph created by the FSS parser while parsing the substring set points
with the FSSG from Fig. 2. The dashed and plain hyperarcs roughly correspond to
scanner and completer operations in a CFG Earley parser. The densely dotted and
loosely dotted hyperarcs correspond to novel inference rules: foot adjoin and root ad-
join, respectively.

Items whose spans contain 4 integers (i1, i2, i3, i4) result from the FSS-based
inference rules related to adjunction: i1 and i4 represent the whole span of the
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recognized sequence, while i2 and i3 indicate the gap, i.e. the part of the sequence
matched by the foot node of an AT. For instance, the hyperarc leading from
(N∗ → N5 •N∗, 0, 1) and (N0 → points•, 1, 2) to (N∗ → N5N

∗•, 0, 1, 2, 2) puts
forward an adjunction hypothesis. The noun points has been recognized over
span (1, 2), and set recognized over (0, 1) might later be adjoined to it as a
modifier. Thus, points will fill the gap (from 1 to 2) corresponding to the foot
node N∗ in the body of rule N∗ → N5N

∗ (stemming from tree t2). Note further
that the combination of items (N∗ → N5N

∗•, 0, 1, 2, 2) and (N0 → points•, 1, 2)
yields (N0 → points•, 0, 2), which corresponds to stage 1 of the adjunction (see
Sec. 2). Stage 2 is then represented by the hyperarc leading to (NP → N0•, 0, 2).

4.2 FSSA parser

(0, 0, 0)

(2, 0, 1)

(N5,0,1)

(Pt9,0,1)

(A7,0,1)

(V2,0,1) (10, 0, 1)

(0, 1, 1)

(13, 0, 1)

(5, 0, 1)

(3, 1, 2) (N0,1,2)

(4, 1, 2)

(14, 0, 1, 2, 2)

(NP,1,2)

(N*,0,1,2,2)

(12, 0, 2)

(N0,0,2)

(4, 0, 2)

(NP,0,2)

Fig. 5. Hypergraph representing the chart parsing of the substring set points with the
FSSA from Fig. 3. The double, plain, thick, dashed, densely dotted and loosely dotted
hyperarcs represent axioms, pseudo substitution, deactivate, scan, foot adjoin and root
adjoin inference rules, respectively (see Sec. 4.4). Passive states are highlighted in bold.

The idea behind grammar compression is not only space efficiency but also
reducing parsing time [12]. The latter is based on the observation that, whenever
bodies of some flat rules share common prefixes and/or suffixes (which is in close
relation to sharing sub-paths in the FSSA), partial parsing results can be shared
for them. Another related fact is that, for a given position of the dot in a flat
dotted rule, the history of the parsing on the left-hand side of the dot does
not influence the future parsing on the right-hand side of the dot. Therefore,
the position of the dot in a rule can be nicely represented by the FSSA state
achieved while parsing the rule, whatever the path which led us to this state.

These observations may lead to a substantial reduction of the parsing hyper-
graph, as shown in Fig. 5. Here, dotted rules in the hypergraph items from Fig. 4
are replaced by states of the FSSA from Fig. 3 (the resulting items are called ac-
tive). Firstly, all 9 initial items (i.e. having the dot at the beginning of their rules’
bodies) over span (0, 0) in Fig. 4, e.g. (N5 → •set, 0, 0), (NP → •N5N0, 0, 0),
etc. – are replaced by a unique item (0, 0, 0) in Fig. 5 due to the fact that they
all share the same (empty) prefix on the left-hand side of the dot, and the same
span. The 10th remaining initial item (N0 → •points, 1, 1) is replaced by (0, 1, 1).
Further, rules having dots inside their bodies are replaced by FSSA states, for
instance items (N∗ → A7 • N, 0, 1) and (N∗ → Pt9 • N, 0, 1) are replaced by
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the unique item (13, 0, 1) since their prefixes A7 and Pt9 lead to the same state
13. Finally, complete items (i.e. having the dot at the end of the rule), are re-
placed by two items, the one containing the arrival state, and the other (called
a passive item) in which the state is replaced by the head of the fully recognized
rule. For instance, items (N∗ → N5N

∗•, 0, 1, 2, 2), (N∗ → A7N
∗•, 0, 1, 2, 2) and

(N∗ → Pt9N
∗•, 0, 1, 2, 2) are merged into one active item (14, 0, 1, 2, 2) since

they share the same arrival state 14 and span. This item is then followed by a
passive item (N∗, 0, 1, 2, 2). The goal item is (S, 0, |s|).

4.3 Items

Let s = s0s1 . . . sn−1 be the input sentence and Pos(s) = {0, . . . , n} the set of
positions between the words in s. We define two kinds of items.

