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HEAT TRANSFER, THERMOCAPILLARY CONVECTION AND INTERFACE
SHAPES IN FLOATING ZONE CRYSTAL GROWTH WITH A MAGNETIC FIELD

Gang CHEN*AND BERNARD Rouxt
Institut de Mécanique des Fluides, CNRS-UMR 34
1, rue Honnorat, 13003 Marseille, France

Abstract

A numerical method is developped to study heat transfer
and thermocapillary convection in the melt in floating
zone crystal growth. The model for calculation is con-
structed of cylindrical coordinates with a symmetrical
axis. The appropriate heat, mass and momentum trans-
fer equations in primitive form are approximated using
finite difference method on semi-staggered grids. The
unknown melting and solidification fronts and melt/gas
interface are calculated using boundary-fitted curvilin-
ear coordinate system. Both solutions in the case of
conduction heat transfer only and thermocapillary con-
vection are presented. The effects of growth rate and ex-
ternally applied magnetic field on the temperature and
flow fields, the zone length and the shapes of the melting
and solidification fronts are demonstrated.

Introduction

The use of microgravity environment and magnetic field
to control the flow field, heat and mass transfer dur-
ing the growth of large-diameter semiconductor crystals
from the melt in floating zone systemn has received a
great deal of attention in the recent years. Pue to the
absence of hydrostatic pressure, the stability of melt/gas
meniscus 1s increased and its deformation is reduced
which is particularly important because it opens the way
to processing methods in microgravity with liquid /fluid
interfaces too large to be maintained with earth’s grav-
ity. Suppression of buoyancy-driven convection in the
melt under microgravity conditions is not emough to
guarantee the growth of compositionally uniform crys-
tals; intense thermal driven flow due to the variation of
gurface tension with temperature is still present. Ow-
ing to the large electrical conductivity of semiconductor
melts, the application of a magnetic field can suppress
flow across magnetic field lines, and hence alters the en-
tire melt motion, through the presence of the electro-
magnetic Lorentz force. Thus, 1t might be expected that
with suppression of the melt motion by the magnetic
field, the heat and masgs transfer would be such as to pro-
duce better crystals. Recent microgravity experiment
of germanium crystal growth by floating zone method,
GEZON, during the Photon mission in the Zona-4M fur-
nace has been the above mentioned purpose.
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In a previous paper [1], we reported numerical results of
hydrodynamics of the melt associated with the GEZON
experiment. The calculation of the zone shape and the
thermocapillary convection in the melt operating under
microgravity conditions has been performed by using
NEKTON code. The deformation of the melt/gas in-
terface has not been included. This paper describes a fi-
nite difference method for solution of the hydrodynamic
thermocapillary model of floating zone process. The
model includes axisymmetric, steady-state convection in
the melt, heat transfer in the melt, feed crystal and so-
Ldifying crystal and the determination of the shapes of
the melt/solid and melt/gas interfaces from interfacial
energy and momentum balances, respectively. Thus the
present model comprises a rather complex free-boundary
problem for the field variables and interface shapes.

During the past ten years, several coupled asymp-
totic/numerical approaches and direct numerical sim-
utations have been devoted to solution of the coupled
system for floating zone process [2-4]. Many of these
followed the early work of Duranceau & Brown [2] who
considered a conduction-dominated heat transfer model.
Many numerical algorithms for the solution of free-
boundary problems used domain transformation tech-
nique. Different numerical techniques, say, finite differ-
ence method, or finite element method, have been ap-
plied to solve transformed equations. The discretization
by the finite difference method is used in this work. The
use of the boundary-fitted coordinate system in this pro-
cedute is a very important elernent. This is because the
boundary-fitted coordinate system easily enables us to
calculate the grid points if the coordinates of the bound-
aries are given. The procedure we follow, to some extent,
is similar to that of Lan & Kou [4], but we solve gov-
erning equations in terms of primitive variables (velocity
and pressure}, instead of stream function and vorticity.
Although the latter formulation avoids problems associ-
ated with the numerical calculation of the pressure field,
it is much easier to treat the melt/gas interface bound-
ary conditions in terms of primitive variables as the pres-
sure field is computed directly from solution procedure.
The numerical procedures based on the primitive vari-
ables can also more easily be generalized to three di-
mensions. Because of limited space, this paper can only
give an overview of the numerical method and results
of the analysis for the floating zone associated with the
GEZON experiment. A more complete report about the



numerical implementation will be presented elsewhere

[6].

