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Time-splitting approximation of the Cauchy problem for a stochastic conservation law

Introduction

We are interested in the Cauchy problem for a nonlinear hyperbolic scalar conservation law with a multiplicative stochastic perturbation of type:

   du + div f (u)dt = h(u)dW in ]0, T [×R d × Ω, u(ω, 0, x) = u 0 (x), ω ∈ Ω, x ∈ R d , (1) 
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Preprint submitted to Journal of Mathematics and Computers in SimulationDecember 8, 2014 where div is the divergence operator with respect to the space variable (which belongs to R d ), d 1, T > 0 and W = {W t , F t ; 0 ≤ t ≤ T } is a standard adapted one-dimensional continuous Brownian motion defined on the classical Wiener space (Ω, F, P ). By denoting Q =]0, T [×R d , this equation has to be understood in the following way: P-a.s. in Ω and ∀ϕ ∈ D(Q)

Q u∂ t ϕ + f (u).∇ x ϕdxdt = Q t 0 h(u)dW (s)∂ t ϕdxdt.
Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is not unique in general. The mathematical stake consists in introducing a selective criterion in order to identify the physical solution. In the present work we consider a stochastic version of the entropy condition proposed by S.N. Kruzhkov in the 70s, the one used in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] and presented in Section 2.

We assume the following hypotheses:

H 1 : f : R → R d is a Lipschitz-continuous function with f (0) = 0.

H 2 : h : R → R is a Lipschitz-continuous function with h(0) = 0.

H 3 : u 0 ∈ L 2 (R d ).
H 4 : There exists M > 0 such that supph ⊂ [-M, M ].

H 5 : u 0 ∈ L ∞ (R d ) ∩ BV (R d ) 1 .
Remark 1.

1 where BV (R d ) denotes the set of integrable functions with bounded variation on R d .

2

. H 1 , H 2 and H 3 are claimed conditions from the theoretical point of view to ensure the well-posedness in the sense of [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF]. Let us first mention that H 1 can be weakened by assuming that f is a locally Lipschitz continuous function. Indeed, since the solution u is bounded by a constant M 1 depending only on M and u 0 ∞ , the result holds by a truncation argument of f outside [-M 1 , M 1 ]. Secondly, since div[ f (0)] = 0, one can assume by convenience that f (0) = 0.

. H 4 and H 5 are specific conditions from the numerical analysis point of view.

These are technical assumptions to control the estimates in the forthcoming lemmas, in particular to apply Lemma 3.3. Note that H 4 is a necessary condition to keep the solution u bounded.

Former results

Only few papers have been devoted to the theoretical study of hyperbolic scalar conservation laws with a multiplicative stochastic forcing: the development of a well-posedness theory has been done in [START_REF] Chen | On nonlinear stochastic balance laws[END_REF]- [START_REF] Feng | Stochastic scalar conservation laws[END_REF] by the way of strong entropy solution, in [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF] by the use of kinetic formulation, and in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF]- [START_REF] Bauzet | The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation[END_REF] with the notion of stochastic entropy solution. For a thorough exposition of all these papers, we refer the reader to the introduction of [START_REF] Bauzet | On a time-splitting method for a stochastic conservation law with Dirichlet boundary condition and numerical experiments[END_REF]. Concerning the numerical analysis of such stochastic problems, there is also, to our knowledge, few papers.

Let us cite the work of Holden-Risebro [START_REF] Holden | A stochastic approach to conservation laws[END_REF] where a time-discretization of the equation is proposed by the use of an operator-splitting method. They proposed a result of convergence to prove the existence of pathwise weak solutions to the Cauchy problem for (1) set in R. In the recent paper of Bauzet [START_REF] Bauzet | On a time-splitting method for a stochastic conservation law with Dirichlet boundary condition and numerical experiments[END_REF], a generalization of the work of Holden-Risebro [START_REF] Holden | A stochastic approach to conservation laws[END_REF] is proposed in a bounded domain D of R d . The author proved that the pathwise weak solution obtained in [START_REF] Holden | A stochastic approach to conservation laws[END_REF] is the unique entropy weak solution of the stochastic conservation law and that the whole sequence of approximation given by the time-splitting scheme converges strongly. are interested in a recent work in a method of handling the finite volume schemes for the approximate solution of the Cauchy problem for (1) and investigate on a space-discretization of the equation. For a class of strongly monotone numerical fluxes they established the pathwise convergence of a semi-discrete finite volume solution towards a stochastic entropy solution. Since the authors use a stochastic version of the compensated compactness approach, the study is restricted to the one-dimensional case.

