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RESTRICTED ISOMETRY CONSTANTS FOR GAUSSIAN AND RADEMACHER
MATRICES

SANDRINE DALLAPORTA AND YOHANN DE CASTRO

ABSTRACT. Restricted Isometry Constants (RICs) are a pivotal notion in Compressed
Sensing (CS) as these constants finely assess how a linear operator is conditioned on
the set of sparse vectors and hence how it performs in stable and robust sparse re-
gression (SRSR). While it is an open problem to construct deterministic matrices with
apposite RICs, one can prove that such matrices exist using random matrices models.
One of the most popular model may be the sub-Gaussian matrices since it encompasses
random matrices with Gaussian or Rademacher i.i.d. entries.

In this paper, we provide a description of the phase transition on SRSR for those ma-
trices using state-of-the-art (small) deviation estimates on their extreme eigenvalues.
In particular, we show new upper bounds on RICs for Gaussian and Rademacher ma-
trices. This allows us to derive a new lower bound on the probability of getting SRSR.
One of the benefit of this novel approach is to broaden the scope of phase transition on
RICs and SRSR to the quest of universality results in Random Matrix Theory.

1. INTRODUCTION

1.1. Stable and Robust Sparse Recovery (SRSR). A popular problem addressed in
recent researches aim at solving under-determined systems of linear equations (with
an additive error term e) such that

1) y=DMx,+e

where M is a known n x p matrix, x, a unknown vector in RP, y and e are vectors
in R™ and n is (much) smaller than p. This frame fits many interests across various
fields of research, e.g. in statistics one would estimate p parameters x, from a sample
y of size n, M being the design matrix and e some random centered noise. Although
the matrix M is not injective, recent advances have shown that one can recover an
interesting estimate X of x,, considering ¢,-minimization solutions as

2) X eargmin||x|l; s.t. |y —Mx|;<n

where 1 > 0 is a tuning parameter. Then, a standard goal is to prove that

(¢,-SRSR) lxo — %l; < Coy(x); + Dv/sm
. C
(£,-SRSR) llxo — |l S —=0,(x0)1 + D1
Vs

where C,D > 0 are constants and ,(x,); denotes the approximation error in £;-norm
by s coefficients, namely o (x); := min ||x,—x]||; where the minimum is taken over the
space X, of sparse vectors X, i.e. the set of vectors with at most s nonzero coordinates.
The important feature described by (£,-SRSR) and (£,-SRSR) may be referenced as the
Stable and Robust Sparse Recovery (SRSR) property of order s, see [FR13, Page 88]. It
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2 SANDRINE DALLAPORTA AND YOHANN DE CASTRO

shows that £;-minimization recovers the s largest coefficients of a target vector x, in a
stable! and robust (to additive errors e) manner. Interestingly, it has been shown that
SRSR holds whenever the matrix X satisfies some properties, see for instance [CRTO06,
CTO06, FL09, BRT09, vdGB09, BLPR11, JN11, DC13] or [CGLP12, FR13] for valuable
books on this subject.

1.2. Restricted Isometry Property and Restricted Isometry Constants. One of the
most important of these properties is undoubtedly the Restricted Isometry Property
[CRTO06, CT06] of order s and parameter c, referred to as RIP(s,c,M). It is defined by

Vxex, @—=ollxl3<IMx[3< (1 +c)llx]l3.
Denote by ¢(s, M) the minimum of such c¢’s. One can prove (see Theorem 6.12 in [FR13]
for instance) that, if RIP such that
4
(CT-¢(25)) (25, M) < —— ~0.625,
V41

holds and % is any solution to (2) then SRSR of order s holds with constants C,D
depending only on ¢(2s,M). A slightly modified RIP was introduced by Foucart and Lai
in [FLO9]. They introduce two constants, called Restricted Isometry Constants (RICs).

Definition (Restricted Isometry Constants (RICs)). For a matrix M of size (n x p), the
restricted isometry constants (RICs) ¢y,;,(s, M) and ¢, (s, M) are defined as

Cmin :=Mminc_  subject to (1 —c)lIx[3< [Mx|2 forall xeX,
Cc_Z

Cmax = Minc,  subject to (1 +c)lx[2> [Mx|2 forall xeX,.
=

Hence, it holds (1 — cpp)lIx|2< [IMx|2< (1 + cpa)llx|[3 for all x € 5, where we recall
that %, denotes the set of vectors with at most s nongero coordinates.

