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Abstract 

This paper presents an adaptation of kernel change detection (KCD) method to solve the 
problem of defect localization in non-destructive testing (NDT). The main outcome is the 
improvement of the computing time of the data processing algorithm by reducing the number 
of cost function evaluations. The KCD algorithm is adapted and used to detect the flawless 
area in a conductive plate using eddy-current testing signals, more precisely impedance 
measurements. The forward model linking measurements to electromagnetic properties of the 
plate is solved using a finite element method (FEM). The use of a defect localization step 
leads to reducing the number of measurement data that will be processed in order to solve the 
inverse problem of defect characterization. Simulation results show the efficiency of the 
proposed adaptation of the KCD algorithm in terms of defect localization and computing time 
reduction for the estimation of its geometrical parameters. 

Keywords: eddy current testing, finite element method, inverse problem, kernel change 
detection. 

 
1. INTRODUCTION 

Non-destructive testing (NDT) aims to inspect materials integrity without destroying the 
functionality of the component or the system [1]. There are several sensing NDT techniques 
based on different measuring modalities and signal processing methods. The focus of this 
paper is on Eddy Current testing (ECT) that allows treating surface flaws or relatively close to 
the surface of the material [2]. The detection in this technique is based on the fact that the 
electromagnetic parameters of the material are disrupted by the presence of the defect. To 
solve the defect characterization problem, two main problems should be treated: the resolution 
of the forward problem, which consists in calculating the electromagnetic field knowing all 
geometric and electromagnetic parameters of the diagnosed surface, and the inverse problem 
which consists in using the measured impedance signal to deduce the geometric parameters 
(location, size and shape) and/or electromagnetic parameters (mainly permittivity and 
conductivity) of the defect. 

Non-destructive testing techniques are generally carried out in three steps: detection, location, 
and characterization. Detection aims to recognize the presence of a defect, location permits to 
determine the damaged area, characterization step aims at finding geometrical dimensions of 



the defect. Actually, the localization step is very useful for the reduction of the computation 
time by avoiding the treatment of the whole collected data for the characterization step. 
Actually, each data point necessitates the solving of the forward problem and using the whole 
data set will induce a prohibitive computing time. The resolution of the inverse problem of 
defect localization and characterization in Eddy-current testing is a longstanding challenge 
and several methods have been proposed in a number of papers [3, 4, 5, 6].  

Explain the principle of these methods, their drawbacks and limitations and why there is a 
need to develop additional methods  
 
The most issue encountered in the inversion process is the expensive computing time due to 
the electromagnetic model simulation in the forward problem. In this paper our objective is to 
reduce the calculation time by using a kernel detection method KCD [9], to locate the 
damaged area and to apply the defect characterization algorithm to the data acquired in the 
neighborhood of the detected defect. In other words, the sensing data are selected so as it will 
be easier to estimate defects characteristics using a global optimization method such as 
particle swarm optimization [7, 8].  
 
However, the application of the KCD algorithm for the defect localization is not 
straightforward since the impedance variation does not present abrupt changes. So, an 
improvement of the detection index is presented and an optimization criterion is adopted to 
maximize the sparsity of this detection function.   
 
The rest of this paper is organized as follows. We firstly present, in Section 2, the forward 
problem, its resolution using a Finite Element Method (FEM) and its numerical simulation for 
impedance calculation. Then the inverse problem of defect localization and the proposed 
application of the KCD algorithm for the defect localization in the context of EC-NDT are 
discussed in Section 3, where an adaptation is proposed in order to improve its efficiency. 
Section 4 gives some numerical results illustrating the usefulness of the proposed approach. 
Finally conclusion is drawn in Section 5. 

2. THE FORWARD PROBLEM 
We consider an axisymmetric non-destructive testing problem where a conductive plate is 
affected by two internal cracks having different geometries. We also assume that the defects 
have a rectangular shape and are characterized by their Positions (𝑃! = 10𝑚𝑚, 𝑃! =
25𝑚𝑚 ), Depths (𝐷! = 0.85𝑚𝑚,𝐷! = 0.508𝑚𝑚) and Lengths (𝐿! = 5𝑚𝑚 ,𝐿! = 3𝑚𝑚). 
 The sensor is a differential probe moving along the plate (see Figure. 1). 