Goal of the study and main result

In a recent published paper [START_REF] Bauzet | On a time-splitting method for a stochastic conservation law with Dirichlet boundary condition and numerical experiments[END_REF], a generalization of the time-splitting method introduced much earlier by Holden and Risebro [START_REF] Holden | A stochastic approach to conservation laws[END_REF] is proposed to approximate solution of the stochastic conservation law (1) set in a bounded domain D of R d and with homogeneous Dirichlet boundary condition. Precisely, the author showed that the pathwise weak limit obtained in the former study of Holden and Risebro is the unique stochastic entropy solution of (1) and that the whole sequence of approximate solutions converges strongly with respect to all its variables. Our aim in the present paper is to prove that the tools developed in [START_REF] Bauzet | On a time-splitting method for a stochastic conservation law with Dirichlet boundary condition and numerical experiments[END_REF] are sufficiently strong to be extended to an unbounded domain and allow us to complete the work of Bauzet-Vallet-Wittbold [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] by a numerical analysis using their well-posedness theory for stochastic entropy solution. The main result of the present paper which deals with the convergence of our numerical scheme is stated in the following theorem.

Theorem 1.1. Assume that hypotheses H 1 to H 5 hold. Set N ∈ N * and let ∆ = T N be the time step of the time-spliting operator scheme. Then, the associated approximate solution denoted u ∆ in the sequel and defined p.13 converges in L p loc (Ω × Q) for any finite p towards the unique stochastic entropy solution of the stochastic conservation law (1).

The paper is organized as follows. Section 2 is devoted to the presentation of the theoretical background : we recall the definition of a solution for (1) proposed in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] and their well-posedness result. In Section 3, we present firstly the time-splitting scheme used to approximate the solution of our problem. Several preliminaries results satisfied by the time-splitting approximate solution u ∆ are then stated. The remainder of Section 3 is devoted to show the convergence of u ∆ towards the unique stochastic entropy solution of (1). To illustrate our proposal, we present in Section 4 numerical experiments around the stochastic burgers' equation in the one-dimensional case.

Notations

. E denotes the integral over Ω with respect to the probability measure P .

. Consider BV (R d ) the set of integrable functions with bounded variation on R d endowed with the norm

v BV (R d ) = v L 1 (R d ) + T V x (v), where T V x (v)
denotes the total variation of v on R d (see Evans-Gariepy [START_REF] Evans | Measure theory and fine properties of functions[END_REF]).

. Denote by N 2 w (0, T, L 2 (R d )) the set of the predictable processes of L 2 (]0, T [×Ω, L 2 (R d )) (Da Prato-Zabczyk [START_REF] Da Prato | Encyclopedia of Mathematics and its Applications[END_REF] p.94).

. Consider E the set of any C 2,1 (R) nonnegative convex approximation of the absolute-value function such that η(0) = 0 and that there exists δ > 0

such that η (x) = 1 (resp. -1) if x > δ (resp. x < δ ).
. F η denotes the entropy flux defined for any a, b ∈ R and for any smooth

entropy η ∈ E by F η (a, b) = a b η (σ -b)f (σ) dσ. Note in particular that F η is a Lipschitz-continuous function.

Existence and uniqueness result

Let us recall the definitions and the result introduced in the paper of Bauzet-Vallet-Wittbold [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF]. These results are obtained under hypotheses H 1 to H 3 .

Definition 2.1. (Stochastic entropy solution)

A function u of N 2 w 0, T, L 2 (R d ) ∩ L ∞ 0, T ; L 2 Ω, L 2 (R d
) is an entropy solution of the stochastic scalar conservation law (1) with the initial condition

u 0 ∈ L 2 (R d ), if P-a.s in Ω, for any η ∈ E and for any (λ, ϕ) ∈ R×D + ([0, T [×R d ) 0 R d η(u 0 -λ)ϕ(0, x)dx + Q η(u -λ)∂ t ϕdxdt + Q F η (u, λ).∇ x ϕdxdt + T 0 R d η (u -λ)h(u)ϕdxdW (t) + 1 2 Q h 2 (u)η (u -λ)ϕdxdt.
For technical reasons, as in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], we also need to consider a generalized notion of entropy solution. In fact, in a first step, we will only prove the convergence of the approximate solution to a measure-valued entropy solution. Then, thanks to the result of uniqueness stated in Theorem 2.3, we will be able to deduce the convergence of the approximate solution to the unique stochastic entropy solution of Problem (1).