Interestingly, Foucart and Lai proved the following result.

Theorem 1 (Theorem 2.1 in [FLO9]). If M satisfies this asymmetric Restricted Isometry
Property with RICs such that

(FL-y(2s)) y(2s,n,p) = 1+v2 [%

4

then the Stable and Robust Sparse Recovery (SRSR) property of order s holds with positive
constants C and D depending only on ¢, (2s,M) and c;,,(2s, M).

—1]<1,

1- Cmin

One interesting feature of Condition (FL-y(2s)) is that it report the influence of both
extreme eigenvalues of covariance matrices build from 2s columns of M.

1.3. Behavior of extreme eigenvalues of covariance matrices. Let X be s xn random
matrix such that its entries are i.i.d. random (real or complex) variables with mean 0
and variance 1. Define

C:=n"'XX*,
its covariance matrix. Note that C is positive semidefinite real symmetric (or Hermit-
ian). Furthermore, remark that, in our settings, s < n and that C has s non trivial eigen-
values. These eigenvalues are real non-negative and are denoted by 0 < A; <--- < A;.

!1n aidealized situation one would assume that X is sparse. Nevertheless, in practice, we can only claim
that x; is close to sparse vectors. The stability is the ability to control the estimation error |[xo — || by the
distance between x, and the sparse vectors. The reader may consult [FR13, Page 82] for instance.
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These matrices were introduced by Wishart in 1928 to model tables of random data
in multivariate statistics. The spectral properties of such matrices were soon conjec-
tured to be universal in the sense that they do not depend on the distribution of the
entries. An important example is the case when the entries are Gaussian where the
matrix C is then said to belong to the Laguerre Unitary Ensemble (or Laguerre Orthog-
onal Ensemble if the entries are real). Due to the unitary invariance of the law of these
matrices, the eigenvalue joint distribution is explicitly known, allowing for a complete
study of the asymptotic spectral properties, see for example [AGZ10, BS10, PS11].

The following important results describe the behavior of the spectrum in the propor-
tional regime 7 — p < 1 as n goes to infinity. Note that, in our settings, the sparsity
s is much smaller than the number of observations n. Therefore, the ratio p will be
supposed to be less than a constant p, < 1.2

e First among universality results, the classical Marchenko-Pastur theorem states
that the empirical spectral measure (1/s)>.68 2, converges almost surely to
a measure, called the Marchenko-Pastur distribution of parameter p. This
measure is compactly supported and is absolutely continuous with respect to
Lebesgue measure, with density

dupyppy(x) = (b —x)(x —a,)1, p 1(x)dx,

1
2TpXx
where a,, :=(1—/p)? and b, := (1 + /p)?, see for example [BS10].
o The behavior of extreme eigenvalues was more difficult to achieve. Bai et al
[BS10] proved that, under a condition on the fourth moment of the entries,
Ay = b, and A; — a, as.
n

n—oo — 00 P

The convergence of the smallest eigenvalue A, towards a,, was recently proved
to hold for all covariance matrices without the assumption on the fourth mo-
ment, see [Tik15].

e At the fluctuation level, Borodin and Forrester [BFO3] proved that, for LUE

matrices,
1/4 %
n 3 (d)
3 |: P ] (ap_ks) - FZ:
ap n—oo
where F, is the so-called Tracy-Widom law. As for the largest eigenvalue, Jo-
hansson [Joh00] proved that, for LUE matrices,
noll4 2 @
@) [ & ] (A= by) = F,.
b n—o0

P

Similar results were obtained by the same authors for LOE matrices. As the
proofs rely heavily on the Gaussian structure, universality was really hard to
achieve. It was first reached by Soshnikov [Sos02] and Péché [Péc09] for the
largest eigenvalue and then by Feldheim and Sodin [FS10] for the smallest.
These works rely on combinatorial techniques and require the symmetry of
the law of the entries. Universality for more general models was obtained
simultaneously by Pillai and Yin [PY14] on one side and Wang [Wan12] on
the other side.