Model Formulation

We considere the model floating zone crystal growth
shown in figure 1, with (r,f, z) as the cylindrical co-
ordinates. The system is considered to be axisymmetric
g0 that there is no dependence on the azimuthal coor-
dinate, ¢, i the dependent variables or boundary con-
ditions. We define a coordinate system translating with
the interfaces. The so-called gquasi-stationary approach
is adopted in this analysis, which by mass conservation
implies V. R = V; R3, where V is the pulling rate, R
the radius, the subscrips ¢ and f denote crystal and
feed rods, respectively. A static, uniform magnetic field
is applied externally in the direction of crystal growth,
B = Byée;, where By is the applied magnetic induction.
We assume that both magnetic Reynolds number and
magnetic Prandtl number are small, so that the mag-
netic field produced by any electric currents in the melt,
crystal or feed rod can he ignored. Futhermore, the
electrical conductivity of the crystal and feed rods are
neglected and the crystal and feed rods are traited as an
electrical insulator. Thus in the present axisymmetric
analysis, the electrical field vanishes everywhere and the
Lorentz force reduces to a systematically damping fac-
tor —g.Biué,, where o, is the electrical conductivity of
the melt and u the radial component of velocity.

Melting hf(r)

Melt/gas
interface

) interface

Fig.1 Schematic of the foating zone crystal growth process.

Let & = ué, + wé; be the velocity, p be the pressure
and T be the temnperature, then the following equations
describe the heat transport in the melt, feed rod and
crystal, and momentum and mass conservation in the
melt:

Melt(?):
pril Vi = —ptpvi—o.Biué +oAF(T—Tn), (1)

pCpii - 7T = w1 72 Th.
Crystal(c) and feed rod(f):

(3)

aT; .
Picpwb?-l’V'(fﬁiVﬂ):Oﬂ:C,f

The thermal boundary conditions are as follows:
Along the centerline of symmetry,
ar
ar

(4)

0. 6)]
Af the melting and solidification fronts,
N{T!_-;'VTI—HSTE'VE :_PSL,'V;:T?T;'G_;'i:C:f (6)

(7)

At the lateral surfaces of the feed rod, melt and crystal,

T=T.

*f’ﬂzﬁzVTz = h(ﬂ—Ta(Z))'FE;’O'(q—%‘LmTa(Z)4),'i2 <, f7i
(8)

At the sample ends,

T(z=0)=T0,T(z=L)=Tg. (9)
Equation (6) represents the energy conservation across
the melt/solid interfaces and Eq.(7) the equilibrium con-
dition. Eq.(8) describes the heat exchange between the
sample and the surrounding by convection and radia-
tion. The condition of specified temperatures at the
sample ends (Eq.(9)) can be replaced by heat flux con-
dition.

The fluid flow boundairy conditions are as follows:
Along the centerline of symmetry,

=y, (10)

S T
At the melting and solidification fronts,
u=0,w=—p;/;Vi,i=c, f {11)
At the melt/gas interface,

i-7=0,

(12)

2
> oiming = Kv — Py + ),

Li=1

(13)

2
> oyt =1- vy, (14)

i,j=1
Equation (12) is the kinematic condition. Egs.(13) and
(14) represent, respectively, the normal and tangential
forces balances. The constant A in Eq.(13) is a reference
pressure. To set the value of A, we need to impose an
additional condition. In simulated floating zone systems
formed by drops captive between two parallel, coaxial
solid disks, the drop volume is given a priori and is con-
served, this volume conservation constraint is used to



set the reference pressure, In a floating zone with solid-
ification, however, the actual volume of the melt is not
known a priore, because it depends on the interaction
of heat transfer and capillarity. The reference pressure
18 determined by the additional constraint that the con-
tact angle formed at the junction of the crystal, melt
and ambient has a specified value, ¢; this condition is
written as,

% = tang, (15)

where f(z) is a function describing the melt/gas menis-
cus shape.