Definition 2.2. (Measure-valued entropy solution)

A function u of N 2 w 0, T, L 2 R d × (0, 1) ∩ L ∞ 0, T ; L 2 Ω × R d × (0, 1
) is a measure-valued entropy solution of the stochastic scalar conservation law [START_REF] Bauzet | On a time-splitting method for a stochastic conservation law with Dirichlet boundary condition and numerical experiments[END_REF] with the initial condition u 0 ∈ L 2 (R d ), if P-a.s in Ω, for any η ∈ E and for any

(λ, ϕ) ∈ R × D + ([0, T [×R d ) 0 R d η(u 0 -λ)ϕ(0, x)dx + Q 1 0 η(u(., α) -λ)∂ t ϕdαdxdt + Q 1 0 F η (u(., α), λ).∇ x ϕdαdxdt + T 0 R d 1 0 η (u(., α) -λ)h(u(., α))ϕdαdxdW (t) + 1 2 Q 1 0 h 2 (u(., α))η (u(., α) -λ)ϕdαdxdt.

And the main result of [2] is

Theorem 2.3. Under assumptions H 1 to H 3 there exists a unique measurevalued entropy solution for the Problem (1) and this solution is obtained by viscous approximation. Moreover, it is the unique stochastic entropy solution in the sense of Definition 2.1.

Time-splitting method

Introduction

Our aim is to approximate Problem (1) under Assumptions H 1 to H 5 . We introduce the method proposed by Holden-Risebro in [START_REF] Holden | A stochastic approach to conservation laws[END_REF], which consists in splitting the effect of the source term. This technique allows us to construct a sequence to approximate the solution of (1). In few words, this approach is based on considering the equation in two parts, solving first a stochastic differential equation, and then using the obtained solution as an initial condition for a homogeneous hyperbolic scalar conservation law. As an extension of [START_REF] Holden | A stochastic approach to conservation laws[END_REF], we propose in this paper to generalize their estimates on the approximate sequence to the R d -case, in the idea of Chen-Ding-Karlsen [START_REF] Chen | On nonlinear stochastic balance laws[END_REF] concerning BV estimates.

Following the notations introduced in [START_REF] Holden | A stochastic approach to conservation laws[END_REF] we define here two operators for s, t ∈ [0, T ] and associated results. Let R(t, s) be the operator which takes a number u to the solution u at time t of the stochastic differential equation,

∀t ∈ [s, T ]    du(t) = h(u)dW (t) u(t = s) = u, (2) 
i.e u(t

) = R(t, s)u = u + t s h(u)dW .
And S(t -s) denotes the operator which takes an initial function u(x, s) at time s to the weak entropy solution u at time t of the first-order hyperbolic equation

   u t + div f (u) = 0 in ]0, T [×R d , u(t = s) = u(x, s), (3) 
i.e u(x, t) = S(t -s)u(x, s). Proof. Consider the process u defined for all t ∈ [s, T ] by u(t) = R(t, s)u(s).

Applying the Itô formula to a regular function Ψ independent of the time variable t, vanishing in [-M, M ] and increasing outside this interval, one gets, P-a.s:

Ψ(u(t)) = Ψ(u(s)) + t s Ψ t (u(σ)) =0 dσ + t s Ψ x (u(σ))h(u(σ)) =0 dW (σ) + 1 2 t s Ψ xx (u(σ))h 2 (u(σ)) =0 dσ, ∀t ∈ [s, T ]. Consider ω ∈ Ω, where Ω is a full measure subset of Ω and t ∈ [s, T ]. Thus, if u(s, ω) ∈ [-M, M ], Ψ(u(s, ω)) = 0 = Ψ(u(t, ω)) and u(t, ω) ∈ [-M, M ]. Else, Ψ(u(t, ω)) = Ψ(u(s, ω)), by injectivity of Ψ in R -[-M, M ], u(t, ω) = u(s, ω) and R(t, s) = I d . Lemma 3.2. Consider s ∈ [0, T ], v 0 ∈ L 1 (Ω×R d )∩L 2 (Ω×R d ) a F s -measurable process such that E[T V x (v 0 )] < ∞. Define the process v for all t ∈ [s, T ] by v(t) = R(s, t)v 0 . Then for all t ∈ [s, T ] E[T V x (v(t))] E[T V x (v 0 )].
Remark 2. Let us mention that using the lower semi-continuity property and the positivity of the total variation

T V x on L 1 (R d ), for all v in L 1 (Ω × R d ), E[T V x (v)] has a sense. Proof. Consider s ∈ [0, T ] and let v 0 ∈ L 1 (Ω × R d ) ∩ L 2 (Ω × R d ) be a F s - measurable process with E[T V x (v 0 )] < ∞. Define for all t ∈ [s, T ] v(t) =
R(s, t)v 0 and consider η δ ∈ E. Applying Itô's formula with the process v and the function η δ , one gets by taking the integral over R d and the expectation, for

every t ∈ [s, T ] E R d η δ (v(t))dx = E R d η δ (v 0 )dx + 1 2 E R d t s η δ (v(t))h 2 (v)dσdx.
Passing to the limit on δ to 0 to get for every t ∈ [s, T ]