2When p = 1, the behavior of the smallest eigenvalues is different, the reader may consult [PS11] for
more information.
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Note that A, (resp. A,) typically fluctuates around (1 + ,/p)* (resp. (1 —,/p)*) at a
scale given by n=2/3(1 + /p)*3p~1/6 (resp. n=2/3(1— /p)*3p~1/%).

We understand that the benefit of the RIC constants ¢;,(s, M) and ¢,,,,(s, M) upon
the RIP constant c¢(s, M) is that they precisely account for typical values of both the
smallest and the largest eigenvalues of empirical covariance matrices. Indeed, suppose
that x belongs to 3, and denote by S a subset of size s of {1,... p} such that it contains
the support (i.e. the set of the indices of the nonzero coefficients) of x. Denote by Mg
the n x s matrix obtained from M by keeping only the columns indexed by S. Then
[IMx||2= x "M/ Msx where M{ Mg is a s x s real symmetric matrix. It has s real non-
negative eigenvalues and therefore

AS

minl XI5 < M3 A5 (113,

2 max

where /lfnin and /lfnax are the extreme eigenvalues of MSTMS. Getting bounds depending

only on s, p and n on such extreme eigenvalues leads to bounds on the RICs. Indeed,

it holds

(5) Vx ex,, { inf AS
s

min

lxll3< IMx[3<  sup A7 llx]l3.
c{1,....p},#S=s 2 2 Sc{1,...,p},#S=s 2

max
As we have seen above, the couple (inf /lfnin, sup )\fnax) is not necessarily symmetric with
respect to 1. Observe that RIP does not seize this asymmetry while RICs are meant to
portray it.

The convergence in distribution of the extreme eigenvalues gives intuition on what is
expected for their asymptotic behavior. However getting bounds on RICs requires some
non asymptotic counterparts of the preceding results. Precise deviation inequalities for
the extreme eigenvalues will be given in Section 2.

1.4. From deviation inequalities to RICs and SRSR bounds. This paper provides a
simple tool to derive lower bounds on SRSR or upper bounds on RICs from deviation in-
equalities on extreme eigenvalues (or extreme singular values) of covariance matrices
C,= %XX* where X € R**" has i.i.d. entries drawn with respect to £. In the asymp-
totic proportional growth model where s/n — p and n/p — &, we assume that we have
access to a deviation inequality on extreme eigenvalues with rate function t — W(p, t)
depending on the ratio p. For instance, we will consider that for all n = ny(p),

YOSt <1y, ]P{(Al —(1+ ﬁ)z) vV ((1 —Jp) _AS) > t} < c(p)e WP

where 7, € R, ny(p) = 2 and ¢(p) > 0 may both depend on the ratio p, the function
t — W(p, t) is continuous and increasing on [0, T;) such that W(p,0) = 0. Notably,
it appears along our analysis that bounds on SRSR and RICs are extremely dependent
on the behavior, for fixed t, of the rate function p — W(p,t) when p is small, and
possibly tending to zero. Unfortunately, this dependence is overlooked in the literature
and we have to take another look at state-of-the-art results in this field. Revisiting the
captivating paper of Feldheim and Sodin [FS10] on sub-Gaussian matrices, Appendix A
reveals the dependency on p as well as bounds on the constant appearing in their rate
function Wy for the special case of Rademacher entries. Other important results due to
Ledoux and Rider [LR10], and Davidson and Szarek [DS01] are investigated in Section
3.1.

The rate function W at hand, our paper provides a simple tool to derive bounds on
RICs and SRSR as shown in the following two subsections.
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FIGURE 1. The combinatorial term 5 *H,(p5).

1.5. Discrepancy of the RICs. Following the analysis of [BCT11] we provide asymp-
totic bounds on RICs in the proportional growth model. We aim at controlling uniformly
the extreme eigenvalues as in (5), the combinatorial complexity is standardly [BCT11]
controlled by the quantity 6 'H,(p&) where H,(t) = —tlogt — (1 — t)log(1 — t) for
t € (0,1) denotes the Shannon entropy, see Figure 1. This quantity governs the value
of the deviation t, := W(p, 5 'H,(p5)) in the rate function W(p, t) when bounding
the extreme eigenvalues uniformly over all possible supports S of size s among the set
of indices {1,...,p}, see (5). The upper bounds on RICs given by the rate functions
W,z of [LR10] and W4 of [DS01] are presented in Figure 2.