 

 
Figure 1: Schematic drawing of the geometry. 



Figure 1 shows the retained sensing configuration where the differential probe constituted by 
two coils allow measuring the impedance variation along the probed plate. The geometrical 
and the electromagnetic properties of the coils and the plate are summarized in Table 1. 
 
 
 
 

Coil Descriptions 
Inner radius 7.75 mm 
Outer radius 8.5  mm 

Height along z 0.75 mm 
Distance to the 

plate  
0.1  mm 

Number of turns 70 
Frequency 100 kHz 

Plate  Descriptions 
Width  1.27 mm 
Length  40 mm 

Conductivity  10! S/m 
Relative 

permeability 
1 

Table 1: Coil and plate parameters. 
 

According the Eddy current sensing principle [4], the axisymmetric diffusion equation can be 
expressed in variational terms by the following energy function  
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Where the three energy terms of the integrand appearing in equation (1) correspond 
respectively to the magnetic field, Eddy current and source current.  
A Finite Element (FE) method permits to compute the magnetic vector potential  𝐴  which 
allows to calculate coil impedance. 
   
The impedance of a circular filament of radius 𝑟! is calculated from the magnetic vector 
potential  𝐴!  at 𝑟!  and the value of current injected into the coil 𝐼! as follows: 
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The total impedance expression of circular coil whose section is discretized in 𝑁 triangular 
elements is given by: 
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Where:  
𝑁!:  Turns density [turns/m²] 
Δ!: Surface of the i-th element.   
𝑟!" ,𝐴!": Central values of  𝑟,𝐴 in the i-th element [4]. 

3. LOCALIZATION ALGORITHM  
The differential probe is moving along the plate to measure variations of the coil impedance 



Δ𝑍! at each point 𝑘 = 1,… ,𝑛, the total impedance of differential probe can be obtained by 
summing the impedance of each coil. 
To solve inverse problem of defect localization we use an abrupt change detection algorithm 
which is performed to detect damaged zones from this impedance measurements. 
 
The aim is to locate defects from this set of measured impedance variations, which is 
considered as the input data of the algorithm KCD.  
 
 
3.1 Kernel change detection algorithm  
Most of on-line detection techniques are special instances of the following generic 
framework: Consider time 𝑡 and two descriptor subsets (the immediate past subset 𝑥!,! =
𝑥! !!!!!!,…,!!! and the immediate future 𝑥!,! = 𝑥! !!!,…,!!!!!!, as represented in figure 3.  

 

 
 

Figure 2: General abrupt change detection framework based on the time series of descriptors 𝑥! , 𝑡 = 1,2,… , 𝑛 
represented by circles. 

The on-line abrupt change detection problem is described as follows:  
 
Let 𝑡 be some time instant and assume that the samples in𝑥!,!(resp. in𝑥!,!) are sampled i.i.d. 
according to some probability density function (pdf)  𝑝!(resp. 𝑝!) Then, one of the two 
hypotheses holds: 
 

                  
𝐻!: 𝑝! = 𝑝!,                                (No abrupt change occurs)
𝐻!: 𝑝! ≠ 𝑝!,                                 An abrupt change occurs .                                  (4) 

 
This test cannot be applied in practice, however, since the pdfs  𝑝! and 𝑝!  are not known. The 
standard practical approach uses some dissimilarity measure between 𝑝! and  𝑝 !, estimated 
from the sole knowledge of the sets 𝑥!,! and  𝑥!,!. Let 𝐷 𝑥!,!, 𝑥!,!  be such a dissimilarity 
measure, the previous problem can then be written as follows: 
 

  
𝐻!:    𝐷 𝑥!,!, 𝑥!,!  ≤ 𝜂,                                  (No abrupt change occurs)
𝐻!:    𝐷 𝑥!,!, 𝑥!,! > 𝜂,                                   An abrupt change occurs .

                       (5) 

 
Where 𝜂, is a threshold that tunes the sensibility/robustness tradeoff, as in every detection 
framework. 
 
The general framework for abrupt change detection requires the dissimilarity measure 𝐷 . , .  
aimed at comparing the sets of descriptors 𝑥!,!and 𝑥!,!. More precisely, a relevant 𝐷 . , .  
should give low values whenever 𝑥!,! and 𝑥!,! occupy the same region of the space 𝜒 and 
large values whenever 𝑥!,! and 𝑥!,! occupy the distinct regions.   
 
