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Capability of a regional climate model to simulate climate variables 
requested for water balance computation: a case study over 

northeastern France

Damien Boulard1, Thierry Castel1,2, Pierre Camberlin1, Anne-Sophie Sergent3,4, 
Nathalie Bréda3, Vincent Badeau3, Aurélien Rossi1, Benjamin Pohl1

WRF ET0 is in better agreement with observations. In order 

to evaluate WRF’s capability to simulate a reliable ET0, 

the water balance of thirty Douglas-fir stands was com-

puted using a process-based model. Three soil water defi-

cit indexes corresponding to the sum of the daily deviations 

between the relative extractible water and a critical value of 

40 % below which the low soil water content affects tree 

growth, were calculated using the nearest weather station, 

SAFRAN analyses weather data, or by merging observation 

and WRF weather variables. Correlations between Douglas-

fir growth and the three estimated soil water deficit indexes 

show similar results. These results showed through the ET0 

estimation and the relation between mean annual SWDI and 

Douglas-fir growth index that the main difficulties of the 

WRF model to simulate soil water deficit is mainly attribut-

able to its precipitation biases. In contrast, the low discrep-

ancies between WRF and observations for air temperature, 

wind speed, relative humidity and solar radiation make then 

usable for the water balance and ET0 computation.

Keywords Regional climate modelling · WRF · Potential 

evapo-transpiration · Water balance · Soil water deficit · 

Douglas-fir

1 Introduction

In the context of anthropogenic climate change, it is widely 

recognized that many sectors will be affected by water 

deficits in different components of the land surface hydro-

logical cycle. In particular, any change in the soil water 

balance will have major consequences for plant growth. 

An increase of the frequency and intensity of soil drought 

events is expected in the northern hemisphere, especially 

during spring and summer (IPCC 2007). During the 2003 

Abstract This paper documents the capability of the 

ARW/WRF regional climate model to regionalize near-

surface atmospheric variables at high resolution (8 km) 

over Burgundy (northeastern France) from daily to inter-

annual timescales. To that purpose, a 20-year continuous 

simulation (1989–2008) was carried out. The WRF model 

driven by ERA-Interim reanalyses was compared to in situ 

observations and a mesoscale atmospheric analyses system 

(SAFRAN) for five near-surface variables: precipitation, air 

temperature, wind speed, relative humidity and solar radia-

tion, the last four variables being used for the calculation of 

potential evapotranspiration (ET0). Results show a signifi-

cant improvement upon ERA-Interim. This is due to a good 

skill of the model to reproduce the spatial distribution for 

all weather variables, in spite of a slight over-estimation of 

precipitation amounts mostly during the summer convec-

tive season, and wind speed during winter. As compared to 

the Météo-France observations, WRF also improves upon 

SAFRAN analyses, which partly fail at showing realistic 

spatial distributions for wind speed, relative humidity and 

solar radiation—the latter being strongly underestimated. 

The SAFRAN ET0 is thus highly under-estimated too. 
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drought and heat-wave episode, coniferous species such as 

Douglas-fir presented visual symptoms like abnormal col-

oration, needle loss or dead branches followed by adverse 

effects such as decline and tree mortality (Sergent et al. 

2012). Over northeastern France, recent projections using 

the Weather Research and Forecast (WRF) regional cli-

mate model (RCM) of the SRES-A2 scenario have shown 

a warming of up to 3 °C for 2030–2050 and 5 °C by the 

end of the century (Xu et al. 2012). Thus, the 2003 episode 

should not be considered as an exceptional extreme event, 

but as an example of forthcoming forest-impacting hazards 

in a near future (Bréda et al. 2006; Betsch et al. 2010).

Assessing impacts of climate variability on the water 

balance requires reliable observation data representative 

of a given geographical area but usually unavailable at 

fine scales. Precipitation and potential evapotranspiration 

(ET0) are two elements with a major role in the hydrologi-

cal cycle and soil water balance. The FAO-56 Penman–

Monteith (PM) equation (Allen et al. 1998) has been pro-

posed as a worldwide standard by the Food and Agriculture 

Organisation (FAO) of the United Nations due to its accu-

racy to evaluate ET0 at different time-scales. However, the 

PM equation requires numerous meteorological variables: 

air temperature, wind speed, relative humidity and solar 

radiation. Several authors highlighted the problem of the 

data availability due to the scarcity of in situ weather vari-

ables measurements (Shih et al. 1983; Remesan et al. 2008) 

and proposed simplified empirical methods (Droogers and 

Allen 2002; Pereira 2004; Gavilan et al. 2006), which vary 

in complexity and data requirements.

Adaptation to climate change relies on sustainable water 

resource management that requires projections, at high 

spatial and temporal resolutions, of all climate variables 

involved in water balance computation. Globally assimi-

lated data such as the European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalyses, or general circu-

lation model (GCM) simulations, can compensate for the 

lack of available data. But their coarse spatial resolution 

(typically 80–250 km) is irrelevant and prevents them from 

being used directly for local impact studies or extreme 

events reconstruction (Zorita and Von Storch 1999). Impact 

models often need input climatic data at a resolution finer 

than 10 km and require thus a downscaling step to derive 

high-resolution information (Boé et al. 2007). During the 

last decade, an increasing number of studies assessed the 

usefulness and limitations associated with the dynamical 

downscaling of low-resolution GCM output using regional 

climate models (RCM: Giorgi and Mearns 1991; Laprise 

2008; Landman et al. 2009; Rummukainen 2010). Such 

numerical dynamic regionalization of large-scale climate 

data has been carried out for many parts of the world, in 

the framework of international programs such as, among 

others, PRUDENCE (Christensen and Christensen 2007) 

or ENSEMBLES (Van der Linden and Mitchell 2009) and 

more recently CORDEX (e.g., Jones et al. 2011), produc-

ing thus high-resolution climate simulations of atmosphere 

and land. The methodology consists in forcing laterally a 

high-resolution atmospheric model with coarser-resolution 

GCM output, usually without feedback to the parent solu-

tion. RCM experimental protocols assume that the region 

of interest (1) is influenced by atmospheric variability pat-

terns that are of larger spatial extension than the simulated 

domain; (2) is passive, i.e. it is influenced by large-scale 

modes of variability without modifying their development, 

life cycle, and intrinsic properties in return (Boulard et al. 

2013).

In this study, we propose to examine the capability of 

a current state-of-the-art RCM to downscale the coarse 

global reanalyses into higher resolution data, and simulate 

near-surface atmospheric spatial and temporal variability 

of weather variables used in the computation of potential 

evapotranspiration (ET0) and water balance. Compared to 

precipitation and temperature, there has been relatively lit-

tle work attempting to assess the skill of an RCM dynami-

cal downscaling of these variables (Frey-Buness et al. 

1995; Copeland et al. 1996; Heck et al. 2001; Correia et al. 

2007; Boé et al. 2007; Ishak et al. 2010), partly due to the 

lack of representative high-resolution observational data. 

Consequently, there is also a lack of data quality verifica-

tion and sensitivity analysis regarding downscaled data in 

the hydrological community (Ishak et al. 2010). Actually, 

higher resolution does not guarantee improved RCM out-

puts, hence the necessity for preliminary quality assess-

ment before using such data for impact studies (e.g., water 

balance computation).

The non-hydrostatic Weather Research and Forecast 

(WRF) model (Skamarock et al. 2008) has been already 

successfully applied over northeastern France, for tempera-

ture and precipitation downscaling (Xu et al. 2012; Marteau 

et al. 2014). Temperature and precipitation are generally 

the most relevant and best studied meteorological vari-

ables for hydrological impact studies (Maraun et al. 2010). 

It is already known that precipitation simulated by RCMs 

is highly sensitive to their physics and usually show larger 

biases than surface temperature. Precipitation amounts are 

among the most sensitive quantities to the physical pack-

age. Their geography, intensity, and intraseasonal charac-

teristics are predominantly sensitive to various physical 

schemes, including parameterizations for atmospheric con-

vection, planetary boundary layer and cloud microphysics 

(Crétat et al. 2012). A previous study (Castel et al. 2010) 

also shows that the overestimation of precipitation amounts 

is significantly reduced by an improvement of the Land-

Use/Land-Cover data used to perform the simulation. Over 

northeastern France, surface data taken from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) allows 
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to better represent the surface albedo and latent heat flux 

involved in the simulation of precipitation than the United 

States Geological Survey data.