Theorem 2. The following holds for each couple (W, ¥) defined by, for all t > 0, for all
p €(0,1),

1

p* 2
Wir(p, t) 1= %U—Wtzlts‘/ﬁ(l+‘/ﬁ)2 and Zp:=.4(0,1)
o2
"l gy
3
plog(1l+5)2
Wes(p,t) := and %y :=Rademacher

Crs(1+ /P)?

where C;p > 0 and 837 = Cyg > 0 are numerical constants. For any ¢ > 0, any 6 € (0,1)
and any p € (0, 1), it holds

P{cpn > min{1, /A2 — vB) + to} + ¢} < cp)e P09,
P{tmex > VP2 + VB + tg + e} < c(p)e PP,
where D(p,5,€) > 0 and ty := W (p, 5 'H,(p5)).

The proof is given in Section 3.1, see Corollary 1. Roughly speaking, the RICs are upper
bounded by ,/p(2+ /p)+W(p,5 'H,(p5)) with overwhelming probability, where
W1(p,-) denotes the inverse function of W(p, -).
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FIGURE 2. Ledoux and Rider bounds on RICs (the constant ¢, is on
the top left panel and the constant ¢, is on the top right planel). The
constant in Ledoux and Rider lower bound is arbitrarily set to C;z = 3
as we did not track an upper bound on this constant. Davidson and
Szarek bounds on RICs (the constant ¢, is on the bottom left panel
and the constant c.,;, is on the bottom right planel).

Theorem 3. Consider the couple (W, ¥) defined by, for all t > 0,
WDS(t) = t2/2 al'ld gDS = L/V(O, 1).
Forany € >0, any 6 €(0,1) and any p € (0, 1), it holds

P{ena > (VP +10)(2 + B + 1) + e} < clp)e ™00,
and if further ty + /p <1 then

Plenin > (VP + )2~ VP —to) + ¢} c(p)e ™5,

where D(p,5,€) > 0and ty := W (p,5 'H,(p5)).

These upper bounds on RICs are depicted in Figure 2. The bound of Davidson and
Szarek (with rate function W) is rather close to the one obtained in [BCT11] which
gives an exact computation of RICs bounds using the joint law of the Gaussian Wishart
eigenvalues. Based on W, a similar upper bound on the RIP constant can be found
in [CTO5, Lemma 3.1]. Though our work provides a simple bounds on RICs in the
Rademacher case, we did not illustrate these bounds since it compares unfavorably to
the ones obtained in the Gaussian case. In particular, the dependance in p in Wy is
far from being optimal and leads to extremely large bounds on RICs. The “ideal” rate
function is presented in Section 3.6 while the dependence of W;g in p is studied in
Appendix A.
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FIGURE 3. Various lower bounds on SRSR using Condition (FL-y(2s)).
The constant in Ledoux and Rider lower bound is arbitrarily set to
Cir = 3 as we did not track an upper bound on this constant.

All figures can be reproduced using the following code.

1.6. Explicit lower bounds on SRSR. In this paper, we prove that SRSR holds for
Gaussian and Rademacher matrices using Condition (FL-y(2s)) and explicit small de-
viations estimates, see Section 2 for more detail on this latter point. Actually these
results provide a general method to prove SRSR for matrices with entries satisfying
small deviations estimates. Set

2
9 [3 +V2—V7+ 6«/5]
To 1= ~ (0.4531 and = ~ 0.0574,
0 312 Po 4

and note that ,/p, = 0.2395. The bounds given by the rate functions W, of [LR10]
and Wy of [DS01] are presented in Figure 3.
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Theorem 4. The following holds for each couple (W, %) defined by, for all t € (0, ),
fOr all P € (O;po))

1

p* 3
Wir(p, t) 1= %U—Wﬁ Li<ypti+ypr and Zp:=A4(0,1)
o2
e
3
plog(l+5=)>
Wes(p,t) := and Yy :=Rademacher

Crs(1+ y/p)?
where Cy g > 0 and 837 = Cpg > 0 are numerical constants. For any 6 € (0,1) and any
p €(0, py) such that

Wp, 7o(v/B— Jp—o)(ﬁ—l/m)]]
; :

it holds that any sequence of n x p matrices (M™), s, with i.i.d. entries with respect to &
and such that n/p — & satisfy

(n)
]P{M conforms to (FL-y(2s)) with 2s < [an} -1
Jn

1
5>—exp[1—
P

as n tends to infinity.

