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Spin-crossover crystals show multi-step responses to femtosecond light excitation. The local molecular photo-switching 

from low to high spin states occurs on sub-picosecond timescale. It is followed by additional conversion due to elastic (ns) 

and thermal (µs) effects. In [Fe(phen)2(NCS)2] crystals discussed herein, the thermal switching can be made unobtrusive for 

the investigation of cooperative elastic switching. We evidence a cooperative transformation induced by lattice expansion 

through elastic coupling between molecules in the crystal, where up to 3 molecules are transformed per photon. 

Introduction 

The behaviour of molecules in solid state differs from molecules in 

solution because of stronger interactions mediated through the 

lattice. One of the most striking examples is the existence of 

cooperativity where the responses of elementary components of 

the material add up in a non-linear fashion. This is especially true 

for photoinduced phase transitions, where the excitation by a light 

pulse can abruptly generate cooperative transformations towards a 

new macroscopic state.
1
 Such transformations can be triggered in 

an ultrafast way where a femtosecond laser pulse impacts the 

material. During photoinduced phenomena, several microscopic 

and macroscopic degrees of freedom play their part on significantly 

different time and length scales. For example, transformations at 

the molecular scale can be coherently activated
2,3,4

 on the timescale 

of hundreds of femtosecond. Slower long-range structural 

reorganizations may induce conductivity or ferroelectricity for 

example.
5,6

 In addition to localized processes, the entire material 

can react through lattice deformations and volume expansion 

occurring on the acoustic time scale
7,8,9,10

. The understanding of the 

response of the material at this time scale is of paramount 

importance because it may stabilize the newly formed photo-

induced phase. Here we focus our attention on Spin-crossover 

(SCO) molecular materials, which are prototypical photoactive 

materials showing molecular bistability between electronic states 

differing in physical parameters such as volume, colour, magnetic 

susceptibility, etc...
11

 For an Fe(II) system like the [Fe(phen)2(NCS)2] 

single crystal investigated here, the low spin (LS) S=0 state 

corresponds to a t2g
6
eg

0
L

0
 electronic distribution, L referring to 

ligand orbitals, whereas the high spin (HS) S=2 state corresponds to 

t2g
4
eg

2
L

0
. In the less bonding HS state the <Fe-N> bonding is 

elongated by 10% and the molecule swells. The SCO systems are 

known to be photoswitchable between LS and HS states.
11

 When 

induced in the solid state by a femtosecond laser pulse, this process 

is the initial trigger of a complex out-of-equilibrium dynamics, 

where different degrees of freedom act at different time and length 

scales. The qualifying term "molecular materials" unfolds then its 

genuine meaning: the material response to light stimuli far exceeds 

the sum of the individual responses of constituting molecules. We 

have recently demonstrated the possibility of taking advantage of 

this effect to generate through inter-molecular elastic coupling an 

elastically-driven cooperative response.
12

  

 

Figure 1. Schematic drawing of the out-of-equilibrium dynamics in SCO 

crystals. The laser pulse locally photo-switches molecules from LS (blue) to 

HS (red) states within less than 1 ps (step 1). The molecular swelling and 

lattice heating induce lattice expansion driving cooperative elastic switching 

in the ns time window (step 2). The HS state is then thermally populated (µs) 

and accompanied by another crystal expansion (step 3).  



 

 

 

 

 

Figure 2. Fingerprints of the conversion between LS and HS states. a) 

Temperature dependence of the lattice parameter c, the volume V and the 

<Fe-N> bond length. At 25 K the photoinduced HS state is reached by 

excitation around 650-660 nm. b) Optical transmission at 950 nm. 