In the present work, the WRF model is used to perform 

high-resolution (8 km) simulations over the Burgundy 

region (northeastern France) at a daily time-step for the 

period 1989–2008. Here, both the downscaled data and 

original forcing reanalyses (namely, ERA-Interim) are 

compared to the mesoscale SAFRAN analyses (“Système 

d’Analyse Fournissant des Renseignements Atmosphér-

iques à la Neige”, Durand et al. 1993; Durand 1995), which 

are already used by hydrological and agro-forestry com-

munities (Boé et al. 2007; Durand et al. 2009). In France, 

operational systems such as SAFRAN provide high resolu-

tion gridded atmospheric data assessed at the national scale 

(Quintana-Seguí et al. 2008; Vidal et al. 2010). In order to 

quantify RCM-produced biases, the SAFRAN mesoscale 

reanalysis can be used as a reference (Szczypta et al. 2011). 

The estimated ET0 is also verified with the corresponding 

ground-based observed data available over the region.

Downscaled climatic data are next used as input data 

for a process-based model (Biljou©: Granier et al. 1999) 

to simulate the water balance of thirty Douglas-fir stands 

across Burgundy. Douglas-fir, used as a plantation tree for 

timber in several upland parts of the region, is a species 

highly sensitive to soil water deficit (Sergent et al. 2012). 

Among the process-based models, the daily water balance 

model Biljou© is dedicated to forest stands, and allows to 

calculate each component of the water flux (tree transpira-

tion, understorey evapo-transpiration, rainfall interception, 

drainage) and the daily soil water content under forests. 

The model quantifies the intensity, the duration and the fre-

quency of drought experienced by the stand. It has already 

been successfully applied to different stands (Bréda et al. 

2006; Gandois et al. 2010; Van der Heijden et al. 2011; 

Michelot et al. 2012) and over parts of Burgundy (Sergent 

et al. 2012; Van der Heijden et al. 2013).

This study aims at (1) documenting how accurately the 

WRF model is capable to reproduce the spatial and tem-

poral variability of 2 m-air temperature, relative humidity, 

2 m-wind speed, solar radiation, precipitation and poten-

tial evapotranspiration; (2) quantifying the RCM skills and 

weaknesses to simulate the water balance, based on a daily 

lumped water balance model for forests. The ability of the 

RCM to provide skillful input data for water balance com-

putation will be assessed by focusing on the soil water defi-

cits obtained from Biljou©.

This paper is organized as follows. Section 2 presents 

the data used and the experimental setup. Section 3 evalu-

ates the capability of the regional model in simulating air 

temperature, wind speed, relative humidity and solar radia-

tion variability and spatial distribution over Burgundy. 

Section 4 focuses on precipitation and ET0 used for the 

computation of the water balance. Results are finally sum-

marized and discussed in Sect. 5.

2  Data and experimental setup

2.1  Study area

Burgundy is a region located in northeastern France. It is 

composed by the Yonne, Nièvre, Côte d’Or and Saône-

et-Loire departments (Fig. 1a—D03) and covers an area 

of 31,528 km2. It is characterized by a relatively complex 

topography, surrounded by the Jura and Alps massifs on 

the East, and the Massif Central on the Southwest. The 

topography is mainly characterized by two alluvial plains 

in the Northwest (Paris basin) and in the Southeast (Saône 

tectonic trough), rolling hills (maximal elevation of 901 m 

in the Morvan massif—Fig. 1b) and plateaux running from 

North to South across the central parts of the region. The 

highly fragmented land-use is dominated by pastures and 

croplands (2,000,000 ha, 64.3 %), forests (970,000 ha, 

30 %) and vineyards (30,000 ha, 1 %). The climate of Bur-

gundy is predominantly semi-continental with relatively 

short, warm summers and cool winters.

2.2  Experimental setup

The present study uses the WRF model (Skamarock et al. 

2008) version 3.1.1. WRF is a non-hydrostatic model, suit-

able for simulating a wide range of scales, from thousands 

of kilometres to a few meters, with a large number of avail-

able options in what concerns the model core and physi-

cal parameterizations, making it appropriate for numerical 

prediction and climate simulation. WRF was setup with 

3 two-way nested domains with respectively, 120.0, 32.5 

and 8.2 km horizontal grid spacing and 28 sigma levels 

on the vertical (Fig. 1a). Lateral forcing is provided every 

6-hours by ECMWF ERA-Interim reanalyses (Berrisford 

et al. 2009; Dee et al. 2011), from 1000 to 10 hPa (18 ver-

tical levels) at a 1.5° horizontal resolution. ERA-Interim 

reproduces observed climate more realistically than other 

reanalysis products such as ERA-40 or NNRP-1 (Mooney 

et al. 2010), a result supported over France by the recent 

verifications by Szczypta et al. (2011). The ERA-Interim 

reanalyses are generated by an a posteriori integration of 

the Integrated Forecasting System atmospheric GCM with 

6 hourly four-dimensional assimilations of satellite data, 

buoys and radiosondes, at a T255 spectral truncation with 

60 vertical levels.

WRF integration time-step is fixed at 150 s and data are 

archived every 6 h over 1989–2008, after a 1-year-long 

spin-up. The 3rd inner domain extending from 45.91 to 

48.52°N and 2.58 to 5.62°E, covers Burgundy and adjacent 
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territories, at an 8 km horizontal resolution (58 × 67 grid

points). A similar domain has been successfully used in 

several previous modelling studies of the climate variability 

of Burgundy (Castel et al. 2010; Marteau et al. 2014), and 

a climate change regionalization exercise (Xu et al. 2012). 

The physical package includes the Kain-Frisch cumulus 

scheme (Kain 2004), the Morrison scheme cloud micro-

physics (Morrison et al. 2009), and the Yonsei University 

planetary boundary layer (Hong et al. 2006). Radiative 

transfers are parameterized with the Rapid Radiative Trans-

fer Model Scheme (Mlawer et al. 1997) for long-waves and 

the Dudhia (1989) scheme for short waves. Surface data are 

taken from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS, Friedl et al. 2002) databases, which com-

prise a 20-category land-use index. Over landmasses, WRF 

is coupled with the 4-layer NOAH land surface model 

(Chen and Dudhia 2001). Soil moisture, which is one of 

the key parameters that control surface energy partition and 

water budget, is initialized from the ERA-Interim data. The 

four (10, 30, 60, and 100 cm) layers of the NOAH model 

are interpolated from the four ERA-Interim layers (7, 28, 

100 and 255 cm depth) of soil moisture and temperature 

data. Sea surface temperatures are prescribed every 6 h by 

linear interpolation of monthly ERA-Interim sea surface 

temperatures. The lateral buffer zone used to smooth the 

relaxation of the model toward the prescribed atmospheric 

forcing is made of five grid points (1 grid point of forcing 

plus 4 grid points of relaxation).

2.3  Data

The assessment of the WRF simulation is done by com-

parison with four datasets: (1) weather station records of the 

Météo-France Weather Station Network (MWSN), (2) 8 km-

gridded SAFRAN analyses, (3) gridded SATMOS (Service 

d’Archivage et de Traitement Météorologique des Observa-

tions Spatiales) data and (4) the raw ERA-Interim reanalyses.

MWSN daily weather station records provide the 

observed near-surface weather data over the period 1989–

2008 (Fig. 1b). The stations are located in several differ-

ent terrain situations with a variety of Land-Use/Land-

Cover patterns such as forests, croplands, and urban areas. 

Daily records from 127 rain gauges are extracted from the 

MWSN. The observed air temperature is derived from 89 

weather stations. Both of these datasets show a homog-

enous spatial distribution and no missing values. Annual 

and monthly means (totals) of temperature (precipita-

tion) are interpolated onto a 1 km resolution grid using 

a three-dimensional (latitude, longitude, elevation) thin 

plate splines method with altitude as covariate (Hutchin-

son 1995). Anomalies, defined as the departure from the 

monthly mean (total) temperature (precipitation), are inter-

polated onto the same grid and combined with the monthly 

mean grid. Observed records of solar net radiation, wind 

speed and relative humidity are available for 9, 28 and 36 

weather stations respectively. These variables have ~30 % 

of missing values, mostly in the early part of the records, 

and which were not reconstructed. For these variables, due 

to the scarcity and heterogeneous distribution of weather 

stations, comparisons are done using the nearest WRF grid-

point. Estimated Météo-France ET0 data are computed for 

24 weather stations over the period 2004–2008 using the 

Penman–Monteith equation over a hypothetic grass refer-

ence crop surface; they include some missing values too.

To overcome the scarcity of observed solar radia-

tion data, solar radiation maps are derived from the vis-

ible channel of the Météosat satellite following the Gau-

tier et al. (1980) method. These maps are provided by the 

SATMOS service over the period 1996–2006 at a 10-days 

time-step and a resolution of 10 km. The sensitivity of the 

visible radiometer is assessed following the observed inter-

annual variability in a homogeneous desert environment. 