Finally, when the liquid/gas interface meets the melting
and solidifying interfaces, we have the following contact
line conditions,

f(z = hel(r = Re)} = Re, f(z = hy(r = R;)) = Ry.
(16)
Summarying, for the floating zone system shown in
Fig.1, the governing equalions are (1-4} subject to the
boundary conditions {4-14). Egs.(15) and (16) set the
reference pressure and establish the {rijunction of the
melt /solid and melt/gas surfaces.

Solution Method

Since the interface is one of most important features in
the present problem, a boundary-fitted curvilinear coor-
dinate system with its coordinate lines coinciding with
the interface contour is used. This method [7] avoids in-
accurancy and irregularity due to interpolation near the
curved boundaries. It also allows the contracted cocrdi-
nate lines in the regions where the higher temperature
and velocity gradients are expected, for example, in the
vieinity of interface boundaries. Following to Thomp-
son et al. [7], the boundary-fitted coordinate system
r=r{&,n) and z = z(£, p} are defined as the solution of
the quasi-elliptic equations,

gi1ree — 29127¢n + ga2ray + T (Pre 4+ Qry) =0, (17)

J112e¢ — 29‘122,5,7 -+ J22%ny + JQ(PZg -+ an) = 0, (18)

where gi1 = rj + 2., 1o = rezyg + 2, gaz = 7 4 2,
J = peay +rpze, P(E,7) and Q(€, n) are functions of the
control of spacing of the coordinate lines, the subscripts
¢ and n denote the partial derivative with respect to £
and #, respectively. Equations (17,18) are discretized
by the second-order centered finite-difference approxi-
mation for the derivatives and solved by the usual SOR
method. Figure 2 illustrates an example of coordi-
nate transformation of the physical plane (r, z) into a
fixed rectangular computational plane {€,7) with uni-
form grids.

The governing equations (I-4) and boundary cenditions
(5-16) are transformed inte the computational domaine
(¢,7n). The temperature in each phase and the velocity
components in the melt are defined on the grid points

and the pressure in the melt is defined in the mesh cen-
ters, so that the semi-staggered grids are used in the
computation. The avantages and disavantages associ-
ated with this kind of grid in comparison with the widely
used MAC staggered grids are discussed in [6]. The
transformed differential equations and boundary condi-
tions are appreximated, whenever it is possible, by the
second-order centered finite-difference formulae. Dis-
cretized equations (1,2,10-12 and 14) are written for the
flow field in the melt and (3-9) for the temperature field
in the whole domain. Each of resulting nonlinear alge-
braic equations is solved by Newton’s method. For an
appropriate ordering of the grid points and unknowns in
the computational mesh, the associated Jacobian matri-
ces are both banded. The required band LU factoriza-
tion and triangular solvers at each Newton’s iteration
are performed by using the DGBFA /DGBSL sequence
in the LINPACK subroutine library. Omne-dimensional
discretized normal stress condition (13) with (15,16) are
used to determine the meniscus shape. The melting and
solidifying interfaces are obtained from the isothermal
condition (7).

-

INEA]

Fig.2 Example of coordinate transformation: (a) physical domain
(r,2); (b} computational domain {£,7) with uniform grids. The

arrow mark the melt/solid interfaces.