Our previous studies have shown that the out-of-equilibrium 

transformation of SCO crystals triggered by a fs laser pulse involves 

three main steps (Fig. 1).
13-16 

The light pulse locally photoswitches 

molecules from LS to HS via intersystem crossing through metal-to-

ligand charge-transfer excitation (MLCT, t2g
5
eg

0
L

1
). It was shown by 

ultrafast techniques that during this photoswitching step, the 

molecular breathing that accompanies the LS-to-HS photo-

conversion occurs in the solid within less than 200 fs whereas 

vibrational cooling occurs on the ps timescale.
4,17-21 

An initial 

fraction of HS molecules XHS
h is thus photo-generated in the 

crystal. A second increase of the HS fractions up to XHS
El

 occurs later 

on the ns timescale. The internal lattice pressure due to HS 

molecular swelling and the lattice heating induces lattice expansion, 

driving this additional switching process: the elastic coupling 

between molecules favours the HS state of higher molecular 

volume. Because of the global temperature increase of the crystal 

(10s K) a third "thermal" step sets in when the HS population 

thermally equilibrates to XHS
Th

 with the surrounding hot lattice, 

typically within 10 µs. The HS molecular states generated by pulsed 

laser excitation are transient when induced from the low 

temperature LS state (typically in the ms range above 100 K). 

 

Figure 3. The molecular swelling between LS and HS states induces lattice 

expansion, shown in along the a crystalline axis.  

 At very low temperature the lifetime of photoinduced states is 

much longer and complete conversion can be easily reached by 

weak cw laser excitation.
11

 Also, a single laser pulse can drive a 

complete conversion of the material inside thermal hysteresis.
22,23

 

As both elastic or thermal effects play their part in the out-of-

equilibrium process, it is important to separate these two 

contributions. Here we investigate the response of photoexcited 

[Fe(phen)2(NCS)2] single crystals by combining time-resolved optical 

spectroscopy, probing the change of electronic state (HS fraction), 

and time-resolved x-ray diffraction, probing crystalline lattice 

change. The first-order nature of the phase transition at thermal 

equilibrium allows disentangling elastic and thermal effects. 

Results and discussion 

Thermal transition and the photo-induced steady state 

The thermal phase transition of [Fe(Phen)2(NCS)2] crystals was 

intensively investigated by different spectroscopic and scattering 

techniques.
24-28

 In this study we used single crystals of typical size 

200µm×200µm×30 µm
3
, which undergo a first-order phase 

transition from purely LS phase below 180 K to purely HS phase 

above. The discontinuous change from LS to HS states is 

accompanied by a large structural reorganization both at the 

molecular level around the Fe-N6 core and the macroscopic scale. 

Fig. 2 shows data reported by Cammarata et al,
4
 which agrees with 

previous crystallographic studies.
26,29,30

 The average bond length 

<Fe-N> elongation from 1.97 Å in the LS state to 2.16 Å in the HS 

state, is characteristic of Fe(II) SCO materials. Through the LIESST 

effect (Light Induced Electronic Spin State Trapping) discovered in 

the 80’s by Hauser and co-workers,
31

 it is also possible to reach 

long-lived HS state by weak cw light excitation at low temperature. 

Photo-crystallography studies performed at 25 K indicate a global 

conversion of the crystal after excitation at 660 nm with a cw laser, 

associated with an elongation of <Fe-N> up to 2.16 Å and 

confirming previous studies on the same compound after excitation 

at 647 nm.
26 

An important feature of the LIESST phenomenon is 

that its quantum efficiency is close to 1, i.e. almost every absorbed 

photon switches a molecule from LS to HS state.  



   

 

 

 

Figure 4. a) Response to femtosecond laser excitation of LS 

[Fe(Phen)2(NCS)2] at 140 K for different excitation densities "h", "El" and 

"Th" denote respectively the photoinduced, elastic and thermal steps. b) 

Evolution of XHS
h (measured at 10 ps) scaling with the number of incident 

photon per 100 molecules. On the photo-switching step 1 molecule is 

transformed per photon, whereas on the elastic step (XHS
El) 2.5-3 molecules 

are transformed per photon. Heating effect appears at high excitation 

density (close to sample damage). 