155 E v(t) L 1 (R d ) = E v 0 L 1 (R d ) .
Following the idea of Chen-Ding-Karlsen [START_REF] Chen | On nonlinear stochastic balance laws[END_REF] we consider v 0 a smooth approximation of v 0 such that

v 0 → v 0 in L p (Ω × R d ), p = 1, 2 (4) 
E R d |∇v 0 | 2 dx < ∞, for each fixed (5) E[T V x (v 0 )] E[T V x (v 0 )]. (6) 
The proof of these results relies on approximation of BV-function in the deterministic setting, we refer the reader to Evans-Gariepy [START_REF] Evans | Measure theory and fine properties of functions[END_REF] p.172.

Let us define for all t in [s, T ] v (t) = R(s, t)v 0 . Now we need estimate on ∂ xi v 160 in order to obtain BV estimate for v. Applying Itô's formula to the process

d(v -v) = [h(v ) -h(v)
]dW and the function η δ , taking the integral over R d and the expectation, we obtain for every t ∈

[s, T ] E R d η δ (v -v)(t)dx = E R d η δ (v 0 -v 0 )dx + 1 2 E R d t s η δ (v -v)[h(v ) -h(v)] 2 dσdx.
Passing to the limit on δ to 0 to get for every t ∈ [s, T ]

E (v -v)(t) L 1 (R d ) = E v 0 -v 0 L 1 (R d ) .
Thus, for every t

∈ [s, T ], v (t) → v(t) in L 1 (Ω × R d ).
As P-a.s and for all t

∈ [0, T ], v (t) = v (0) + t 0 h(v )dW in W 1,2 (R d ), using
the linear-continuity of the derivation operator

∂ xi : W 1,2 (R d ) → L 2 (R d ) for all
i ∈ {1, . . . , d} and the chain-rule derivation formula, we get for all i ∈ {1, . . . , d}

∂ xi v (0) = ∂ xi v 0 and: ∂ xi v (t) = ∂ xi v (0) + ∂ xi t 0 h(v )dW = ∂ xi v (0) + t 0 h (v )∂ xi v dW, in L 2 (R d ).
Applying Itô's formula with such a process and the function η δ to get that, after taking the integral over R d , the expectation and passing to the limit on δ, for

all t ∈ [s, T ] E R d |∂ xi v |dx = E R d |∂ xi v 0 |dx < ∞. (7) 
Thus, for all t ∈ [s, T ] and P-a.s,

v (t) ∈ BV (R d ). As for all t ∈ [s, T ] v (t) → v(t) in L 1 (Ω × R d ),
for a subsequence denoted in the same way, for all t ∈ [s, T ] and P-a.s, v (t) → v(t) in L 1 (R d ). According to Malek-Necas-Otto-Rokyta-Ruzicka [START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF] p.36, we thus have for all t ∈ [s, T ] and P-a.s

T V x (v(t)) lim inf T V x (v (t)).
Consequently, taking the expectation thanks to Remark 2, using Fatou's Lemma, ( 7) then ( 6), one gets that for every t ∈ [s, T ]

E[T V x (v(t))] lim inf E[T V x (v (t))] = lim inf E[T V x (v 0 )] E[T V x (v 0 )],
and the result holds.

Lemma 3.3. Let u 0 ∈ L ∞ (R d ) ∩ BV (R d
), t > 0, and u(t) = S(t)u 0 . Then: there exists a constant C > 0 such that for almost every t > 0,

i) u(t) L ∞ (R d ) u 0 L ∞ (R d ) , ii) R d |u(t 1 , x) -u(t 2 , x)|dx CT V x (u 0 )|t 1 -t 2 |, for all t 1 , t 2 ∈ [0, T ],
iii) T V x (u(t)) T V x (u 0 ).

Proof. These results are classical ones and the proof would be outside the scope of the present work, we refer the reader to Malek-Necas-Otto-Rokyta-Ruzicka [START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF] p.68.