The results are compared every month to pyranometric 

records from the MWSN (42 stations) across France.

Cell to cell comparison with the gridded high-resolu-

tion SAFRAN analyses is performed after a simple near-

est neighbour interpolation. SAFRAN is a mesoscale 

atmospheric analyses system, which produces surface 

atmospheric variables covering France on a regular grid 

at an 8 km resolution using observations from the auto-

matic, synoptic, and climatologic MWSN networks, and 

ECMWF reanalyses (Szczypta et al. 2011). Analyses are 

made on 615 climatically homogenous zones taking topog-

raphy effects into account. Vertical profiles of temperature, 

humidity, wind speed and cloudiness are interpolated at 

the hourly time-step by combining an optimal interpola-

tion every 6 h, and a variational interpolation over 6 h 

windows (Durand et al. 2009). Precipitation analysis is 

performed daily. The solar radiation is calculated using a 

radiative transfer scheme (Vautard et al. 2013). Quintana-

Seguí et al. (2008) and Vidal et al. (2010) already assessed 

the quality of SAFRAN analyses over France and high-

lighted that the increasing number of ground observations 

improves its realism over time. Hence, solar radiation and 

wind speed are the variables most affected by the scarcity 

of observations.

Fig. 1  a Settings and orography (m) of the three nested WRF 

domains. Colors show the corresponding topography such as is 

appears in WRF grids. b Location of Météo-France stations. Colored 

circles permit to differentiate stations that record precipitation 

(black), temperature (red), wind speed (light blue), relative humidity 

(purple) and solar radiation (yellow). c Location of Douglas-fir stands 

and associated weather stations (Météo-France)

◂
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2.4  Potential evapotranspiration estimates

Potential evapotranspiration over a grass reference surface 

is estimated using FAO-56 Penman–Monteith (PM) equa-

tion. The reliability of PM equation (Allen et al. 1998) has 

been assessed by numerous authors (Allen et al. 1989; Bell 

et al. 2011; Prudhomme and Williamson 2013; McAfee 

2013). The PM equation ranked as the best method for all 

climatic conditions. This method combines energy balance 

and mass transfer concepts (Penman 1948) with stomatal 

and surface resistance (Monteith 1981). ET0 is dependent 

on four primary climatological parameters, namely solar 

radiation, wind speed, humidity and air temperature (Allen 

et al. 1998). For WRF simulation and SAFRAN analyses, 

the PM equation is expressed as:

where ET0 = reference evapotranspiration (mm day−1),

Rn = net radiation at the crop surface (MJ m−2

day−1), G = soil heat flux density (considered as

G ≈ 0 MJ m−2 day−1), T = air temperature at 2 m height

(°C), u2 = wind speed at 2 m height (m s−1), es = satura-

tion vapour pressure (kPa), ea = actual vapour pressure

(kPa), es–ea = saturation vapour pressure deficit (kPa),

∆ = slope vapour pressure curve (kPa °C−1), γ =  psychro-

metric constant (kPa °C−1).

Xu and Singh (2001) found that wind speed (tempera-

ture and relative humidity) exerts more control on ET0 at 

hourly (longer) time scales.

2.5  Soil water deficit and Douglas-fir growth index

Douglas-fir (Pseudotsuga menziesii) was chosen due to 

the high sensitivity of its radial growth to soil water defi-

cit events. Data from thirty Douglas-fir planted stands 

(Fig. 1c) are used to evaluate WRF´s capability to simu-

late a reliable ET0, which can be used in forest dendro-

ecology studies. For each stand, annual soil water deficit 

indexes were calculated using the MWSN and/or WRF 

weather variables. Resulting soil water deficit indexes 

were compared and correlated to an annual radial growth 

index.

Stand and soil properties, and annual growth index tak-

ing into account tree age were obtained from a dendroeco-

logical study of Douglas-fir decline induced by extreme 

and recurrent soil water deficit (Sergent et al. 2012). Field 

observation and tree coring were performed during March 

to April 2009. At each site, a dendroecological plot with 

a radius of 15 m (700 m2) was established, avoiding edge 

and gaps. A soil pit was dug to describe the soil profile to 

(1)ET0 =
0.408�(Rn − G) + γ 900

T+273
u2(es − ea)

� + γ (1 + 0.34u2)

calculate extractable soil water. Diameter at breast height, 

dominant height, and crown condition were also recorded 

to characterize the dendrometry of each stand. Sapwood 

width was measured in the cores and sapwood area was 

estimated from diameter at breast height. Tree leaf area 

was derived from sapwood area with an allometric relation-

ship. 15 trees per stand were cored to the pith to evaluate 

tree age and calculate an annual radial growth index. Basal 

area increment was computed from ring width and used 

to characterise radial growth. The mean annual basal area 

increment was calculated for each plot. To allow growth 

comparison between plots of different ages, all series were 

standardised. Final chronologies at the plot level were pre-

pared by averaging the annual residuals to yield a growth 

index (GI) expressed as a percent of the expected growth 

under average conditions, see Sergent et al. (2012) for more 

details.

Soil water deficit was computed using the daily lumped 

water balance model for forests Biljou© (Granier et al. 

1999). Biljou© (https://appgeodb.nancy.inra.fr/biljou/) is a 

process-based model, which calculates water fluxes (inter-

ception, transpiration, actual evapotranspiration, drainage) 

and soil water content at a daily time-step. The model com-

putes potential evapo-transpiration according to the Pen-

man equation with forest albedo. For each stand, Biljou© 

quantifies soil parameters (maximum extractable water, 

bulk density, and water content at permanent wilting point 

for each soil layer) and stand parameters (leaf area index, 

fine root distribution). Soil water shortage has an impact on 

stomatal regulation as soon as Relative Extractable Water 

(REW) in the soil drops below a critical value of 40 % 

(Granier et al. 1999). Day-by-day computation of soil water 

content includes temporal autocorrelation, as REW is never 

reinitialised. The soil water deficit index (SWDI) calculated 

by Biljou© corresponds to the sum of the daily deviations 

between the relative extractible water and the critical value 

of 40 %.

The relationship between mean annual intensity of soil 

water deficit calculated with MWSN and/or WRF elemen-

tary variables (global radiation, wind speed, air tempera-

ture, relative humidity to compute ET0-Penman and rain-

fall) and mean annual growth index was examined using a 

linear regression for the period 1989–2008.

3  Analysis of potential evapotranspiration 
components

This section presents the results (summarized in Table 1) 

obtained for each atmospheric variable used to estimate ET0 

(namely, air temperature, relative humidity, wind speed, 

solar radiation). Comparisons are performed between WRF 
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simulated variables and the ERA-Interim, SAFRAN and 

MWSN data sets over the period 1989–2008. The aim of 

this section is to evaluate the capability of the WRF model 

to downscale the ERA-Interim data at a high spatial resolu-

tion appropriate for impact studies.

3.1  Temperature

Figure 2 shows the climatological annual mean 2 m-tem-

perature simulated by WRF (a), estimated by SAFRAN 

(b) and measured by the MWSN stations (c), together with 

Table 1  WRF mean, bias, 

RMSE and R2 against MWSN 

observations over the period 

1989–2008 (2004–2008 for 

ET0)

All statistics were calculated using analyzed values for each point at the daily time-step