The W function appearing in Theorem 5 below arises from deviation inequalities on
singular values of Gaussian covariance matrices, see Lemma 7. Details will be given in
Section 3.2.
Theorem 5. Consider the couple (W, %) defined by, for all t € (0, ,/po),
Wps(t) :==t2/2 and %ps:=A4(0,1).
Forany 0 <6 <1land 0 < p < p, such that
W[/Po— v }
p 3

it holds that any sequence of n x p matrices (M), with i.i.d. entries with respect to &
and such that n/p — & satisfy

(n)
]P{M conforms to (FL-y(2s)) with 2s < [an} -1
Jn

1
6>—exp[1—
P

as n tends to infinity.

Together with Theorem 1, the lower bounds given by the aforementioned theorems are
also lower bounds on the SRSR property (i.e. they guarantee that SRSR holds).

1.7. Previous works on bounding RIP and RICs. The existence of RIP matrices with
bounded RIP constant such as (CT-¢(2s)) has been proved using random matrix models,
see [MPTJO08, ALPTJ11, CGLP12] for instance. This approach has encountered a large
echo and it might be seen as a pillar of the theory of Compressed Sensing. Popular
results show that (CT-¢(2s)) holds with overwhelming probability for a large class of
random matrix models as soon as the interplay between sparsity s, number of measure-
ments n and number of unknown parameters p satisfies

(6) n = c; slog(cyp/s)
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for some universal constants ¢; and c, (that might depend on the random matrix
model). It should be mentioned that finding deterministic matrices satisfying (CT-¢(2s))
with n = @(slog(p/s)) is one of the most prominent open problem in Compressed Sens-
ing, see [FR13] for instance. Furthermore, it has been shown in [CGLP12, Proposi-
tion 2.2.17] that the converse is true for any matrix M. If the SRSR recovery (£,-SRSR)
or (£,-SRSR) (with 1 = 0) holds then necessarily n = c; slog(c;p/s) for some universal
constants c¢; and c,. Since we have lower and upper bounds of the same flavor, it seems
that the condition (6) captures all we need to know about £;-recovery schemes. In
reality, there is a gap between the constants appearing in the upper and lower bounds.
A simple way to witness it is to consider the companion problem when there is no ad-
ditive errors. In this case e = 0 in (1) and 1) = 0 in (2), then stable recovery occurs
for all target vector x, if and only a property called “Null-Space Property” (NSP) holds.
As for RIB one can prove that (6) depicts a necessary and sufficient condition on NSP
up to a change of constants, see for instance [CGLP12, ADCM14]. Nevertheless, a bet-
ter description of this property is offered in the works [DT05, DT09a, DT09b] since
the authors provide a phase transition on NSP for large Gaussian matrices with i.i.d.
entries.

Following this outbreaking result, one can wonder whether a phase transition holds
for properties guaranteeing SRSR such as (CT-¢(2s)) or the asymmetric (FL-y(2s)). To
the best of our knowledge, the only work looking for a phase transition on SRSR can
be found in the captivating paper [BCT11] where the authors considered matrices with
independent standard Gaussian entries and used an upper bound on the joint density
of the eigenvalues to derive a region where (FL-y(2s)) holds. Their lower bound is not
explicit but one can witness in [BCT11, Page 119]. In the present paper, we provide
explicit lower bounds on SRSR using Condition (FL-y(2s)) and small deviation tech-
niques. One of the benefits of this novel approach is to broaden the scope of RICs to
the frame of universality results in Random Matrix Theory.