Construction of the approximate solution

Let us now explain the construction of the approximate solution as introduced in Holden-Risebro [START_REF] Holden | A stochastic approach to conservation laws[END_REF]. We consider a positive integer N , denote by ∆ = T N and split the time interval by denoting t n = n∆, n ∈ {0, . . . , N } each point of the time discretization. For each step of discretization ∆, we consider the function defined for all t ∈ [0, T ] and

x ∈ R d u ∆ (t, x) =    u n (x) if t = t n R(t, t n )u n (x) if t ∈]t n , t n+1 [,
where the sequence (u n ) n∈N is defined by

   u 0 (x) = u 0 (x) u n+1 (x) = S(∆)R(t n+1 , t n )u n (x).
Notations: ∀n ∈ {0, . . . , N -1}, t ∈ [0, T ] and x ∈ R d :

.

u n+1 -(x) := R(t n+1 , t n )u n (x). . u(t, x) := S(t -t n )R(t n+1 , t n )u n (x) = S(t -t n )u n+1 -(x).
Proposition 1. (A priori estimate) There exists a constant M 1 independent of 195 n and ∆ such that P-a.s in Ω and for all t ∈ [0, T ]

u ∆ (t) L ∞ (R d ) M 1 := max(M, u 0 L ∞ (R d ) ).
Proof. Let us mention that the construction of u ∆ is done by induction, so the proofs of the associated results also rely on inductive reasoning. Consider n ∈ {0, . . . , N -1}, and u n+1 = S(∆)u n+1 -. Thanks to Lemma 3.3 i),

u n+1 L ∞ (R d ) u n+1 - L ∞ (R d ) , P -a.s.
Moreover, thanks to Lemma 3.1, P-a.s and ∀t ∈

[t n , t n+1 ] 200 R(t, t n )u n L ∞ (R d ) max(M, u n L ∞ (R d ) )
and particularly for t = t n+1 , one has P-a.s

u n+1 - L ∞ (R d ) = R(t n+1 , t n )u n L ∞ (R d ) max(M, u n L ∞ (R d ) ) max(M, u 0 L ∞ (R d ) ) := M 1 .
Notice that the construction of u ∆ is countable, so P -a.s, for all t ∈ [0, T ] and all possible discretization parameter N ∈ N * :

u ∆ (t, .) L ∞ (R d ) M 1 ,
where M 1 does not depend on ∆ and the result holds.

Proposition 2. E[T V x (u i )] T V x (u 0 ), for every i ∈ {0, . . . , N }. 205 Proof. Consider i ∈ {0, . . . , N -1}. As u i = S(∆)u i -, and 
u i -= R(t i , t i-1 )u i-1 , using Lemma 3.3 then Lemma 3.2 one gets E[T V x (u i )] E[T V x (u i -)] E[T V x (u i-1 )],
a reasoning by induction gives us the result. 

210 E R d |u ∆ (t n+1 , x) -u ∆ (t, x)|.|φ(x)|dx C∆T V x (u 0 ) + C √ ∆,
where C and C are independent of ∆.

Proof. Let n ∈ {1, . . . , N } and consider t ∈ [t n , t n+1 [. For all x ∈ R d , u ∆ (t, x) = R(t, t n )u n (x) = u n (x) + t tn h(u ∆ (σ))dW (σ) u ∆ (t n+1 , x) = u n+1 (x).
Thus,

E R d |u ∆ (t n+1 , x) -u ∆ (t, x)|.|φ(x)|dx E R d |u n+1 (x) -u n (x)|.|φ(x)|dx +E R d | t tn h(u ∆ (σ))dW (σ)|.|φ(x)|dx
Thanks to Lemma 3.3 ii) and Proposition 2 one shows that

E R d |u n+1 (x) -u n (x)|dx E R d |u n+1 (x) -u n+1 -(x)| + |u n+1 -(x) -u n (x)|.|φ(x)|dx = E R d |S(∆)u n+1 -(x) -u n+1 -(x)|.|φ(x)| + |R(t n+1 , t n )u n (x) -u n (x)|.|φ(x)|dx C∆.E[T V x (u n+1 -)] + E R d | tn+1 tn h(u ∆ (s, x))dW (s)|.|φ(x)|dx C∆.T V x (u 0 ) + E R d | tn+1 tn h(u ∆ (s, x))dW (s)|.|φ(x)|dx.
Consider K a compact subset of R d such that suppφ ⊂ K and notice that 215 |t n -t| ∆. Thus by using Cauchy-Schwarz inequality on Ω × K and then Itô isometry, one gets

E R d | t tn h(u ∆ (s, x))dW (s)|.|φ(x)|dx φ L ∞ (R d ) E K | t tn h(u ∆ (s, x))dW (s)|dx c E K | t tn h(u ∆ (s, x))dW (s)| 2 dx 1 2 = c E K t tn h 2 (u ∆ (s, x))dsdx 1 2 c √ ∆. Similarly E R d | tn+1 tn h(u ∆ (s, x)dW (s)|.|φ(x)|dx c
√ ∆, and so C = 2 c.