Month Mean Bias RMSE r2 Mean Bias RMSE r2

Temperature °C Incoming solar radiation j cm−2

Jan 3.81 0.27 0.95 0.73 351.40 −1.16 57.93 0.11

Feb 3.92 −0.63 0.98 0.94 617.00 −4.50 99.40 0.19

Mar 6.67 −1.04 1.27 0.76 982.90 −96.69 129.31 0.62

Apr 8.90 −1.01 1.25 0.69 1431.60 −53.41 156.72 0.69

May 14.29 −0.29 0.73 0.80 2002.60 101.82 198.72 0.25

Jun 17.47 −0.09 0.85 0.71 2350.50 255.29 282.88 0.51

Jul 19.87 0.05 0.85 0.79 2323.50 249.45 281.69 0.26

Aug 19.79 0.01 1.10 0.57 1857.10 74.82 113.45 0.67

Sep 15.39 −0.19 0.63 0.86 1228.40 −73.71 130.77 0.49

Oct 11.75 −0.23 0.79 0.85 763.70 −0.14 85.64 0.31

Nov 6.46 −0.03 0.73 0.84 401.60 −12.72 60.48 0.32

Dec 3.91 0.23 0.99 0.78 297.70 19.00 39.27 0.59

Year 11.07 −0.24 0.61 0.99 1220.80 38.62 147.74 0.97

Relative humidity % Precipitation mm day−1

Jan 85.61 −0.29 2.81 0.43 2.22 0.13 0.51 0.80

Feb 83.09 1.50 4.11 0.26 2.38 0.21 0.73 0.63

Mar 79.84 4.80 6.52 0.17 2.33 0.45 0.69 0.82

Apr 75.87 2.86 5.12 0.75 3.06 0.60 0.99 0.66

May 76.91 3.83 4.78 0.19 3.53 1.15 1.48 0.58

Jun 75.24 3.01 4.74 0.24 2.92 0.74 1.10 0.25

Jul 70.16 0.84 4.11 0.12 2.58 0.35 0.83 0.28

Aug 67.41 −2.59 4.69 0.57 2.37 0.20 0.86 0.41

Sep 71.60 −4.75 6.21 0.34 2.45 0.06 0.94 0.46

Oct 78.38 −4.38 5.14 0.53 2.45 −0.22 0.67 0.63

Nov 84.59 −2.19 4.30 0.22 2.59 −0.15 0.69 0.76

Dec 86.14 −0.82 2.90 0.46 2.76 0.47 0.78 0.70

Year 77.87 0.14 3.56 0.73 2.64 0.33 1.01 0.47

Wind speed m s−1 ET0 mm day−1

Jan 3.18 0.94 0.98 0.84 0.63 0.07 0.06 0.72

Feb 3.24 0.72 0.77 0.84 0.85 −0.06 0.15 0.84

Mar 3.20 0.55 0.58 0.87 1.35 −0.20 0.37 0.16

Apr 3.12 0.48 0.54 0.40 2.07 −0.44 0.48 0.91

May 2.69 0.52 0.56 0.54 3.17 −0.10 0.23 0.70

Jun 2.53 0.41 0.49 0.14 3.98 −0.22 0.41 0.46

Jul 2.52 0.36 0.41 0.60 4.33 −0.25 0.31 0.93

Aug 2.37 0.22 0.28 0.52 3.65 0.25 0.17 0.89

Sep 2.45 0.54 0.58 0.63 2.35 −0.15 0.29 0.22

Oct 2.70 0.85 0.87 0.62 1.46 0.01 0.21 0.94

Nov 2.83 0.90 0.95 0.56 0.74 0.09 0.08 0.80

Dec 3.19 0.86 0.91 0.69 0.56 0.15 0.06 0.91

Year 2.57 0.61 0.69 0.66 2.10 −0.07 0.37 0.94
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corresponding biases (Fig. 2d, e). Figure 2f presents the 

corresponding scatter plots. WRF simulates realistic spa-

tial 2 m-temperature variability (Fig. 2) over Burgundy. 

As expected, the 20-year mean daily 2 m-temperature spa-

tial distribution presents a strong altitudinal gradient with 

minimum values found over high ground areas (Morvan 

and seuil de Bourgogne plateau, see Fig. 1b) and maximum 

values over the northwestern and eastern plains. These 

results are in good agreement with Castel et al. (2010) 

and Xu et al. (2012). WRF presents however a cold bias 

against MWSN records (−0.24 °C for the regional aver-

age), mostly located over the central part of the region 

(Fig. 2e) and over high ground areas. This cold bias is 

partly generated by an under-estimation of maximum tem-

peratures, already present in ERA-Interim forcings (Xu 

et al. 2012). A better fit is obtained with MWSN observa-

tions than SAFRAN analyses, despite the underestimation 

of the 2 m-temperature (Fig. 2f). With respect to SAFRAN 

analyses, the regionally averaged temperature difference is 

positive (0.29 °C) and spatially contrasted over Burgundy. 

The spatial pattern of the 2 m-temperature differences 

between WRF and SAFRAN (Table 2a) is strongly corre-

lated with that of relative humidity differences (r = −0.75),

and to a lesser extent to the altitude (r = −0.35). Although

less extensive than with MWSN observations, a cold bias 

is found over central areas, confirming the underestima-

tion of WRF mean 2 m-temperature over the Morvan mas-

sif. Warm differences are located over surrounding areas. 

Note that SAFRAN analyses may themselves exhibit small 

biases introduced by their hourly interpolation, which does 

not fully reproduce the observed diurnal cycle during the 

whole year (Quintana-Seguí et al. 2008).

Figure 3 presents the average annual cycle (Fig. 3a), 

year-to-year fluctuations (Fig. 3b) of a regional mean 

(a) (b) (c)

(d)

Fig. 2  a Annual mean 2 m-temperature (°C) climatology over the 

period 1989–2008 according to WRF. b As (a) but for SAFRAN. c 

As (a) but for MWSN interpolated records. d WRF biases against 

SAFRAN, period 1989–2008. e As (d) but against MWSN records. 

Only differences that are significant at 95 % according to a t test are 

presented. f Scatter-plots of annual mean 2 m-temperature for 1989–

2008 at all grid-points of the studied area : WRF versus SAFRAN 

(orange) and WRF versus interpolated MWSN records (red). Black 

lines show least-square linear regressions
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temperature index and the spatial pattern of tempo-

ral correlations between WRF and SAFRAN (Fig. 3c) 

and MWSN (Fig. 3d) annual means. The annual cycle 

of observed mean temperature (Fig. 3a) is particularly 

well reproduced by WRF (r = 0.99 with both MWSN

and SAFRAN) with a maximum cold bias found during 

March and April for the both data sets (Table 1). WRF 

simulation is in better agreement with observed data 

than the SAFRAN analyses during fall. The warm dif-

ference between WRF and SAFRAN is systematically 

found for every year of the period 1989–2008 (Fig. 3b). 

It is strongly correlated (Table 2b) with the rela-

tive humidity difference between SAFRAN and WRF 

(r = −0.61) and to a lesser extent the solar radiation dif-

ference (r = 0.39). The regional mean 2 m-temperature

index shows that, in most years, WRF is closer to the 

observations than SAFRAN. The interannual variabil-

ity is also well simulated (r = 0.88 with both MWSN

and SAFRAN). From one year to another, WRF best fits 

observations over the northwestern part of the region 

(Fig. 3d), and presents minimum correlations over the 

southeastern part. This gradient is also found in the com-

parison between WRF and SAFRAN (Fig. 3c). WRF 

seems to better reproduce 2 m-temperature over areas 

controlled by westerly frontal disturbances and probably 

experiences more difficulties to reproduce thermal inver-

sions associated with low-level phenomena during win-

ter over the southeastern areas. These results confirm the 

model’s capabilities to regionalize 2 m-temperature over 

the region.

3.2  Relative humidity

Only 36 MWSN stations record relative humidity daily 

(Fig. 1b). Their relative scarcity and heterogeneous dis-

tribution forced us to make comparisons with the near-

est WRF grid-point. However, grid-to-grid comparison 

is performed between WRF simulation and SAFRAN 

analyses.

Relative humidity is related to air temperature as 

showed in Table 2a, b. Its variation is reversed from that 

of temperature, as the relative humidity depends upon the 

saturated vapour pressure, which increases as tempera-

ture rises. As expected, Fig. 4 shows that WRF relative 

humidity is related to the air temperature distribution 

(Fig. 2), with the highest values mostly located over areas 

with altitude exceeding 300 m. In sharp contrast, no clear 

altitudinal gradient appears for MWSN stations. The dri-

est (wettest) stations are mostly located over the low-

land (high ground) areas, but observations are strongly 

affected by local conditions. SAFRAN relative humidity 

shows a homogenous spatial distribution over the whole 

region that appears uncorrelated with neither the relief 

nor the MWSN records. Compared to MWSN, WRF 

tends thus to produce small dry (wet) biases mostly over 

the plains (elevated regions) (Fig. 4c). Maximum biases 

are located close to the major cities (Macon, Dijon, Aux-

erre, Sens), and are related to the simulation of urban 

heat islands by WRF (see Fig. 2a). Differences between 

WRF and SAFRAN show quite a similar spatial distribu-

tion. The matrix of spatial correlation (Table 2a) shows 

that relative humidity differences between WRF and 

SAFRAN are strongly correlated with the 2 m-tempera-

ture differences (r = −0.75), the altitude (r = 0.62) and

also the solar radiation (r = −0.31), since the latter is

involved in the 2 m-temperature spatial variability. Most 

of wet differences are located over the Morvan massif in 

the central parts of Burgundy (>+4 %), which experi-

ences the maximal cold differences for 2 m-temperature, 

and dry differences predominate over the surrounding 

plains (<−2 %).

The annual cycle of observed mean relative humidity 

(Fig. 5a) shows that WRF (1) produces a wet bias dur-

ing spring; (2) reduces the ERA-Interim dry bias in sum-

mer; (3) enhances it in fall, which presents maximum 

biases and RMSE against MWSN observations (Table 1). 