Given the initial estimate of the interface shapes and the
field variables, the solution procedure is as follows:

(1) transform the physical plane into the rectangular
computational plane;

(2) solve the equations for the temperature field in the
crystal, melt and feed rod;

(3) solve the equations for the flow field in the melt;
(4) locate the new melting and solidifying interfaces;
(5) determine the new meniscus shape;

(6) update the interface shapes and the field variables.
All the calculations are repeated until the prescribed



convergence criteria are satisfied. The computations are
carried out on the iPSC/860. Flow fields are displayed
as stream functions computed by solving the appropri-
ate Polsson equation using the velocity field from the
calculation as input.

Results and Discussion

Table : Properties of Ge and operating parameters used in the
calculations

sample radius R 0.75 ¢m
sample length L 13 em
contact angle ¢ 10 deg
surface tension 'y 605 dyn/om - 0.105

% (T = Tm) dyn/{emK)
0.38 W/{cmK)
0.18 W/{emK)

thermal conductivity (melt} &
thermal conductivity (solid) s

density (melt) o1 5.43 g/cm?
density (solid) Ps 5.43 gfem?
heat capacity Cp 0.4 J/{gK)
volumetric latent heat pL 2758.44 Jfem®
melting point temperature T 1210 K
dynamic viscosity i 5.973X10—3g/(cms)
heat transfer coefficient k 1.1x 1073W/(em?K)
emissivity (melt) £y 0.18
emissivity (solid) £s 0.5

pulling rate Ve 1.4x10"%em /s
electrical conductivity Te 1.52%10%/(Sem)

We present here only the computations on the flows
driven by surface-tension gradients; buoyancy-driven
flows are not considered. The thermophysical properties
of germanium and the operating parameters used in the
caleulations are histed in the Table 1. Although the nu-
merical scheme 1s able to test different heater configura-
tion (Equ.(8)), we adopted an ambient temperature pro-
file as shown in Figure 3, which is a function of z. This
specific heater profile is based on the ground-based mea-
surement (Senchenkov, private communication). Note
that T, (z) is not symmetric about the middle plane; the
temperature at the bottom crystal being higher than
that at the top feed rod. We shall see below that this
asymmetric heating will result in the asymmetry of flow
field.
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Fig.3 Heater temperature profile, To{z), used in the computations

Figures 4a and 4b illustrate the calculated results with
no crystal growth based on respectively conduction heat
transfer only and thermocapillary convection. As shown,
the surface temperature difference in the melt, AT, 40,
in the latter case is sinaller than that in the former case.
This is due to the fact that convective flow moves the
hotter melt (at the middle plane) along the free sur-
face toward the melt/solid interfaces and returns the
colder melt along the centerline toward the hot spot.
Therefore, heat transfer to the melt/solid interfaces is
enhanced near the free surface but decreased near the
centerline. Consequently, the melt zone due to the ther-
mocapillary convection is longer at the free surface and
shorter at the centerline; the height being respectively
1.76em and 1.27cm. However, because of small Prandtl
number of the melt of Ge, heat transfer is conduction-
dominated, at least in the range of operating parame-
ters used herein, the difference of the zone shapes be-
tween the two cases is not significant. Tt might be ex-
pected that the difference would become important for
the larger Prandt]l number melt. Since the heat trans-
fers nto the melt zone from heater by radiation and
convection (Eqs.(8)), the surface temperature gradients
and resulting motion in the melt depend substantially
on the heater temperature profile, 7,(z). The flow field
shown in Figure 4b based on the above T,(z) demon-
strates the asymmetry in the motion with the bottom
flow ¢ell being more intense and the top cell being con-
fined to the upper corner. The maximum and minimum
stream functions, which are located respectively at the
centers of top and bottom cells, are 9,5, = 0.043cm?/s
and $min = —0.087em?/s. The fastest surface flow, as-
sociated with the top cell is wpar = 2.08cm/s, and that
the bottom cell wmin = —2.78cm/s. The velocity profile
along the free surface is shown in Figure 5. As shown,
very high swiface velocity gradients are located in the
vicinity of the melt/solid interfaces which need a very
fine mesh in these regions in the computation.
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Fig.4 Calculated results with no crystal growth based on: (a)

conduction; (b) thermocapillary convection. Ay = (¥maz —
Yurin ) /20, Al mels = ATmaz/6 and ATyu;q0 = 38T et This

will be so in the figures to follow.
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Fig.5 Velocity profile along the melt/gas interface