Entropy formulation

We follow the idea of Peyroutet [START_REF] Peyroutet | Etude d'une méthode de splitting pour des lois de conservation scalaires avec terme de source[END_REF] for introducing the entropy formulation 220 satisfied by the approximate solution. In order to do this, consider

u(t, x) = S(t -t n )u n+1 -(x), t ∈ [t n , t n + 1].
As a weak entropy solution of a conservation law, u satisfies the following condition, for any η ∈ E and any

(k, ϕ) ∈ R × D + ([0, T ] × R d ) : R d η( u(t n ) -k)ϕ(t n )dx - R d η( u(t n+1 ) -k)ϕ(t n+1 )dx + R d tn+1 tn η( u -k)∂ t ϕ + F η ( u, k)∇ϕdtdx 0. Consider (k, ϕ, η) ∈ R × D + ([0, T ] × R d ) × E, K a compact set of R d such that suppϕ(t, .) ⊂ K and denote for s ∈ [t n , t n+1 ], v(s) := R(s, t n )u n the solution in 225 [t n , t n+1 ] of the stochastic differential equation    dv = h(v)dW v(t = t n ) = u n .
Applying the Itô formula to the process v and the regular function

Ψ(t, λ) = η(λ -k)
, one gets P -a.s:

η(v(t n+1 ) -k) = η(v(t n ) -k) + tn+1 tn η (v(t) -k)h(v(t))dW (t) + 1 2 tn+1 tn η (v(t) -k)h 2 (v(t))dt. Remark that v(t) = u ∆ (t) for all t ∈ [t n , t n+1 [ and v(t n+1 ) = u(t n ), in this way, P -a.s: 230 R d η( u(t n , x) -k)ϕ(t n , x)dx - R d η(u ∆ (t n , x) -k)ϕ(t n , x)dx = R d tn+1 tn η (u ∆ (t, x) -k)h(u ∆ (t, x))dW (t)ϕ(t n , x)dx + 1 2 R d tn+1 tn η (u ∆ (t, x) -k)h 2 (u ∆ (t, x))dtϕ(t n , x)dx.
Moreover,

R d η( u(t n+1 , x) -k)ϕ(t n+1 , x)dx = R d η(u ∆ (t n+1 , x) -k)ϕ(t n+1 , x)dx.
Thus one first gets, for any P-measurable set

A E R d η(u ∆ (t n , x) -k)ϕ(t n )dx1 A - R d η(u ∆ (t n+1 , x) -k)ϕ(t n+1 , x)dx1 A +E R d tn+1 tn η (u ∆ (t, x) -k)h(u ∆ (t, x))dW (t)ϕ(t n , x)dx1 A + 1 2 E R d tn+1 tn η (u ∆ (t, x) -k)h 2 (u ∆ (t, x))dtϕ(t n , x)dx1 A +E R d tn+1 tn η( u(t, x) -k)ϕ t (t, x) + F η ( u(t, x), k)∇ϕ(t, x)dtdx1 A 0.
We propose to approximate E(

R d tn+1 tn η( u(t, x) -k)ϕ t (t, x)dtdx1 A ) by E( R d tn+1 tn η(u n+1 -k)ϕ t (t, x)dtdx1 A )
making an error only of order ∆ 2 . Indeed, thanks to Lemma 3.3 ii) and Proposition 2 235 E(

R d tn+1 tn η( u(t) -k)ϕ t dtdx - R d tn+1 tn η(u n+1 -k)ϕ t dtdx1 A ) CE R d tn+1 tn |η( u(t) -k) -η(u n+1 -k)|.|ϕ t |dtdx C ϕ t ∞ E K tn+1 tn | u(t) -u n+1 |dtdx. C tn+1 tn E[T V x (u n+1 -)]|t -t n+1 |dt C∆ 2 T V x (u 0 ).
In the same way, one shows by using the Lipschitz-continuity of F η (., k) that

E( R d tn+1 tn F η (u n+1 (x), k)∇ϕdtdx1 A ) is an approximation of E( R d tn+1 tn
F η ( u(t, x), k)∇ϕ(t, x)dtdx1 A ) with an error of order ∆ 2 .