ERA-Interim and MWSN observations show very high 

co-variability (r = 0.98 over 1989–2008), probably due

Table 2  (a) Spatial correlations 

of the differences between  

WRF and SAFRAN weather 

variables and altitude over the 

period 1989–2008 (n = 3886).

(b) Temporal correlations 

(1989–2008, n = 20) of the

differences between WRF and 

SAFRAN weather variables, 

averaged over the whole region

(a) Temperature Rela�ve Humidity Wind Speed Solar Radia�on Precipita�on

Temperature -0.75 0.01 0.28 0.11

Rela�ve Humidity -0.75 0.14 -0.31 0.00

Wind Speed 0.01 0.14 -0.22 −0.19

Solar Radia�on 0.28 -0.31 -0.22 0.08

Precipita�on 0.11 0.00 -0.19 0.08

Al�tude -0.35 0.62 -0.04 0.05 0.35

(b) Temperature Rela�ve Humidity Wind Speed Solar Radia�on Precipita�on

Temperature -0.61 -0.13 0.39 -0.06

Rela�ve Humidity -0.61 -0.19 -0.49 0.33

Wind Speed -0.13 -0.19 0.32 0.38

Solar Radia�on 0.39 -0.49 0.32 -0.12

Precipita�on -0.06 0.33 0.38 -0.12
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(a)

(b)

(c) (d)

Fig. 3  a 2 m-temperature daily mean annual cycle (°C), averaged 

spatially over Burgundy for WRF exp. (yellow curve), SAFRAN 

analyses (orange curve), MWSN records (red curve), and ERA-

Interim reanalyses (black curve), period 1989–2008. b As (a) but 

for the interannual 2 m-temperature index averaged throughout the 

year. Colors are the same as panel (a). c Correlation between annual 

2 m-temperature simulated by WRF and SAFRAN analyses, period 

1989–2008. d As (c) but for WRF and MWSN interpolated records. 

Dashed black curves enclose correlations significant at P = 0.95

according to a Bravais–Pearson test
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to the fact that ERA-Interim data assimilate observa-

tion from MWSN records. Even if the relative humidity 

simulated by WRF exhibits weaker co-variability with 

MWSN observations (r = 0.84), the dry bias is generally

reduced (Fig. 5a). In some months, especially from March 

to June, WRF actually over-corrects ERA-Interim, which 

presents an underestimation of up to −10 %, as already

stated by Szczypta et al. (2011). Due to the better simula-

tion of the relative humidity over the surrounding plains 

and cities, the annual mean relative humidity simulated by 

WRF also better fits the observations for more years than 

SAFRAN analyses do (Fig. 5b). Temporal correlation 

matrix (Table 2b) shows that the difference between WRF 

and SAFRAN is strongly correlated with the 2 m-temper-

ature difference (r = −0.61), but also the solar radiation

(r = −0.49). Interannual correlations (Fig. 5c) show that

WRF is in fair agreement with SAFRAN (0.5 ≤ r ≤ 0.9)

over almost the whole region except the northern part of 

(a) (b)

(c)

Fig. 4  As Fig. 2 but for annual mean 2 m-relative humidity (%)
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the Saone Valley and the northwestern part where they are 

not significant. Temporal correlations between WRF and 

local MWSN observations show a NW–SE gradient with 

maximum correlations reaching 0.58 in northwestern Bur-

gundy but becoming not significant over the southeastern 

part.

(a)

(b)

(c)

Fig. 5  As Fig. 3 but for 2 m-relative humidity (%)
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3.3  Wind speed

Only 28 MWSN stations are available for wind speed 

(Fig. 1b), but they present a homogeneous distribution over 

the region, even if they are mostly located in lowland areas. 

As for relative humidity, comparison is done with the near-

est WRF grid-point but grid-to-grid comparisons are feasi-

ble for SAFRAN.

Highest wind speeds simulated by WRF (Fig. 6a) are 

mostly located in the northern part of Burgundy, where the 

average wind speed is often higher than 3 m/s. The rela-

tionship with topography is unclear, although minimum 

wind speeds tend to be found in small inner basins. The 

southern part of the region experiences lower wind speeds 

(<2 m/s). MWSN observations do not present such clear 

zonal distribution but also tend to exhibit their highest 

wind speeds (>2 m/s) over the northern part of the region, 

and their lowest (<2 m/s) wind speeds over some locations 

in the southern part of Burgundy. Even if wind speed is 

highly variable in space within scale of hundreds of meters 

(Vidal et al. 2010), WRF tends to present an overall posi-

tive bias that reaches 1.5 m/s (Fig. 6d) over northwestern 

Burgundy (Fig. 6c). This overestimation may be attribut-

able to the use of the Yonsei University planetary boundary 

layer, which has an impact—underestimation of the vertical 

wind shear—on the wind speed during stable conditions, 

(a) (b)

(c)

Fig. 6  As Fig. 2 but for annual mean 2 m-wind speed (m/s)
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especially during winter. A large wind speed under-esti-

mation (>−2 m/s) is located over an isolated hill, Mont-

Saint-Vincent (601 m, central southern Burgundy) and can 

be attributed to the specific local topography. Indeed, this 

negative bias is not found over adjacent stations (located 

in partly urbanized plains), suggesting that WRF smoothes 

out the wind speed spatial variability. SAFRAN show dif-

ficulties to reproduce the spatial distribution (Fig. 6b). 

The mean wind speed and its spatial variability are under-

estimated (Fig. 6c). This result is consistent with Quin-

tana-Seguí et al. (2008) and Szczypta et al. (2011) who 

concluded that SAFRAN analyses underestimated aver-

age wind speed with a mean bias of −0.3 m/s. This bias

arises from the hourly interpolation and a spatial linear 

interpolation, which cannot resolve some local phenom-

ena (Quintana-Seguí et al. 2008). Moreover, Vidal et al. 

(2010) indicate that the lower accuracy for spatial patterns 

of wind speed is mainly due to the scarcity of ground-based 

observations.

The wind speed annual cycle (Fig. 7a) brings similar 

conclusions. WRF systematically produces higher than 

expected spatial mean wind speed throughout the year. 

This positive bias slightly increases from October to Feb-

ruary (Table 1). According to Szczypta et al. (2011), this 

over-estimation is mostly generated by an over-estimation 

of wind speed transmitted to WRF by ERA-Interim, and 

is not mitigated by WRF’s better resolution, partly due to 

the use of the Yonsei University planetary boundary layer. 

At the interannual time-scale (Fig. 7b), both ERA-Interim 

and WRF, which are highly correlated (r = 0.72), present a

weak co-variability with SAFRAN (r = 0.39 and r = 0.29

respectively) and MWSN (r = 0.53 and r = 0.45), but it

should be noted that the actual range of wind speed varia-

tions is small. From one year to another, ERA-Interim and 

WRF’s (SAFRAN’s) positive (negative) biases appear to be 

almost constant over the period. Interannual correlations 

(Fig. 7c) show that WRF presents significant moderate cor-

relations with MSWN observations for 23 of the 28 stations 

(r > 0.43). Only few areas show significant correlations 

between WRF and SAFRAN. The influence of local pro-

cesses and the scarce network of observation data, particu-

larly over elevated areas, make it difficult to evaluate the 

reliability of the three model products (SAFRAN, ERA-

Interim and WRF) used in this work.

3.4  Solar radiation

ET0 estimation is strongly constrained by the reliability of 

solar radiation data (Bois 2007). Solar radiation is also the 

main forcing variable that controls ET0 during the summer 

season. The small number of in situ solar radiation records 

is a challenge for modelling ET0 for climate impact studies 

(Remesan et al. 2008). In order to estimate the reliability of 

solar radiation simulated by WRF, only 9 MWSN stations 

are available (Fig. 1b), which are compared to the nearest 

WRF grid point. We also perform grid-to-grid comparisons 

between SATMOS, SAFRAN and WRF. SATMOS data 

were evaluated over the whole France by Piedallu et al. 

(2007). They exhibit high skill to reproduce solar radiation, 

in spite of a positive bias against the 42 MWSN stations 

between March and July, especially over mountainous areas.