The Kernel Change Detection algorithm was originally presented in [6]. It belongs to the 



family of abrupt change detection methods built on single-class 𝜈-Support vector machines. 
 
Considering the analysis time 𝑡. Assume that two single-class classifiers are trained 
independently on the sets 𝑥!,! and 𝑥!,!, yielding two regions 𝑅!!,!

! and 𝑅!!,!
!  or, equivalently in 

feature space 𝐻, two hyperplanes 𝑊!,! and 𝑊!,!  parameterized by (𝑤!,!,𝜌!,!) and (𝑤!,!,𝜌!,!) . 
In  𝐻, the vectors 𝑤!,! and 𝑤!,! define a 2-dimensional plane, denoted 𝑃!, that intersects the 
hypersphere 𝑆 along a circle with center 𝑂 and radius 1, as depicted in Fig. 3. Actually, in the 
least probable case where 𝑤!,! and 𝑤!,! are collinear (which is highly unlikely), there is an 
infinity of planes 𝑃!, and one can select any of them.  
 

 
 

Figure 3: The SV single-class classifiers yield two regions regions  𝑅𝑥𝑡,1
𝐻 and 𝑅𝑥𝑡,2

𝐻  which are density support estimates in 

feature space. The circle represented corresponds to the intersection of the plane 𝑃𝑡 (uniquely defi ned by 𝑤𝑡,1 and 𝑤𝑡,2) and 
𝑆. The intersection of the (prolongated) vector 𝑤𝑡,1 (resp. 𝑤𝑡,2)  with 𝑆 yields 𝑐𝑡,1 (resp. 𝑐𝑡,2), and the intersection of the 

hyperplane 𝑊𝑡,1( resp 𝑊𝑡,2) with 𝑆 in the plane 𝑃𝑡  yields two points, one of which is denoted 𝜌𝑡,1 (resp. 𝜌𝑡,2). The situation 
plotted corresponds to an abrupt change, as both regions do not strongly overlap. 

In feature space, the plane 𝑊!,!  (resp. 𝑊!,!) bounds the segment of 𝑆 where most of the 
mapped points in 𝑥 !,!(𝑟𝑒𝑠𝑝. 𝑥 !,!) lie.  
The dissimilarity measure is defined as [9] 
 

                                      𝐷! 𝑥 !,!, 𝑥 !,! = !!,!,!!,!
!!,!,!!,!!!!,!,!!,!

 =                                                 (6) 

 

4. SIMULATION RESULTS  

The KCD algorithm was applied to a simulated data according to the sensing configuration 
illustrated in Figure 1. The absolute value of impedance variation signal Δ(𝑍)  is used as the 
input data for the solving of the defect localization problem. 
 
The design parameters of the KCD algorithm are summarized in Table 2: The dispersion 
parameter 𝜎 for the Gaussian kernel, the parameter of regularization 𝜈, the training set 𝑚 and 
the threshold 𝜂. 
 

Parameters Values 
𝜎 10 
𝜈 0.5 



𝑚 5 
𝜂 20 

 
Table 2: parameters values of KCD algorithm. 

 
Figure 4 shows the input data and the resulting KCD index. One can see in Figure 4 (top) that 
changes in Δ(𝑍)  signal are not abrupt; contrary they present a slow variation. Hence 
classical KCD algorithm could not detect real changes (see Figure 4 (bottom)). 
 

 

Figure 4: Δ 𝑍  signal (top), Index KCD associated (bottom). 
 
 
4.1 Adaptation of the KCD algorithm  
 
In order to account for the slow variation of the input signal, the KCD algorithm is modified 
so as to compare more distant frames of the input impedance variation (see figure 5).  
 

 
 

Figure 5: Framework adopted for detecting ruptures Online (After modification). 
 
We introduce a horizon equal to 2ℎ  between the two distant frames of the signal: 𝑥!,! =
𝑥!!!!! ,… , 𝑥!!!!!and     𝑥!,! = 𝑥!!!!! ,… , 𝑥!!!!!. Such modification allows comparing 
different parts of the signal, which will exhibit more abrupt changes than in the case of 
successive frames.  
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To validate the proposed modification of the KCD algorithm we compute a novel KCD index 
for both  ℎ = 5 and ℎ = 10 (see Figure 6).  We notice an improvement when we introduce 
horizon h. However, the choice of the value of the horizon h should be set to optimize the 
algorithm performances. 