Finally we obtain by summing over n

E N -1 n=0 R d tn+1 tn η(u ∆ (t n+1 , x) -k)ϕ t (t, x)dtdx1 A +E N -1 n=0 R d tn+1 tn F η (u ∆ (t n+1 , x), k)∇ϕ(t, x)dtdx1 A +E N -1 n=0 R d tn+1 tn η (u ∆ (t, x) -k)h(u ∆ (t, x))dW (t)ϕ(t n , x)dx1 A + 1 2 E N -1 n=0 R d tn+1 tn η (u ∆ (t, x) -k)h 2 (u ∆ (t, x))dtϕ(t n , x)dx1 A + mes(A) R d η(u 0 (x) -k)ϕ(0, x)dx -E R d η(u ∆ (T, x) -k)ϕ(T, x)dx1 A
-∆, where ∆ → 0 when ∆ → 0.
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Consider A a P -measurable set, (k, ϕ, η) ∈ R × D + ([0, T ] × R d ) × E and denote by K a compact set of R d such that suppϕ(t, .) ⊂ K. Our aim is to pass to the limit in:

E N -1 n=0 R d tn+1 tn η (u ∆ (t, x) -k)h(u ∆ (t, x))dW (t)ϕ(t n , x)dx1 A := I ∆ 1 + 1 2 E N -1 n=0 R d tn+1 tn η (u ∆ (t, x) -k)h 2 (u ∆ (t, x))dtϕ(t n , x)dx1 A := I ∆ 2 +E N -1 n=0 R d tn+1 tn η(u ∆ (t n+1 , x) -k)ϕ t (t, x)dtdx1 A := I ∆ 3 +E N -1 n=0 R d tn+1 tn F η (u ∆ (t n+1 , x), k)∇ϕ(t, x)dtdx1 A := I ∆ 4 +mes(A) R d η(u 0 (x) -k)ϕ(0, x)dx -∆, (8) 
Due to the random variable, even if strong estimates with respect to variables t and x hold, we are not able to use classical results of compactness. The one given by the concept of Young measures is appropriate here and the technique is based on the notion of narrow convergence of Young measures (or entropy processes). We refer to Eymard-Gallouët-Herbin [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF] and Panov [START_REF] Panov | On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation[END_REF]. Since (u ∆ ) is a bounded sequence in L ∞ (Q × Ω), the associated Young measure sequence (u ∆ ) converges (up to a subsequence still indexed in the same way) to a Young
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Furthermore, according to Eymard-Gallouët-Herbin [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF], for any Carathéodory function Ψ such that Ψ(., u ∆ ) is uniformly integrable:

E Q Ψ(u ∆ (t, x))dtdx → E Q 1 0 Ψ(u(t, x, α))dαdtdx when ∆ → 0.
Let us analyze separately terms of (8).

.

I ∆ 1 → E R d T 0 1 0 η (u(α) -k)h(u(., α))dαϕdW (t)dx1 A := I 1 . 255 |I ∆ 1 -I 1 | = E N -1 n=0 R d tn+1 tn η (u ∆ -k)h(u ∆ )[ϕ(t n ) -ϕ(t)]dW (t)dx1 A +E R d T 0 η (u ∆ -k)h(u ∆ )- 1 0 η (u(., α) -k)h(u(., α))dα ϕ(t)dW (t)dx1 A := |I ∆ 1,1 + I ∆ 1,2 |.
Using Cauchy-Schwarz inequality on Ω × K and Itô isometry one gets

|I ∆ 1,1 | = E N -1 n=0 K tn+1 tn η (u ∆ -k)h(u ∆ )[ϕ(t n ) -ϕ(t)]dW (t)dx1 A C N -1 n=0 E K tn+1 tn η (u ∆ -k)h(u ∆ )[ϕ(t n ) -ϕ(t)]dW (t) 2 dx 1 2 = C N -1 n=0 E K tn+1 tn η (u ∆ -k)h(u ∆ )[ϕ(t n ) -ϕ(t)] 2 dtdx 1 2 C N -1 n=0 E tn+1 tn mes(K) × ∆ 2 dt 1 2 C N -1 n=0 ∆ 3 2 = C √ ∆ → 0 Let us show that I ∆ 1,2 → 0. Denote v ∆ = η (u ∆ -k)h(u ∆ )ϕ. Thanks to Propo- sition 1, v ∆ is bounded in L 2 (Q × Ω) and there exists v ∈ L 2 (Q × Ω) such that v ∆
v in the same space. Moreover, Ψ : (t, x, ω, λ) → η (λ -k)h(λ)ϕ(t, x),

(t, x, ω, λ) ∈ Q × Ω × R is a Carathéodory function and Ψ(., u ∆ ) is uniformly integrable as it is bounded in L 2 (Q×Ω). By identification, v = 1 0 Ψ(u(., α))dα. Furthermore, for all t ∈ [0, T ], I t : L 2 (Q × Ω) → L 2 (R d × Ω) u → t 0 u(t, x, ω)dW (t)
is a linear continuous function, and so it is a weakly continuous function from Hence u is a measure-valued entropy solution in the sense of Definition 2.2.