In Figure 6 we examine the results for varing Vj,, the
growth rate. The introduction of latent heat effects and
the translation of the solid rods caused by crystal growth
cause the molten zone to translate down relative to the
heater. The melt/solid interfaces are aflected such that
the melting (upper) interface is drawn further into the
heater, thereby increasing its deflection and the solid-
ification (lower) inderface is pushed further outside the
heater and the temperature field becomes more uniform,
thereby flattening the interface. The flow structures are
similar to that without growth. But due to the shift of
overall position of the melt zone toward crystal, the top
flow cell becomes further smaller and weaker, while the
bottom one becomes larger and stronger.
&) : .
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Fig.6 Effect of growth rate on the melting (a) and solidifying (b)
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interface shapes.
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The effect of magnetic field on the temperature and flow
fields are shown in Figure 7. The magnetic induction,
By, are 0.17esla and 0.3T¢esla in Figs.7a and 7h, re-
spectively. As the result of damping effect througth the
Lorentz force, the intensity of return flow in the radial
direction is reduced. Thus, the overall melt motion is
damped and convective heat transfer becomes smaller.
Since the Lorentz force i1s proportional to the radial
component of velocity, the higher the radial velocity is,
the stronger the damping effect becomes. Therefore, as
shown, the asymmetry of the melt motion is not so sig-
nificant in comparisen with that without magnetic field
and with increasing magnetic induction the melt motion
tends to be symmetric with respect to the heater. The

variation of the maximum and minimum stream func-

tions with the magnetic induction is shown in Figure 8.
Increasing of magnetic induction firsé increases the top
flow cell up to By = 0,17 and then decreases it. The
bottom flow cell is always decreased with increasing By.

Vrmae = 0.0445

AT e = 4.02
—0.0464

"jjmin

0.0262

’Q[}max -

ATar = 4.08K

Fig.7 Effect of magnetic field on the temperature and flow fields:
{a) By = 0.1T; (b) By = 0.3T.
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The magnetic effect on the molten zone length at the
surface and centerline 1s illustrated 1n Figure 9. Al
though the convective heat transfer is decreased by mag-
netic damping, its effect on the shape of melt/solid in-
terfaces is not significant. As mentioned above, this s
due to very small Prandtl number of the melt of Ge;
the coupling between flow field and temperature filed
being small. In fact the limiting case corresponds to the
conduction solution.
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Fig.9 Effect of magnetic field on the molten zone length: (a) at

surface; (b) at centerline.

Conclusion

We have presented a finite difference method for solution
of the hydrodynamic thermocapillary model of floating
zone process. It has been shown that the thermocap-
illary convection tends to reduce the maximum surface
temperature, increase the convexity of the melt/solid
interfaces and reduce the stability of the melt zone.
Increasing in the growth rate shifts the overall posi-
tion of the melt zone toward the crystal and causes the
melt/feed and melt/crystal interfaces to he more and
less convex, regpectively. Intense thermocapillary con-
vection is damped by a uniform axial magnetic field.
When magnetic induction is increased, the convection
intensities are much more reduced, the temperature

fields are less distorted, the convections in the melt are
concentrated into a small region near the free surface and
the cell centers move toward the melt/solid interfaces.
For small Prandtl number of semiconductor melts, kike
germanium and silicon, the effect of magnetic field on
the melt/solid interfaces has been found small; limiting
case corresponding to the conduction heat transfer.

Finally, the numerical algorithm presented here is very
general and not limited to axisymmetric floating zone
systern, it can be easily applied to solution of many free-
boundary problems.
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