From the macroscopic point of view, the increase of molecular 

volume between LS and HS states induces an important lattice 

expansion, both during the thermal and the photoinduced LS to HS 

states conversions (Fig. 2).
4,9,12,17

 This can be seen in the 

discontinuous evolution of the lattice unit cell volume. Figure 3 

shows the evolution of the intermolecular distance due to 

molecular swelling between LS and HS states. In addition to 

structural changes, another consequence of the change of 

electronic state during the spin state transition is the change of 

optical properties. The HS and LS states have different absorption 

bands due to electronic and structural reorganizations.
4-21

 This 

provides a spectroscopic probe of the spin state switching, often 

used to characterise SCO phenomena.
11

 Here we monitor the 

thermal transition in [Fe(Phen)2(NCS)2] single crystals through 

optical transmission measurements (Fig. 2b) at 950 nm. In this 

spectral zone, the optical transmission decreases in the HS state of 

higher optical density than the LS one. The photoexcitation of 

purely LS crystals by a femtosecond laser pulse into the MLCT band 

(in the 640-660 nm range) efficiently switches molecules from LS to 

HS states.
4,21

 The time-resolved optical experiments developed at 

the Institut de Physique de Rennes allow monitoring the optical 

transmission change after femtosecond photoexcitation, 

continually from 100 fs to ms, and thereby covering the entire 

timescale of non-equilibrium dynamics. The time-resolved optical 

transmission change at a probing wavelength of 950 nm is then 

scaled in terms of HS fraction XHS. In addition, for investigating the 

role of lattice expansion in the process, we also performed time-

resolved x-ray diffraction studies at the BioCARS beamline
32

 at the 

Advanced Photon Source, Argonne National Laboratory (see 

experimental section). 

Response of a single crystal impacted by a femtosecond laser flash  

We photoexcited 25 µm thick [Fe(Phen)2(NCS)2] single crystals in 

the tail of the LS MLCT band with a 650 nm light pulse. The 

penetration depth at this wavelength is on the order of the 

thickness of a single crystal. The evolution of the HS fraction XHS 

after fs laser excitation in the LS phase at 140 K, measured by 

optical spectroscopy, is shown in Fig. 4 for different excitation 

densities. The experiment is conducted 40 K below the phase 

transition to avoid any residual thermal effect and to allow the 

complete recovery of the LS phase within 1 ms. Our experimental 

data clearly show a sequence of three steps, similar to the ones 

already reported in Fe(III) spin-crossover crystals and summarized in 

Figure 1.
12-16

 First, the absorption of light at the molecular level 

locally photo-switches a small fraction XHS
h of molecules (typically 

2% here) from LS to HS states. We have thoroughly investigated this 

process in [Fe(Phen)2(NCS)2] crystals with femtosecond optical and 

x-ray spectroscopies
4,21

 and established that it occurs via ultrafast 

intersystem crossing. This process involves local coherent structural 

dynamics and is accompanied by a molecular swelling within 200 fs. 

X-ray diffraction experiments (Figure 5), performed at 140 K for an 

excitation density of 20 µJ/mm
2
, reveal that during this initial 

photoswitching process at the molecular level, the lattice has no 

time to expand. Indeed the values of the unit cell parameters 

remain constant up to the ns time scale. The lattice expansion is 

observed only after a few ns, and occurs concomitantly with a 

second increase of the HS fraction, reaching XHS
El 

after 20 ns 

(Figure 4). The  microscopic crystal expansion results from the 

establishment of a mechanical equilibrium within the crystal: the 

photoswitched molecules of higher volume exert a negative (or 

internal) pressure on the lattice, thus causing its expansion. Such 

effect stems from elastic properites and is responsible for the self-

amplified molecular transformation, as recently demonstrated both 

in experiment and theory.
12

 It should be underlined that the cell 

volume expansion is limited by the propagation of strain waves 

through the sample. Given the typical acoustic wave velocity (~2000 

m.s
-1

) in these materials and the anisotropic shape of the crystals 

used (lozenge plate) the expansion occurs faster on the short crystal 

dimension (25 µm along the c axis) than on the long dimensions 

(200-300 µm along the a,b axes). At excitation densities above 40 

µJ/mm2 there appears a third step in which the HS fraction reaches 

XHS
Th 

on the 10 µs regime (Figure 4). 



 

 

 

 

Figure 5. a) Lattice response to femtosecond laser excitation of LS 

[Fe(Phen)2(NCS)2] at 140 K for an excitation density of 20 µJ/mm2 and at 160 

K for an excitation density of 30 µJ/mm2. 