A passive item is a tuple (X, i, j, k, l) where: X ∈ N , i, l ∈ Pos(s), j, k ∈
Pos(s)∪{−}, i ≤ l, and i ≤ j ≤ k ≤ l if (j, k) 6= (−,−). We say that (X, i, j, k, l)
asserts that X can be matched over the span (i, j, k, l), where i and l denote the
whole span of a matched sequence and j and k denote the gap. Formally, a
passive item (X, i,−,−, l), or (X, i, l) for short, asserts that an IT t ∈ R(X), a
subtree of an ET in G, can be recognized (cf. Sec. 2) over the span (i, l). E.g.,
item (N0, 1, 2) in Fig. 5 indicates that points in sentence (1) can be analyzed
as a noun by the subtree rooted at N in t5 and t6 in Fig. 2. A passive item
(X, i, j, k, l) where (j, k) 6= (−,−) and X = (x, u, a) asserts that (i) an AT
t ∈ R(X), a subtree of some ET in G, can be recognized over (i, j, k, l), and
(ii) a subtree t′ of an ET4, with x ∈ N0 in its root, can be recognized over
(j, k). Thus, the item (N∗, 0, 1, 2, 2) in Fig. 5 means that set can be a modifier
adjoined to a noun interpretation of points. Here: t ∈ {t2, t3, t4} and t′ is the
subtree rooted at N in t5 and t6.

An active item is a tuple (q, i, j, k, l), where i, j, k, and l specify the span,
as previously, and q is a state in one of the underlying FSSAs. An active item
(q, i, j, k, l) asserts that there exists a (not necessarily proper) prefix ω ∈ P (q)
(of a grammar rule’s body) which can be matched over (i, j, k, l), i.e. that the
individual elements of ω can be consecutively matched over the adjacent spans
of the input sentence, together spanning over (i, l), and that, if (j, k) 6= (−,−),
one of the elements of ω, marked with an asterisk, is matched against the item’s
gap (j, k). E.g., (12, 0, 2) and (14, 0, 1, 2, 2) in Fig. 5 correspond to matching set
points with ω = V2NP and ω ∈ {N5N

∗, P t9N∗, A7N
∗}, respectively.

4.4 Inference rules

We now formally specify the FSSA parser using the deductive framework [15].
As shown in Tab. 1, each of the inference rules, whose applications correspond to
hyperarcs in the parsing hypergraph, takes zero, one or two chart items on input
(premises, presented above the horizontal line) and yields a new item (conclu-
sion, presented below the line) to be added to the chart if the conditions given on
the right-hand side are met. The axiom rule (AX, represented in Fig. 5 by the

4 t′ must not be an EAT (see the root adjoin inference rule in Sec. 4.4 for explanations).
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AX:
(q0,i,−,−,i)

i∈Pos(s)\{n} PS: (q,i,j,k,l) (X,l,−,−,l′)
(δ(q,X),i,j,k,l′)

δ(q,X) defined

SC: (q,i,j,k,l)
(δ(q,sl),i,j,k,l+1)

δ(q,sl) defined FA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,Y ),i,l,l′,l′)

(x,u,a)=X
(u,a)6=(−,∗)
Y=(x,−,∗)
δ(q,Y )defined

DE: (q,i,j,k,l)
(X,i,j,k,l)

X∈heads(q) IA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,X),i,j,k,l′)

δ(q,X) defined
(j,k)6=(−,−)

RA: (X,i,j,k,l) (Y,j,j′,k′,k)
(Y,i,j′,k′,l) (x,−, ∗) = X, (y, u, a) = Y, (u, a) 6= (−, ∗), x = y