 
Figure 6:  Δ 𝑍  signal (top), Index KCD associated for h=5 and h=10 (bottom). 

 
4.2. Optimization of the detection index 
Since the KCD index will be used to detect the location of the abrupt changes, it should 
therefore be zero (or take small values) unless when the change occurs. Such property can be 
measured using the concept of sparsity. In that respect, the best value of ℎ should lead to the 
sparsest index  

                                           ℎ = argmin! 𝑆(𝐼).                                                    (7) 
 
Where the sparsity measure is defined by [10]  

                                             𝑆(𝐼) = !!(!)!
!!!

(!!(!)!
!!! )!

.                                        (8) 

 
Figure 6 provides the evolution of the KCD index with respect to the value of h. It can also be 
noted that the best value is h=20.  
 



 
Figure 7: Sparsity criterion. 

 
We present thereafter kernel change detection index for h=20 (figure 8). 

 
 

Figure 8: Δ 𝑍  signal (top), Index KCD associated after modification (bottom). 
For a threshold 𝜂 = 20. 

 
Results shown in figure 8 (bottom) prove the efficiency of the proposed method for detecting 
slow variations of the impedance. We can extract the beginnings and the ends of flawless 
zones according to the peaks that show KCD index with a threshold value  𝜂 = 20. 
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4.2 Optimization results  
We apply particle swarm algorithm [9] to defect characterization in order to estimate position, 
depth and length of two axisymmetric grooves. 
Particle swarm optimization is a heuristic global optimization method. It was developed in 
1995 by Russel Eberhart and James Kennedy [11]. It can be used to explore the search space 
of any problem to find the set of parameters that minimize/maximize an objective. 
In PSO the position of each particle in the swarm is updated in order to perform its next 
movement by adjusting its actual velocity 𝑣!(𝑡) at t, its best performance 𝑃𝑏! and the best 
performance in the swarm 𝑃𝑔! according to these following equations [12, 13]:  
 

𝑣! 𝑡 + 1 = 𝑤𝑣! 𝑡 + 𝑐!𝑟! 𝑃𝑏! − 𝑥! 𝑡 + 𝑐!𝑟! 𝑃𝑔! − 𝑥! 𝑡                          (9) 
 

                                          𝑥! 𝑡 + 1 = 𝑥! + 𝑣! 𝑡 + 1                                        (10) 
 

Where: 
𝑣: particle velocity, 𝑥: particle position , 𝑟!, 𝑟!: random numbers generated from the interval  
[0,1], 𝑐! , 𝑐!: intensities of attraction towards 𝑃! and 𝑃! respectively, 𝑤: inertia factor (to  
control velocity). 
The particle swarm optimization algorithm parameters are the same as those used in [7].  
 

PSO coefficient Value 
𝑐!, 𝑐! 1.4 
𝑤!"# 0.9 
𝑤!"# 0.4 

Table 3: PSO algorithm parameters. 
 

We present in Table 4 the performances of the PSO algorithm : 
 

Defects Estimated position Estimated length Estimated depth 
Defect 1 10 mm 5mm 0.834mm 
Defect 2 25,03mm 2,99mm 0.509mm 

Table4: defect estimated parameters. 
 
Particle swarm optimization method applied to characterization of the two defects shows good 
results with a very weak and acceptable uncertainty. 
 
 
 
5. CONCLUSION  
A novel KCD approach has been proposed for detecting slow variations in Eddy current non-
destructive testing (EC-NDT). 
We first solved the forward problem where a plate is affected by two internal grooves with   
finite element method FEM and compute impedance variation that we use after as an input for 
the KCD algorithm, to extract the damaged zones in the plate from impedance variations 
signal. The application of the proposed KCD algorithm to Eddy current testing signal showed 
good results.  
A couple of numerical examples show the performances of this proposed method which is 
considered as a first step for inverse problem solution in order to reduce time computation and 
a number of function evaluations for flaw characterization in optimization step. 
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