 

This effect is associated with the thermal population of the HS 

state, due to equilibration of the SCO molecules with the hot 

crystalline lattice, as the absorbed photon energy is converted to 

heat. As the HS state is more and more populated, the lattice 

expansion increases anew. The response on the photo, elastic and 

thermal steps to different excitation densities (expressed in number 

of incident photon per 100 molecules) is shown in Fig. 4b. The 

photoswitched fraction XHS
h depends linearly on the laser fluence. 

By comparing the number of incident photons per molecules in the 

pump laser pulse with the fractions of photo- switched molecules, 

we estimate that essentialy every photon switches one molecule.  

Figure 6. Evolution of the HS fraction XHS after femtosecond laser excitation 

of LS [Fe(Phen)2(NCS)2] at 140 and 160 K for 30 µJ/mm2 excitation density.  

 

This confirms the quantum efficiency close to unity observed in SCO 

solids.
4,12

 The photo-response on the elastic step is between 2.5 and 

3 times larger than on the photoswitching step. A linear fit of the 

fraction of HS molecules on the elastic step with the number of 

incident photons indicates that in average 1 photon transforms 

2.66 molecules (green line in Fig. 4b).  

The photoresponse on the thermal step shows a non-linear 

response and strongly increases with excitation density. To 

unmbiguously assign the last step to thermal effects, we performed 

similar optical spectroscopy experiments at 140 K and 160 K with an 

excitation density fixed at 30 µJ/mm
2
 (Figure 6). At 140 K only the 

photoswitching and elastic steps are observed resulting in a two-

step response in XHS. At 160 K the last thermal step is now observed 

and characterized by a higher HS population in the µs domain. It is 

accompanied by a weak lattice expansion in the 100 µs regime 

observed at 160 K under the same 30 µJ/mm
2
 excitation density 

(orange circle, Fig. 5). The 2 Å
3
 volume expansion after the thermal 

step, with respect to the equilibrium values at negative delays, can 

be compared to the thermal expansion observed at thermal 

equilibrium. As shown in figure 5, before laser excitation the 

volume increase between 140 K and 160 K is 2 Å
3
 (from 2206 to 

2208 Å
3
). It is therefore reasonable to estimate from the 2 Å

3
 

volume expansion at 100 µs delay, that 30 µJ/mm
2
 excitation 

density generates a 20 K laser heating. This means that in the time 

domain the lattice temperature approaches 180 K i.e. the thermal 

phase transition temperature. It explains the significant thermal 

population observed at 160 K and for 30 µJ/mm
2
.
 

In contrast 

photoexcitation at 140 K with the same (Fig. 6) or lower (Fig. 4 & 5) 

laser fluence is not enough to populate the HS state thermally 



   

 

 

because of the first-order nature of the phase transition, as the HS 

fraction changes discontinuously from 0 to 1 around 180 K.  

In Figure 6, which compares the photo-reponse after identical laser 

excitations at 160 and 140 K, it appears that up to 1 µs the two 

curves are identical within the experimental accuracy. At 140 K, the 

HS molecules converted after the elastic step return to the LS 

ground state within 1 ms and no further increase of the HS fraction 

is observed. At 160 K, a significant thermal population occurs on the 

10-100 µs scale. The difference (top panel, black triangle, Fig. 6) 

between the photoexcitation at 160 K and 140 K reveals only the 

thermal population of HS and demonstrates that this process occurs 

in the µs-ms regime. The experiment performed at 140 K for 

different laser fluence also confirms the thermal nature of the µs 

conversion (Fig. 4). For excitation density below 30 µJ/mm
2
 there is 

no thermal effect because the temperature jump does not bring the 

system close enough to the phase transition to populate the HS 

state. Higher excitation densities induce a larger heating effect. For 

example at 60 µJ/mm
2
 an almost 40 K temperature jump occurs, if 

we assume a linear dependence of the temperature jump with the 

deposited energy on the system. This is enough to bring the system 

close to the phase transition and populate the HS state thermally. 

This result is different from previous studies on weakly cooperative 

Fe(III) SCO materials,
9,10,17

 for which thermal conversion is detected 

because unlike in a first-order transition, the crossover spans non-

critically a broad temperature range. In the present case, it is 

possible to avoid thermal population when the experiment is 

performed at a low temperature,  or with a low excitation density.  