2. SMALL DEVIATIONS ON EXTREME EIGENVALUES OF COVARIANCE MATRICES

Recall Eqs. (3) and (4) where Fg is the so-called Tracy-Widom law (with 8 = 1 if
the entries are real and 3 = 2 if they are complex). Deviation inequalities for A; and A,
are needed to get a bound on RICs with high probability, i.e. control on P(4, > b,, +t)
and P(A; < a, —t) for t > 0. We focus on the largest eigenvalue A, and write:

n2/3p1/6 n2/3p1/6 )

P(Al > bp +t):]P( b2/3 (A’l_bp)> b2/3
I o

This deviation probability is therefore expected to be close to
2/3 1/6
np
T
B 2/3 )’
bp

where Fpg is the cdf of the Tracy-Widom distribution. Thus it is expected to be close to
the tail behavior of Fg at co. This tail behavior is actually known:

_ ~ oy 3/2
1 Fﬂ(x)x_)ooC‘exp( cx>4),
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with C,c > 0. As a consequence, deviation inequalities for the largest eigenvalue are
expected to conform to

1/4 o2
arver)

at least for bounded t (possibly depending on p). Similarly, deviation inequalities for
the smallest eigenvalue are expected to be close to

) P(2; > b, +1) < Cexp(—c

1/4

P 3/2
(8) P(A, <a,—t)<Cexp| —c———=nt .
-0 2Cam( e
For bigger t, the expected behavior is sub-exponential
C)) P(A; = b, +1t) < Ce™ ™.

See [Led07] for a detailed survey on this subject. Unfortunately, such precise small
deviation inequalities are really hard to achieve, even for Gaussian matrices.

e Davidson and Szarek consider a s x n matrix X with i.i.d. standard Gaussian
entries. Relying on the concentration of measure phenomenon, they establish
the following:

Ve>0, P{(o,—(1+vp)V(1—vp)—0,) >t} <277,

where 0;(X) denotes the singular values of %X. See for instance [FR13] p.

291. It can be written in terms of eigenvalues of the covariance matrix %XXT:
forallu> 0,
]P{?Ll —b,> u} < ZeXp[—nbp(l— 1+ % + i)}

Note that, when u is small, the left-hand side becomes 2¢*/ (8by) which is not
the expected order for small deviations. For large u, it provides the expected
sub-exponential behavior. A similar inequality can be deduced for A,. Note
that the constant % in the exponent is explicit and rather large, which is very
good.

e In[LR10], Ledoux and Rider give unified proofs of small deviation inequalities

1

for B ensembles, which include Gaussian covariance matrices C; , = XX (X

is of size s x n). They establish the following: for all 0 < p < 1 and for all
n> 2, settings = |pn), Vo<t < /p(1+,/p)%

1

]P{% -(1+yp)= t} < c(p)exp(—ncm(lpi_;/_p)gt%).

For bigger t, they get the expected sub-exponential behavior. In particular, for

all t > /p(1+ /p)>,

1

IP{?Ll —1+yp)P= t} < c(p)exp(— ant).

Cir(1+ /P)
Similar inequalities are established for A,. These inequalities are exactly what
is expected for small t: they reflect the fluctuation rate and the tail behavior
of the Tracy-Widom distribution. The authors did not mention it but it seems
possible to bound explicitly the constant C;z. However, we did not track an
upper bound for this constant.
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o In the paper [FS10], Feldheim and Sodin consider sub-Gaussian covariance
matrices C; , = %XXT (X is of size s x n), with symmetric distribution. They
establish the following: for all 0 < p < 1 and for all n = 2, setting s = |pn|,

3
plog(l+55) }
Crs(1+yvpP)? )’

is small, the left-hand side

¥e>0, P{A,—(1+ypP>t}< c(p)exp{—n

L

and a similar inequality for A,. Note that, when el

has exactly the expected order:

pl/4

P

Crs(1+ /p)?

In the special case of independent Rademacher entries, it is possible to bound
the constant Cpg. This will be the object of Appendix A. However, the bound

we obtain by following carefully the proof is really large, so that C—ik is very
small.

c(p)exp ( —n

As far as we know, these are the only precise small deviation inequalities which are
established for extreme eigenvalues of covariance matrices.

3. EXPLICIT LOWER BOUNDS

3.1. Key lemmas using eigenvalues. We present key lemmas allowing us to derive
a lower bound on the probability of getting get Condition (FL-y(2s)). We recall that

To = %ﬁ ~0.4531 and ,/p; := (3+vV2—V 7+ 6+/2)/2 ~0.2395.