Table 1. Inference rules of the FSSA parser

double hyperarcs with empty inputs leading to items (0, 0, 0) and (0, 1, 1)) fills
the initially empty chart with active items representing the claim that any rule
α from the FSSG can be used to parse s starting from any non-final position,
for each initial state q0 of one of the FSSAs. The scan rule (SC, represented in
Fig. 5 by the dashed hyperarcs leading to items (2, 0, 1) and (3, 1, 2)) matches the
FSSAs’ terminal symbols with words read from the input. Deactivation (DE,
represented in Fig. 5 by thick hyperarcs) is a rule which transforms an active
item into the corresponding passive item, based on the q-outgoing head non-
terminals, where heads(q) is the set of transition symbols leading from state q
to final states of the FSSAs (i.e. transitions which represent rule heads). Pseudo
substitution (PS, represented in Fig. 5 by plain hyperarcs) is similar to scan-
ning, but instead of matching FSSA terminals against input words, automaton
non-terminal are matched against already inferred non-terminals represented by
passive items. Pseudo substitution handles regular TAG substitution, i.e. replac-
ing a leaf non-terminal X by a IT containing X in its root (cf. the hyperarc in
Fig. 5 leading from (10, 0, 1) and (NP , 1, 2) to (12, 0, 2)), as well as matching two
adjacent fragments of the same ET (cf. the hyperarc from (5, 0, 1) and (N0, 1, 2)
to (4, 0, 2)). The foot adjoin (FA, represented in Fig. 5 by densely dotted hy-
perarcs) rule is responsible for identifying ranges over which adjunction could
possibly occur. In Fig. 5, for the hyperarc leading from (5, 0, 1) and (N0, 1, 2) to
(14, 0, 1, 2, 2), we have X = N0 = (N, 0,−), Y = (N,−, ∗) = N∗, (j, k) = (−,−)
and δ(5, Y ) = 14. Foot adjoin ensures that the resulting item is considered only
if an elementary (sub)tree, recognized starting from l, and to which the corre-
sponding AT(s) could be adjoined, exists. The internal adjoin rule (IA, having
no instance in Fig. 5) serves to combine an elementary (sub)tree, partially rec-
ognized over (i,−,−, l), with its spine subtree, recognized starting from position
l. Internal adjoin is similar to pseudo substitution, but it must be handled by a
separate inference rule because information about the gap preserved in the rule’s
conclusion originates from the passive premise rather than from the active one.
The root adjoin inference rule (RA, represented in Fig. 5 by loosely dotted
hyperarcs) represents the actual adjoining of a fully recognized EAT t into the
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root of a recognized subtree t′ of an ET. Information that t′ is recognized (with
a modified span), is preserved in the rule’s conclusion and can be subsequently
reused in order to recognize the full ET of which t′ is a part. For instance, in
Fig. 5, for the hyperarc leading from (N∗, 0, 1, 2, 2) and (N0, 1, 2) to (N0, 0, 2),
we have X = N∗ = (N,−, ∗), Y = N0 = (N, 0,−), x = y = N , (u, a) = (0,−),
(j′, k′) = (−,−), t ∈ {t2, t3, t4} and t′ is the subtree of t5 rooted at N .5

5 Experimental results

To perform the experiments we used the FrenchTAG meta-grammar [5] com-
piled into a set of 9043 TAG non-lexicalized ETs. After removing feature struc-
tures, which are not supported by our parser, 3065 unique trees where obtained.
Since no compatible lexicon is available, we lexicalized the grammar with part-
of-speech (POS) tags. Namely, to each anchor in each ET a special terminal,
containing the same POS value as the anchor, has been attached. Thus, we ob-
tained a grammar which models sentences with regular terminals (e.g. il ‘it‘,
de ‘of‘, qui ‘who‘) and POS tags (e.g. v, n, adj ) interleaved. Such lexicalization
seems to imitate actual parsing conditions accurately enough given that (i) it
simultaneously decreases and increases ambiguity (words can have several in-
terpretations but one POS tag can stand for many different words occurring in
different ETs), (ii) parsing is often preceded by POS tagging.

Fig. 6(a) shows the total numbers of automaton states and transitions de-
pending on the compression method used to encode the resulting grammar. In
the baseline, the grammar is represented as a list of flat rules (encoded as a
separate automaton each) but no subtree sharing takes place. With this repre-
sentation, parsing is roughly equivalent to the Earley-style TAG algorithm [14].
The FSS and FSSA encoding methods were described in Sec. 3.1 and 3.2.

Since treebanks compatible with existing TAGs (especially those generated
from metagrammars) are not easily available, parsing efficiency evaluation was
done on an automatically generated corpus. Namely, ∼13000 sentences of length
from 1 to 30, of up to 500 sentences per length, were used to measure performance
in terms of the number of hyperarcs explored while parsing a sentence (deactivate
operations are ignored). The results are presented in Fig. 6(b), which includes
two additional grammar compression methods similar to those in [12] for CFGs:
(i) a trie, in which the list of rules is transformed into a prefix tree instead of a
minimal automaton, and (ii) set of FSSAs, where a separate, minimal automaton
is constructed for each head non-terminal symbol.

The results show that the baseline version of the parser is only of a theoretical
interest. It requires generating on average more than 4 × 104 hyperarcs even
for sentences of length 1 (notably due to the POS-based lexicalization). The

5 Note that the additional constraint imposed on the modified node is that it must
not be a root of an AT ((u, a) 6= (−, ∗)). Otherwise, it would be possible to adjoin
one AT to a root of another not yet adjoined AT. We block this derivation path, so
that adjunction can only be carried out on top of an AT which has already been
adjoined to some particular IT.
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Baseline FSS FSSA

States 83421 19387 1192
Transitions 61474 15212 5225
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Fig. 6. (a) Results of the compression experiments, (b) Impact of grammar encoding
methods on parsing performance, measured as an average number of hyperacs explored
by the parser on ∼13000 sentences randomly generated from the FrenchTAG grammar.

FSS parser is already a reasonable choice for parsing short sentences. FSSA
compression leads, averaging over sentences of length from 1 to 15, to a farther
reduction of ∼24× in terms of the number of visited hyperarcs. Using a set of
FSSAs instead of a single FSSA is ∼2.25 times less efficient on average.