WRF (Fig. 8a) seems to simulate a realistic solar radia-

tion latitudinal gradient, with lower values over the north-

ern part and higher values over the southern parts of the 

region, consistent with the SATMOS estimates (Fig. 8c) 

and to some extent with the few MWSN stations avail-

able over Burgundy. In contrast, SAFRAN analyses do 

not show any latitudinal gradient (Fig. 8b). Their highest 

values are located over the Morvan Massif (>1300 J/cm2), 

which is irrelevant considering the expected climatologi-

cal pattern of a high local cloudiness. Observed radiation 

is not assimilated in SAFRAN, so a patchy pattern is gen-

erated by the optimal interpolation applied over the cli-

matically homogeneous areas. Differences in the spatial 

distribution between WRF and SAFRAN (Fig. 8d) fol-

low the same pattern, with negative differences over the 

Morvan Massif, and mainly positive differences over the 

surrounding plains. WRF simulates lower solar radiation 

than SATMOS, especially over the southern part of Bur-

gundy (Fig. 8e), but the bias generally remains of moder-

ate magnitude (Fig. 8f). Comparisons with MWSN denote 

a rather good agreement with the observations, albeit mod-

erate over-estimation (<100 J/cm2) in some stations in the 

plains. This could be due to WRF missing cases of local 

radiative fog in the valleys.

All the solar radiation datasets present a similar annual 

cycle. At wintertime, when the solar radiation is low, dif-

ferences between all datasets are negligible (Fig. 9a). 

Seasonality in the biases is discernible with an over-esti-

mation of solar radiation around 250 J/cm2 (Table 1) in 

June-July. A lower positive bias is also found in ERA-

Interim and SATMOS data over the whole year. In con-

trast, SAFRAN shows weak differences in regards to 

MWSN throughout the year. As shown by Szczypta et al. 

(2011), ERA-Interim tends to over-estimate the solar 

radiation, which is consistent with the underestimation of 

precipitation (Sect. 4.1), while SAFRAN tends to under-

estimate the solar radiation. WRF improves upon the raw 

ERA-Interim data, which present a positive bias close to 

6 %, and reduces it to a positive bias close to 3 %, but 

it shows a larger overestimation starting at end of spring 

and during summer. This overestimation occurring during 

the core of the convective season is mainly due to the fact 

that in WRF the subgrid-scale convective parameteriza-

tion does not consider cumulus cloud feedbacks to radia-

tion. Hence when summertime convection is predominant, 
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radiatively passive cumulus clouds result in excessive sur-

face radiant energy (Alapaty et al. 2012). One strong limi-

tation of these analyses is however that only three stations 

are located South of 47°N. The scarcity and the aniso-

tropic distribution of MWSN observations questions the 

representativeness of a regional solar radiation index, and 

(a)

(b)

(c)

Fig. 7  As Fig. 3 but for 2 m-wind speed (m/s)
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can generate an underestimation of the real annual cycle. 

The interannual variability simulated by SAFRAN and 

estimated by SATMOS (Fig. 9b) are strongly correlated 

to MWSN (r = 0.86 and 0.87, respectively). WRF and

ERA-Interim are both strongly correlated with SATMOS 

data (r = 0.78) but WRF shows a lower covariability with

MWSN (0.63). WRF reduces the positive bias between 

ERA-Interim and MWSN observations every year of the 

period, but the magnitude of their differences varies inter-

annually. Similarly to the results presented in Fig. 7c, the 

spatial distribution of interannual correlations between 

WRF and SAFRAN is strongly influenced by the climati-

cally homogeneous areas used in these analyses (Fig. 9c). 

However, WRF shows high correlation with SAT-

MOS data over the whole region (Fig. 9d). Correlations 

between WRF and MWSN are weaker but significant, 

with values ranging from r = 0.43 in the southern part of

the region, to r = 0.58 over the northern part. SAFRAN

fails at reproducing solar radiation, which is a key vari-

able for the ET0 estimates.

Section 3 illustrated the capability of the WRF model in 

simulating climate variability over Burgundy at annual and 

interannual timescales for the atmospheric variables used 

to compute ET0. The WRF model tends to partially reduce 

the ERA-Interim biases against MWSN during the vegeta-

tive period for 2 m-temperature, relative humidity and wind 

speed, but slightly degrades the seasonal and interannual 

variability. Results show a good skill of the WRF model to 

simulate the spatial distribution for 2 m-temperature and 

wind speed, relative humidity and solar radiation. However 

it tends to slightly over-estimate wind speed during winter 

and solar radiation during summer. At a similar resolution, 

the spatial distribution for relative humidity, wind speed 

and solar radiation seems to be more relevant consider-

ing the physiography and land-cover of the area than that 

derived from SAFRAN analyses.

(a) (b) (c)

(d) (e)

Fig. 8  a Annual mean solar radiation (J/cm2) climatology over the 

period 1989–2008 according to WRF. b As (a) but for SAFRAN. 

c As (a) but for SATMOS. Circles correspond to MWSN station 

records d WRF biases against SAFRAN, period 1989–2008. e As (d) 

but against SATMOS. Only differences that are significant at 95 % 

according to a t test are presented. f Intercomparison of WRF exp. 

over the studied area through scatter-plots of annual solar radiation 

for 1989–2008: WRF versus SAFRAN (orange), WRF versus SAT-

MOS (grey) and WRF versus MWSN station records (red)
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(a)

(b)

(c) (d)

Fig. 9  a Solar radiation daily mean annual cycle (J/cm2), averaged 

spatially over Burgundy for WRF exp. (yellow curve), SAFRAN 

analyses (orange curve), MWSN station records (red curve), SAT-

MOS satellite data (grey curve) and ERA-Interim reanalyses (black 

curve), over the period 1989–2008. b As (a) but for the interannual 

solar radiation index averaged throughout the year. Colors are the 

same as panel (a). c Correlation between annual 2 m-temperature 

simulated by WRF and SAFRAN, period 1989–2008. d As (c) but for 

WRF and SATMOS. Circles represent the correlation between WRF 

and MWSN. Dashed black curves correspond to 95 % significant cor-

relations according to a Bravais–Pearson test
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4  Analysis of water balance and its components

This section first presents the results obtained for down-

scaled precipitation and the reference ET0 estimated from 

the Penman–Monteith equation (Allen et al. 1998). The 

ET0 computation uses downscaled 2 m temperature, rela-

tive humidity, wind speed and solar radiation discussed in 

Sect. 3. The aim of this section is to evaluate the capability 

of the model to produce realistic input data (precipitation 

and ET0) to compute the soil water balance of Douglas-fir 

forested stands.

4.1  Precipitation

A detailed study of WRF capability to simulate precipita-

tion over Burgundy is provided in Marteau et al. (2014). 

Only a brief account is provided here, with SAFRAN and 

MWSN used as reference datasets, the latter being inter-

polated onto a 1 km resolution grid using the thin plate 

splines method. WRF simulates rather realistic precipita-

tion spatial distribution and amounts (Fig. 10a), corroborat-

ing the sensitivity studies performed by Castel et al. (2010) 

and Marteau et al. (2014) over a similar domain. Largest 

amounts are located over the western slopes of the Morvan 

Massif (>1500 mm), and minimum amounts over the sur-

rounding plains (<700 mm). This is supported by MWSN 

(Fig. 10c) and SAFRAN (Fig. 10b). However, precipita-

tion amounts tend to be over-estimated over most parts of 

the region. Precipitation biases (Fig. 10d, e) are generally 

moderate, with some noticeable too wet conditions over the 

relief (>400 m), especially over the southwest side located 

under the direct influence of the dominant winds. Precipi-

tation amounts simulated by SAFRAN are close to the 

observations, but underestimate precipitation amounts over 

the southwest part of the Morvan massif, by about 200 mm 

(Fig. 10b).

WRF produces less satisfactory results when working 

on the average annual cycle (Fig. 11a; note that all cycles 

were filtered using a 31-day running mean for readability). 

WRF presents a weak co-variability with MWSN observed 

annual cycle (r = 0.47). The largest differences are found

during the spring and summer seasons, from April to 

August, due to a large over-estimation of convective pre-

cipitation (Marteau et al. 2014). This is partly supported by 

(a) (b) (c)

(d) (e)

Fig. 10  As Fig. 2 but for annual mean precipitation amounts (mm)
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the results of Alapaty et al. (2012) which show over the US 

that summertime convective systems simulated by WRF 

model are highly energetic and often lead to a convective 

instability, resulting in too frequent activations of param-

eterized convection. Although it over-estimates both the 

occurrence of rainy days (>1 mm) and their intensity (not 

shown), WRF shows a better ability to reproduce winter 

precipitation amounts, mostly controlled by non-convec-

tive precipitation, and to a lesser extent fall precipitation 

amounts, which are slightly underestimated. ERA-Interim 

(a)

(b)

(c) (d)

Fig. 11  As Fig. 3 but for precipitation (mm)
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reanalyses underestimate precipitation, mainly during the 

summer season, while SAFRAN is remarkably close to 

observation.