L 2 (Q × Ω) to L 2 (R d × Ω). E R d T 0 η (u ∆ -k)h(u ∆ )ϕdW (t)dx1 A → E R d T 0 1 0 η (u(., α) -k)h(u(., α))dαϕdW (t)dx1 A and |I ∆ 1,2 | → 0. . I ∆ 2 → 1 2 E Q 1 0 η (u(., α) -k)h 2 (u(., α))dαϕdtdx1 A := I 2 . |I ∆ 2 -I 2 | = 1 2 E N -1 n=0 R d tn+1 tn η (u ∆ -k)h 2 (u ∆ )[ϕ(t n ) -ϕ(t)]dtdx1 A +E Q η (u ∆ -k)h 2 (u ∆ )ϕ(t)dtdx1 A -E Q 1 0 η (u(., α) -k)h 2 (u(., α))dαϕ(t)dtdx1 A := 1 2 |I ∆ 2,1 + I ∆ 2,2 |. |I ∆ 2,1 | E N -1 n=0 K tn+1 tn η (u ∆ -k)h 2 (u ∆ )[ϕ(t n ) -ϕ(t)] dtdx C N -1 n=0 ∆ 2 → 0. Note that Ψ(t, x, ω, λ) = η (λ -k)h 2 (λ)ϕ(t,
Thanks to Theorem 2.3, u is the unique stochastic entropy solution in the sense of Definition 2.1 and we denote it by u. Hence, all the sequence of approximate solution u ∆ converges strongly to u in L 1 loc (Ω × Q). In addition, since u ∆ is bounded in L ∞ (Ω × Q), all the sequence converges strongly in L p loc (Ω × Q) for any finite p and the proof of Theorem 1.1 is complete. The algorithm of discretization is the following one: with an Euler-Maruyama method, we solve the stochastic differential equation ( 2) and, for solving the conservation law (3), we use a Godunov scheme. We implement simulations with the following initial condition:

u 0 (x) =    1 2 if x < 0 0 else. (9) 
To illustrate our proposal, we give a simulation of the solution in the deterministic case (i.e. when λ = 0) and for various values of the noise (respectively for λ equal to 0.1, 0.3 and 0.8). We get the following graphics in the (x, t) plane when x varies between -1 and 1, with ∆ x = 0.005 and ∆ t = ∆x 6 . 
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 31 Consider s ∈ [0, T ]. Then P-a.s in Ω and for all t ∈ [s, T ], R(t, s) will take [-M, M ] into itself and be the identity outside this interval, where M > 0 is defined in H 4 .

Lemma 3 . 4 .

 34 Let n ∈ {1, . . . , N } and consider t ∈ [t n , t n+1 [. Then for any φ ∈ D(R d ):

270 1 0Fηη 1 0

 11 Using the same techniques we show the following convergences. (., α) -k)dαϕ t dtdx1 A := I 3 .Q η (u(., α), k)dα∇ϕdtdx1 A := I 4 . Finally, for all (k, ϕ, η) ∈ R × D + ([0, T ] × R d ) × E and any P -measurable set A: (u(α) -k)h(u(., α))dαϕdW (t)dx1 A (u(., α) -k)h 2 (u(., α))dαϕdtdx1 A +E Q [η(u(., α) -k)ϕ t + F η (u(., α), k)∇ϕ]dαdtdx1 A + mes(A) R dη(u 0 (x) -k)ϕ(0, x)dx 0.
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 43 Numerical experimentsWe propose here an application of this splitting method to the stochastic burgers' equation in the one-dimensional case:du + f (u) x dt = λh(u)dw in Ω×]0, 1[×R,where λ ∈ R is a parameter, f (u) = u 2 and h : R → R is defined byh(x) = (x + 1)(1 -x) if -1 < x < 1 0 else.As the flux function f is locally Lipschitz-continuous in R and as we work with solution explicitly bounded by constant independent of f , following Remark 1 we are in the framework presented in the previous section.
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 1 Figure 1: Determinist case : λ = 0
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 213 Figure 2: Stochastic case : λ = 0.1

Figure 4 :

 4 Figure 4: Stochastic case : λ = 0.8

  x)1 A is a Carathéodory function such that Ψ(., u ∆ ) is uniformly integrable, thus I ∆ 2,2 → 0 and the result holds.

In this manner, Remark 4. Note that we conserve in the stochastic case the propagation of a single choc wave and that the stochastic perturbation seems to act only on the slope coefficient of such a choc. These simulations have been implemented with the free software Scilab.