Surprisingly, the FSSA compression doesn’t bring significant improvements
in comparison to the prefix tree version. This is probably related to the fact that
the active/passive distinction already provides a form of suffix sharing – items
referring to pre-final states in the prefix tree are automatically transformed into
the corresponding passive items. In particular, the number of passive items which
can be potentially constructed over a given span equals 1123 in both versions,
while the number of potential active items per span diminishes merely from 430
to 301 in the FSSA version. Moreover, due the left-to-right parsing strategy,
prefix sharing impacts parsing performance more visibly than suffix sharing.

6 Related work

A bottom-up Early-like algorithm based on flattening is one of the TAG parsing
schemata proposed in [2]. While, conversely to our approach, it does not allow
multiple adjunctions at the same node, it is similar to our baseline algorithm.
Our enhancements of this baseline with subtree sharing and grammar FSA-
compression substantially influence space and time efficiency (cf. Sec. 5).

Automata-based grammar encoding has been shown to considerably speed up
CFG parsing [12]. This technique is not immediately applicable to TAGs because
of the tree structure of elementary grammar units. It is, however, enabled by the
flattening transformation proposed in this paper.

Previous proposals of applying automata-based compression to TAGs are
manifold. [10] and [13] describe LR parsers for TAGs, in which predictions are
pre-compiled off-line into an FSA. Each state of this FSA is a set of dotted
production rules closed under prediction. Thus, the FSA represents the parser,
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while in our approach the FSSA represents the grammar (and the inferences
rules of the parser are adapted to this representation).

Another automata-based solution for LTAGs and related lexicalized for-
malisms has been proposed by [7, 4]. The traversal of an ET, starting from its
anchor, is represented there as an automaton. Sets of trees attached to common
anchors (lexical units) are then converted to automata, merged and minimized
using standard techniques. As a result, structure sharing occurs only within tree
families, while in our solution all ETs are represented with a single automaton
which provides sharing between rules assigned to different lexical units. Another
potential advantage of our solution lies in the subtree-sharing it enables, which
allows different rules – even when represented by completely different paths in
the automaton – to share common middle elements if these middle elements rep-
resent common subtrees. Finally, our method can be used for TAGs in general,
not only for lexicalized TAGs. [4] report state-level compression ratios equal to
18 for come, 18.2 for break, and 30 for give, over a lexicalized English grammar.
We converted the XTAG grammar [1] into an FSSA, obtaining a global, state-
level compression of 22.7 (10751 states in the baseline representation vs. 472 in
the FSSA). It is, however, difficult to compare these numbers: (i) their grammar
is considerably larger than XTAG, (ii) they did not report the compression ratio
over the entire grammar, (iii) they use one automaton per input word While
they didn’t measure the impact of their encoding on parsing performance, we
believe that our FSSA-based solution is more scalable w.r.t. the input length.

[16] proposes a method of grammar compression directly at stage of its def-
inition. A linguist uses a formal language including factoring operators (e.g.
disjunctions over tree fragments, Kleene-star-alike repetitions, optional or shuf-
fled fragments, etc.) and the resulting grammar is then converted into a Logic
Push-Down Automaton for parsing. The price to pay for this highly compact re-
source is its high potential overgeneration. Moreover, grammar description and
parsing are not separated, hence large unfactorized TAGs can be hardly coped
with. Our solution abstracts away from how the TAG is represented, compression
is automatic and the FSSA is strongly equivalent to the original TAG.

Linear indexed grammars (LIGs) compare to our grammar flattening in that
they contain flat production rules and are weakly equivalent to TAGs [10]. How-
ever, LIGs are more generic than TAGs, which means that more specialized and
more efficient parsers can be potentially designed for the latter formalism [3].
Notably, the TAG-to-LIG conversion does not preserve the extended domain
of locality (EDL) ensured by TAGs, which is for us an eliminating criterion.
Namely, in future we wish our parser to be directly driven by the knowledge
about possible occurrences of multi-word expressions [17], whose elegant repre-
sentation in TAGs is precisely due to the EDL property.

7 Conclusions

Our contribution is to design a parsing architecture coping with large TAGs (no-
tably produced from metagrammars). We build on previous work so as to capture
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redundancy: (i) we consider flattened TAGs, (ii) we share common subtrees, (iii)
we compress the flat grammar into an FSA, (iv) we adapt an Earley-based al-
gorithm to this representation, (v) we show the influence of these steps on the
parsing efficiency. To the best of our knowledge this is the first attempt to com-
bine all these steps within one framework. Both our parser and the evaluation
corpus are available under open licenses.6 While this solution does not affect
the theoretical complexity of TAG parsing, it can greatly improve the practical
parsing performance.
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