Figure 11b shows precipitation interannual vari-

ability. WRF standard deviation (132.6 mm) is close to 

those obtained for MWSN (114.4 mm) and SAFRAN 

(111.5 mm). Simulated annual precipitation also shows a 

strong co-variability with these datasets (r = 0.87 and 0.88,

respectively). As expected, WRF shows a systematic over-

estimation of the annual precipitation amounts (+122.8 mm

against MWSN). The very dry years 1991, 2003 and to 

a lesser extent 2005 are too wet in the model mostly due 

to the over-estimation of convective precipitation dur-

ing spring and summer. The year 1996, an “average” year 

in Burgundy in terms of annual precipitation amounts, is 

one of the wettest of the period according to WRF, with 

an over-estimation of precipitation during winter, spring 

and summer. WRF downscaling does not affect the perfor-

mance of the simulated interannual variability (r = 0.88

between ERA-Interim and MSWN) but it over-corrects the 

underestimation of the annual precipitation amounts found 

in ERA-Interim (Szczypta et al. 2011). Local interannual 

correlations (Fig. 11d) show that the model performs rather 

well (correlations ranging from 0.7 to 0.9) and reproduces 

accurately the geography of interannual precipitation vari-

ability. Spatial correlations (not shown) between WRF and 

MWSN seasonal fields from one year to another show val-

ues that range between 0.64 (in 2006) and 0.86 (in 1995). 

WRF produces nonetheless less satisfactory results when 

working on seasonal anomaly fields, i.e. after removal of 

the climatological precipitation. Spatial correlations are 

lower and even negative 3 years out of 20, denoting a lower 

skill for simulating departures from the climatology, and 

thus climate interannual variability (and associated effects 

on local precipitation). In contrast, due to the assimilated 

observation data, SAFRAN is highly correlated to MWSN 

seasonal anomaly fields with a correlation coefficient rang-

ing from 0.63 in 1993 to 0.90 in 1996.

4.2  Potential evapotranspiration

ET0 estimates computed from WRF, ERA-Interim and the 

SAFRAN data are compared with those obtained from the 

24 MWSN stations, available for 2004–2008.

Minimum amounts of simulated ET0 (<700 mm) are 

found over elevated areas (Fig. 12a), ET0 increasing as alti-

tude decreases, with slightly larger values over the main 

cities, presumably due to the simulated urban heat island 

increasing the temperature locally. This spatial distribu-

tion is coherent with the MWSN estimates. SAFRAN is 

less capable to reproduce this spatial pattern and displays 

maximum ET0 amounts over both southeastern Burgundy 

(as in WRF) and the Morvan massif. Over 2004–2008, 

with respect to MWSN local stations, WRF underestimates 

ET0 amounts over almost the whole region with maxi-

mum (minimum) biases located over high ground areas 

(surrounding plains) (Fig. 12c). This negative bias is not 

found with SAFRAN: WRF shows higher positive differ-

ences over almost the whole region, except the Morvan 

massif. Due to the uncertainties found in the SAFRAN 

data for some variables used in the computation of ET0, 

it is unsure whether these differences point to deficiencies 

in WRF, considering the fact that differences of the oppo-

site sign are found with MWSN data. WRF actually pre-

sents a lower bias with MWSN (−0.07 mm/day: Table 1)

than with SAFRAN (0.23 mm/day), with maximum differ-

ences during summer. RMSE are similar in both datasets, at 

0.37 mm/day for MWSN and 0.30 mm/day for SAFRAN, 

which is almost 15 % of the mean ET0 but still much lower 

than the values found by Ishak et al. (2010) who reached a 

30–40 % error between estimates from observed weather 

variables and the MM5 model.

All the estimated ET0 datasets present a similar annual 

cycle (Fig. 13a). Both of them are highly correlated 

(r > 0.94) with observations. As expected, almost no bias 

is found in winter. It is higher during spring and summer, 

mostly from March to August, probably due to vegetative 

activity. WRF improves the ERA-Interim ET0 annual cycle, 

reducing the strong overestimation mostly due to the solar 

radiation over-estimation, and a better representation of 

land surface. In contrast, SAFRAN slightly underestimates 

ET0, mostly during the summer season, with a bias reach-

ing 1 mm/day, mostly due to the underestimation of both 

wind speed and solar radiation. The interannual variability 

derived from SAFRAN and MWSN are strongly correlated 

(Fig. 13b). WRF also systematically underestimates ET0 but 

seems to produce weaker biases than ERA-Interim. WRF 

shows a lower covariability with MWSN (r = 0.83) than

ERA-Interim (r = 0.96). Temporal correlations (Fig. 13c)

show that WRF is in good agreement with MWSN esti-

mates over almost the whole region except for localized sta-

tions, all located in the northern part of the region. Tempo-

ral correlations between WRF and SAFRAN present more 

discrepancies, with low correlations over the eastern area, 

mainly attributable to the poor accuracy of SAFRAN wind 

speed and solar radiation. The patchiness associated with 

the SAFRAN product also appears clearly. These results are 

also verified when working on a potential evapotranspiration 

calculated with the Penman Formula and computed from the 

Biljou© model for each Douglas-fir stands (Fig. 14) over the 

1989–2008 period. The annual cycle (Fig. 14a) is well repro-

duced (r = 0.99 between WRF and MWSN). WRF produces

less satisfactory results (Fig. 14b) for the interannual vari-

ability (r = 0.59), this weaker correlation is partly explained

by the distance between some MWSN weather variables to 

the Douglas-fir stands as the solar radiation data.
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To sum up, the WRF model seems capable to produce 

ET0 fields with a reasonable accuracy, suggesting its poten-

tial usefulness for impact studies. An illustration is pro-

posed in the next section.

4.3  Computation of the water balance for Douglas-fir 

stands

To assess the reliability of the WRF model to simulate 

weather variables involved in the ET0, a local scale indi-

rect assessment based on the daily soil water balance of 30 

Douglas-fir stands, which present a high sensitivity of their 

radial growth to soil water deficit events, was computed 

using the process-based model Biljou© (Granier et al. 

1999). The MWSN, SAFRAN and WRF weather vari-

ables nearest to the 30 Douglas-fir stands (mostly located 

over central and southern Burgundy, see Fig. 1c) are used 

as climatic input. Potential evapotranspiration is computed 

by Biljou© according to the Penman equation prior to the 

water fluxes modeling.

Differences between the mean soil water deficit 

index (SWDI) computed with WRF and MWSN records 

(Fig. 15a) present a heterogeneous distribution with larger 

differences (ranging from 10 to 27 %) over the eastern part 

(and especially the northernmost three stands: 31–42 %), 

while smaller differences (<10 %) prevail for 9 of the 12 

(a) (b)

(c)

Fig. 12  As Fig. 2 but for annual mean reference evapo-transpiration amounts (mm)
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stations located in the western part of the domain. These 

smaller differences can be attributed to the lower soil water 

deficits experienced over the windward wetter side of the 

Morvan massif. Interannual variations of SWDI computed 

by Biljou© for the 30 Douglas-fir stands and using WRF 

data and MWSN as climatic input present an average corre-

lation of 0.34 over the period 1989–2008, with large inter-

station discrepancies. Higher and significant correlations 

(a)

(b)

(c)

Fig. 13  As Fig. 3 but for reference evapo-transpiration amounts (mm)
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are found outside the Morvan massif, whereas they are 

strongly contrasted over the massif itself. This suggests 

that the higher spatial variation of climatic parameters over 

hilly terrain is inadequately sampled by the few weather 

stations available over this area.

Figure 15b presents the average Relative Extractable 

Water (REW) computed with the same climatic datasets for 

the thirty Douglas-fir stands, plus one experiment merging 

MWSN precipitation and other variables taken from WRF 

simulations. The REW computed from WRF raw data 

is highly correlated with that computed from SAFRAN 

and MWSN (r = 0.83). However, WRF overestimates the

REW from May to October. This overestimation is a key 

issue that affects the ability of WRF to produce a con-

sistent SWDI, since SWDI corresponds to the sum of the 

daily deviations between the relative extractible water and 

the critical value of 40 %. In July–August average REW 

is close to this value (Fig. 15b), hence small REW biases 

may translate into large SWDI biases (Fig. 15c). The 

REW overestimation is sensibly reduced during spring and 

close to the MWSN REW during summer (Fig. 15b) when 

computed from the merged dataset (i.e., when replacing 

WRF-simulated rainfall by observation). Substituting 

observed precipitation to WRF simulations also strongly 

improves the realism of the SWDI (r = 0.97 between the

SWDI computed from WRF + MWSN precipitation and

that computed from MWSN) and presents smaller differ-

ences to MWSN SWDI than SAFRAN (Fig. 15c). In order 

to further assess the contribution of each WRF variable 

used as input in the soil water balance computation, four 

other experiments were carried out for the thirty Douglas-

fir stands. As for the experiment replacing WRF-simulated 

rainfall by observation discussed above, the four analyses 

were performed by substituting one by one each WRF vari-

able by the corresponding MWSN observations (Fig. 15c). 