Conclusions 

In the out-of-equilibrium process following femtosecond laser 

excitation of SCO single crystals, three main steps were identified, 

with characteristic timescales: photo-switching (ps), elastic 

switching (ns) and thermal switching (µs). One extraordinary aspect 

of such multiscale response of the material is that it involves 

different physical processes: from quantum physics and inter-

system crossing during the photo-switching step, mechanics during 

the elastic step and thermodynamics during the thermal step. Our 

study of [Fe(II)(Phen)2(NCS)2] SCO material corroborates the 

previous findings and shows the universality of this picture in SCO 

materials. The combination of time-resolved x-ray diffraction and 

optical spectroscopy reveals clearly the thermal nature of the last 

step, which can be avoided with appropriate excitation density or 

initial temperature. In this cooperative SCO material we observe a 

self-amplified response during the elastic step after excitation of a 

purely LS state where up to 3 molecules are transformed per 

photon. Compared to isolated photoactive molecules, with a 

quantum efficiency attaining at best unity, these results show that 

mechanical forces induced by absorption of light can induce 

cooperative switching in volume-changing materials and surpass 

the single molecule limits. Our previous studies on Fe(III) systems
12

 

evidenced that the elastic response appears only above a threshold 

excitation density. It is not the case here as the elastic response 

varies linearly with excitation density (Fig. 4b). This difference may 

be attributed to the larger molecular deformation in the Fe(II) 

systems, where the Fe-ligand distance elongates by 0.2 Å, whereas 

for Fe(III) it does only by 0.15 Å. The energy cost or the elastic 

coupling is therefore larger as underlined by the first-order 

character of the phase transition of this compound, compared to 

the more gradual conversion in Fe(III) systems studied previously. 

This cooperativity may favor local clustering around photo-switched 

molecules, resulting in a more linear response. This point will be 

investigated in future with the mechano-elastic model applied to 

rationalize this complex out-of-equilibrium transformation at the 

material scale.
12

 

Experimental methods 

Time-resolved x-ray diffraction and optical transmission 
measurements were performed on single crystals, with typical 

dimensions of (250±50)(200±50)(30±5) µm
3
. The laser was 

propagating along the 30 µm thickness corresponding to the 
crystalline axis c. The single crystals were mounted in nitrogen-flow 
cryostreams. The optical pump-probe studies were performed at 
the Institut de Physique de Rennes with the experimental setup 
described in detail in ref. 9. Single crystals were excited with a 80 fs 
laser flash and their optical transmission was probed by a delayed 
80 fs laser probe. The delay between pump and probe was 
controlled by combining a mechanical translation stage to adjust 
the optical path difference for sub-ns measurements with an 
electronic synchronization of the pump and probe amplifiers for 
measurements in the ns to ms time domain. The experiments were 
performed  with 500 Hz laser pump repetition rate, set to 650 nm 
on the MLCT band where it efficiently induces LS-to-HS conversion 
of the[Fe(phen)2(NCS)2] crystal. The probe was set to 950 nm to 
monitor the LS-to-HS photoswitching dynamics through the 
variation of optical transmission, and from which XHS was extracted 
(see also ref. 14 and 21). Time-resolved x-ray diffraction 
experiments were performed at the BioCARS beamline at the APS 
synchrotron.

32 
Single crystals were excited with a ps laser flash 

centered around 650 nm. Single x-ray pulses (15 keV) were selected 
by a fast chopper for probing the crystal at different delays, with a 

40 Hz repetition rate. The 70 ps time resolution is limited by the x-
ray pulses duration. Partial data were collected in transmission 
geometry at different pump-probe delays using a single sample 
rotation axis and the unit cell parameters were obtained from 
diffraction images with CrysAlis sofware.

33
 The crystallographic data 

presented in Fig. 2 & 3 were obtained at the Institut de Physique de 
Rennes (see also ref. 4) on a four-circle Oxford Diffraction Xcalibur 3 
diffractometer (MoKα radiation). The single crystals were mounted 
in an Oxford Cryosystems nitrogen-flow cryostat for experiments 
above 78 K and in an Oxford Diffraction Helijet cryostat for 
measurements at 25 K, where a 660 nm laser diode was used for 
photoexcitation. 
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