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Consider a cylindrical liquid bridge held by surface-tension forces between two parallel, coax-
1al, equal-diameter solid disks. If there exists temperature gradients along the free surface
by keeping the disks at different temperature or by imposing some temperature distribution
on the free surface, then, even in the absence of gravity, motion is induced solely by thermo-
capillarity. This configuration is a hydrodynamic model of a floating zone technique for bulk

crystal growth from melt.

Motivated by the floating zone crystal growth process under microgravity environments, sev-
eral numerical studies have been conducted to understand thermocapillary convection and
heat transter in cylindrical liquid bridges, but most of these investigations have been limited
so far to two-dimensional. Rupp et al.[1] were the first to simulate the transient thermocap-
illary convection in a GaAs liquid bridge with a three-dimensional finite difference scheme.
It has heen found that oscillations of flow and temperature fields are three-dimensional, as

observed in model experiments|2].

We present here some recent three-dimensional time-dependent simnlation results obtained by
using NEKTON[3] on Intel iPSC/860 hypercube which is a distributed memory multiprocessor
computer. The NEKTON solver is based on a spectral element method which decomposes the
flow domain in standard finite element fashion and expands the dependent variables within
each element in consistent approximation spaces (/N-order Legendre based polynomials for the
velocity and temperature, and (N — 2)-order Legendre based polynomials for the pressure).
The convective terms (in Navier-Stokes and heat transfer equations) are treated explicitly
using a third-order Adams-Bashforth multistep scheme, and the diffusive terms, as well as
the pressure/incompressibility condition, are treated implicitly with a third-order Backward
Differentiation multistep scheme. Parallel constructs in NEKTON are built upon the general
foundation of locally-structured/globally-unstructured representations, in which each sprectal

element (or a group of sprectral elements) is mapped to a separate processor/memory, with
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the individual processor/memory units being linked by a relatively sparse communication
network{4].

Three-dimensional simulations have been carried out to investigate the nature of the transition
from axisymmetric to three-dimensional motion (time-dependent). To show that, a liquid
bridge of the aspect ratio A = L/R = 1.2 (=height/radius) was chosen in our calculations.
This value corresponds to the typical aspect ratio of real floating zone systems of about 1.2.
Other nondimensional parameters of the problem are the surface-tension Reynolds number,
Re = vLAT/pv*, and the Prandtl number, Pr = v/«, where p, v and a are the density,
kinematic viscosity and thermal diffusivity of the fluid, v is the negative rate of the surface
tension with respect to the temperature, and AT is the imposed temperature difference
between endwalls of the liquid bridge. We will show that for a given fluid (Pr is given) the

fluid flow behaviour is characterized by the Reynolds number.

Figure la shows the spectral element discretization of the computational domain consisting
of K = 80 elements. Becausc of the presence of higher temperature gradients near the cold
endwall, spatial discretization in z-direction is refined within this region. Figure 1b shows
the spectral element mesh in a z-plane, in which line intersections indicate location of Gauss-
Labatto quadrature points for V = 8. Calculation of a three-dimensional Navier-Stokes flow
and heat transfer using above discretization parameter (A = 80, N = 8) leads to a problem
having about 200,000 degrees-of-freedom, which requires the maximum capacity of the eight
node iPSC/860 hypercube memory (each node has 16Mbytes of memory). On decrease of N

from 8 to 6, only two nodes would be enough to run the full three-dimensional simulation.

Although fluid motion occurs for any non-zero Reynolds number, transition from steady
axisymmetric to three-dimensional time-dependent sets in only when the Reynolds exceeds a
critical value Re®, which depends on the Prandtl number. The numerical simulations indicate
that 10* < Re® < 1.2 x 10* for Pr = 0.02, and 450 < Re® < 600 for Pr = 4.

When Be < He®, the flow is axisymmetric and has the form illustrated in figure 2a by closed
streamlines in the plane y = 0 (a vertical section) of a solution with Pr = 4 and Re = 450.
Such results are typical for axisymmetric flow in liquid bridges. As surface tension decreases
with temperature, the flow moves downwards near the free surface and upwards along the

ax1s.

For Pr = 4, when Re = 600, a circumferential motion is established; the flow is three-
dimensional, the net effect of which is illustrated by the streamline in figures 2a and 2b. This

streamline was traced from a point in the vertical plane y = 0. It spirals inwards, then spirals



outwards. In fact this three-dimensional flow can be regarded as a supperposition of steady
axisymmetric flow and circumferential motion. Since the streamlines dot not close, the flow
is time-dependent. Fuarthermore time history of azimuthal velocity component on the free
surface (not presented here) shows the existence of a steady periodic state flow at Re = 600
for Pr = 4. This result is in well agreement with linear stability analysis{5], in which Re¢ was
found to be 560 for Pr = 4.

We present in Tables 1 and 2 the run time required for 1000 time-step calculations for two cases
considered. All problems were computed on the Intel iPSC/860 hypercube. The speedup is
meagured by dividing the time needed on 1 processor by the time needed on P processors, S =
T(1)/T(P), and the processor utilization is defined by £ = S/P. Due to the limitation of the
memory per processor on iIPSC/860 for our problems, T(1) can not be obtained, we supposed
in the tables T(1) = T(Puyrn)Parin, where Pppy is the minimum number of processors
required to run the code. In our problems with K = 80, Pyy;ny = 2 for N = 6 and Pygnv = 8
for N = 8. So, the speedup presented here is the maximum one. We notice that increasing N
from 6 to 8, the CPU time per time-step, per processor, is roughly increased by a factor of 4.
This is consistent with the increased number of degree-of-freedom. As shown in the tables 1
and 2, when more than 16 processors were used, we had no longer load balance in the sense
that all processors dot not have an equal number of elements. This increased the processor
idle time, resulting in relatively low processor utilization when P > 16. In fact, load inbalance
increases (communication 4 computation overlapping)/computation ratio, finally decreases

the parallel efficiency of the algorithm.

Table 1: CPU time for 1000 time-step calculations for
K =80,N =6,Re = 1.2 x 10*, Pr = (.02

Number of processors(P) | A/P | Time(min) | Speedup | Processor utilization (%)
2 40 590 2 100
4 20 315 3.7 93
8 10 166 7.1 89
16 ) 101 11.7 73
32 2.5 76 15.5 48
64 1.25 46 25.7 40

Table 2: CPU time for 1000 time-step calculations for K = 80, N = 8, Re = 600, Pr = 4
Number of processors(P) | K/P | Time(min) | Speedup | Processor utilization (%)

8 10 664 8 100
16 ) 420 12.6 79
32 2.5 321 16.5 52

64 1.25 243 21.9 34
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Figure 1: (a) The K = 80 spectral element domain; (b) spectral element mesh in a z-plane for
N =8.
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Figure 2: Steady state streamlines at Re = 450

and Pr = 4, showing the axisymmetry of flow
field. :
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Figure 3: (a) Streamlines at Re = 600 and Pr = 4; (b) plan view of portion of the streamlines
i (a) showing the three-dimensional flow field.