Note that the MWSN weather records, especially for solar 

radiation, are taken from stations located at some distance 

of the Douglas-fir stands (Fig. 1b), which can explain part 

of the differences between SWDI computed from WRF 

and MWSN. Comparisons between these experiments and 

SWDI computed from MWSN and SAFRAN data reveal 

that the low capacity to reproduce the soil water content 

with the WRF model is mainly caused by its large precipi-

tation biases. In contrast, substituting simulated relative 

(a)

(b)

Fig. 14  As Fig. 3 but for Penman evapo-transpiration amounts computed with Biljou© (mm)
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Fig. 15  a Differences in 

percentage (colors) and cor-

relations (circle size) between 

SWDI computed with Biljou© 

using raw WRF data and 

MWSN records climatic input 

for the 30 Douglas-fir stands. b 

Mean annual cycle (1989–2008, 

average of the 30 Douglas-fir 

stands) of the Relative Extract-

able Water computed from 

WRF (yellow curve), SAFRAN 

(orange curve), MWSN (red 

curve) and WRF + MWSN

precipitation (black curve) data. 

c Yearly mean intensity of the 

SWDI for the 30 Douglas-fir 

stand computed with MWSN 

nearest records (red curve), 

SAFRAN (orange curve), 

raw WRF (yellow curve), 

WRF + MWSN precipitation

(black curve), WRF + MWSN

temperature (dark grey curve), 

WRF + MWSN wind speed

(grey curve), WRF + MWSN

relative humidity (light grey 

curve), and WRF + MWSN

solar radiation (lighter grey 

curve) data, period 1989–2008. 

d Interannual variations in the 

growth index (green dashed 

curve) and mean SWDI com-

puted with MWSN records (red 

curve), SAFRAN (orange) and 

WRF + MWSN precipitation

(black curve), period 1989–

2008
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humidity, wind speed, air temperature or solar radiation by 

observations does not significantly improve the SWDI. The 

substitution of solar radiation slightly degrades the realism 

of the SWDI. Thus, the main deficiencies of WRF unam-

biguously concern its capacity to reproduce at regional 

scale the precipitation amounts and their seasonality. It is 

a major difficulty for application in forestry, as the rainfall 

during the growing season is essential to wood production 

and tree health.

The interannual variations in the growth index 

(Sect. 2.5) are negatively correlated with interannual varia-

tions in the SWDI (Sergent et al. 2012). In order to evaluate 

WRF weather variables used to simulated ET0, three inter-

annual correlations are performed using all stands. The first 

one is calculated between Douglas-fir growth index and 

the SWDI (Fig. 15d) computed from the MWSN stations 

observations, the second one from the SAFRAN data, and 

the last one merges WRF-simulated climate variables with 

the MWSN precipitation. Interannual variation in radial 

growth mirrors the three SWDI at the regional scale. The 

correlations obtained for the three indexes are highly signif-

icant, respectively r = −0.81, r = −0.80 and r = −0.77. In

contrast, the correlation coefficient is much lower between 

the growth index and a SWDI computed from WRF data 

only (r = −0.21, not shown), due to the overestimation of

relative extractible water that prevents generating a realistic 

SWDI.

These results highlight the reliability of the WRF model 

to simulate weather variables involved in the ET0 estima-

tion and the low capacity of the model to produce reliable 

rainfall for relevant impact studies. Although the overes-

timation of annual precipitation amounts does not exceed 

14 % on average (Marteau et al. 2014), the non-stationarity 

of these biases in space and time (larger during the vegeta-

tive season) makes it necessary, to date, to apply a post-

correction on simulated precipitation, before using them to 

feed impact studies.

5  Discussion and conclusion

Accurate estimates of the potential evapotranspiration vari-

ability throughout the year and their regionalization are 

critically important for use in conceptual hydrological, or 

water balance modelling (Prudhomme and Williamson 

2013). The estimation is derived from atmospheric vari-

ables such as temperature, wind, humidity and radiation, 

and could be difficult to obtain for catchments and regions 

without in situ measurements, or for applications involv-

ing future climate projections (Bell et al. 2011). Regional 

climate models can constitute a potential alternative to 

scarce observational networks. Nonetheless, their useful-

ness is questioned by the realism of the simulated climate, 

especially for precipitation and all the variables used for 

the computation of ET0, which are not often considered 

in climatic studies. Using the state-of-the-art RCM WRF 

driven by ERA-Interim reanalyses, this study attempted 

to document the skill of the model for regionalizing all the 

components used to compute soil water balance, requested 

for many impact studies. Here, the downscaled results are 

compared with the SAFRAN analyses, and in situ observa-

tions over Burgundy.

The regional simulations reasonably reproduce the spa-

tial distribution of all weather variables. WRF presents 

lower co-variability with MWSN than ERA-Interim, which 

assimilates observational data, but significantly reduces its 

biases for most of the variables. WRF-simulated relative 

humidity and 2 m-temperature show a clear improvement. 

Solar radiation and precipitation, especially their spatial 

patterns, are also fairly well reproduced by the model. 

WRF reduces some of the biases transmitted by ERA-

Interim. Persisting and additional biases are however found 

in the WRF simulations, including for instance a tendency 

to overestimate precipitation amounts in spring and sum-

mer, a major deficiency for water balance modelling, as 

well as solar radiation in summer, and the 2 m wind speed 

in winter.

ET0 estimated from WRF and SAFRAN outputs show 

strong discrepancies. However, the WRF simulation is in 

better agreement than SAFRAN with the ET0 estimated 

from the in situ observations. The better geography of WRF 

solar radiation, in comparison to SAFRAN, may explain 

most of these discrepancies, since radiation is the dominant 

variable controlling summer ET0 (Bois 2007; Ishak et al. 

2010).

However, WRF and current climate models more gener-

ally, show much stronger limitations for simulating precipi-

tation, especially when convective processes are involved. 

In this study, the bias in precipitation amounts is close to 

+14 % regionally, with particularly marked overestima-

tions in summer. Our simulations show too much shortwave 

radiation reaching the surface and at a same time too much 

rainfall, suggesting a possible (but indirect) link between 

precipitation and solar radiation. This may be explained 

by Alapaty et al. (2012), who have demonstrated that the 

lack of the subgrid-scale convective cloud-radiation feed-

backs in WRF leads to excessive surface radiant energy. In 

their model, this causes relatively high moist static energy 

and correspondingly high convective instability, resulting 

in too frequent activations of parameterized convection. 

The enhanced surface forcing of convection results in a 

notable overestimation of precipitation during spring and 

summer over the US, by about 1–20 mm/day. This missing 

interaction between cumulus and the radiative budget also 

affects longwave radiation, and consequently the surface 

energy budget. This leads thus to strong consequences on 
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temperature and related weather parameters (e.g. relative 

humidity, pressure) with higher latent heat fluxes. Including 

subgrid-scale cloud-radiation interactions should improve 

the simulation of several key climate parameters, the first 

of which being precipitation. To our knowledge WRF 

implements this feedback for some cumulus schemes (e.g. 

Kain-Fritch) since the recent (April 2014) 3.6 release of the 

model.

In spite of this deficiency in the model’s physical pack-

age used for this study, the magnitude of the model errors 

obtained here may be considered in first approximation 

as satisfactory for geophysical (regional climate) stud-

ies. Our results suggest nonetheless that, for impact stud-

ies (such as the simulation of soil water availability and for 

instance its consequences on forest health and productiv-

ity), such biases (especially in precipitation amounts) can-

not be overlooked, and may require being post-corrected in 

order to obtain reliable estimators of local-scale bioclimatic 

conditions.

Future work is thus needed to address more in detail 

this issue. Numerous studies have already highlighted the 

efficiency of some statistical/empirical post-processing 

approaches, such as quantile-mapping (Themeßl et al. 

2011; Gudmundsson et al. 2012; Maraun 2013), used to 

adjust the distribution of modelled data to observed data. 

Another more elegant, but probably less efficient way at 

short term, is to improve the simulation of precipitation 

physically through finer cloud-resolving downscaling exer-

cises. Ultimately, a combination of corrected precipitation 

and modelled ET0 may enable us to regionalise drought 

indexes over the whole region and throughout the century, 

in order to assess how they will be impacted by climate 

change.
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