Lemma 6. Assume that for all 0 < p < 1, the largest eigenvalue A, and the smallest
eigenvalue A, of the covariance matrix

1 n
€= 2 TR
i=1
where s := | pn] and ng) are random vectors in R® with i.i.d. entries with respect to a
law £, satisfy for all n = ny(p),

VOt <7y, ]P{(Al -1+ 1/5)2) \Y% ((1 —J/p)? —AS) > t} < c(p)e WD)

where ny(p) = 2 and c(p) > 0 may both depend on p, the function t — W(p,t) is
continuous and increasing on [0, T,) such that W(p,0) = 0. Then for any 0 < 6 < 1 and
0 < p < pg such that

W(p, —2=(1—(3+ V2
(10) 5>%exp[1— (p 3+ﬁ( (p+ )ﬁ+p))]’

any sequence of n x p matrices (M), -, with i.i.d. entries with respect to £ and such
that n/p — & satisfy

Mo .
]P{ Ve satisfies (FL-y(2s)) with 2s < Lan} -1

as n tends to infinity.
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Proof Lett € (0,7,). A simple calculation gives that, on the event
{max < VP2 + VB)+ 1} U {emn < VP2 — /D) + 1},
the Condition (FL-y(2s)) is satisfied whenever
(11) —242(3+V2)/p—2p+(B+V2)t<0.
Indeed, observe that
Lt Cmax 4 _ (1+¢ﬁ)2+t_1_ 4./p+2t

1= Coin (1-yp2—t ~ (1—yp2—t’
Fix p and 6 as in (10) and consider parameters s and n so that s/n — p as n goes to
infinity. Choosing s columns over p in M and considering the covariance matrix C; , of

those columns, it holds for n = ny(p),

P{3x e %, s n Y Mxl? > (L + VA2 + 0)lIxI?} < D P{A(C,) = 1+ vp)2 +t}
C

's,1

< (p)c(p)e—nW(p,t)
S

C(p)e*nW(p,t)erH@(S/p)

c(p)e™,

with H,(t) = —tlogt — (1 —t)log(1 —t) for t € (0,1) and D = W(p,t) — %He(pé).
Denote W™*(p,.) the inverse of the function W(p,.). Now, recall that D + %He(pé)
belongs to the range of the function W(p,.) and consider

<
<

1
g1
tp =W (p,D+ gHe(p5)).
Note that W(p, tp) =D + %He(p6). We deduce that it holds

P{tpax > VP2 + v/P) + tp} < c(p)e™,

for all D that can be written as D = W(p, t)— %He(pé) with 0 < t < 7. Following the
same arguments, we get a similar inequality for ¢.,.
Furthermore, using H,(t) < —tlogt + t we get that the condition (10) implies

1 2
12 0=W(p,0) < zH(p8) <W(p, —==(1-(+v2)Vp +p))

Note that W™!(p,.) is continuous and increasing on the range of W(p,.) and set
1
—wl, =
to =W (p, 5He(p5)).

Eq. (12) shows that %He(p &) belongs to the interior of the range of W(p,.). Invoke
the continuity of W!(p,.) at point %He(p &) to see that t}, tends to t, as D goes to O.
Applying W (p,.), we deduce that (12) is equivalent to

(13) —242(3+V2)y/p—2p+(B+vV2)t,<0.
Then for D > 0 small enough it holds
(14) —242(3+V2)/p—2p+(B+V2)t, <0,

by continuity. It follows that Condition (FL-y(2s)) fails with a probability smaller than
2c(p)e P for some small enough D > 0 (that may depend on & and p). We conclude
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that the Condition (FL-y(2s)) holds under the Condition (14) on p and & which is
implied by (10). O
From the previous proof, we deduce the following result.

Corollary 1. Assume that for all 0 < p < 1, the largest eigenvalue A, and the smallest
eigenvalue A of the covariance matrix

1 n
€= 23 TXO
i=1

where s := | pn] and XES) are random vectors in R® with i.i.d. entries with respect to a
law &, satisfy for all n = ny(p),

vo<t<ty, P{(A—Q1+vpP)V(A—vPP—2)>t}<c(p)e™™®0

where T, € R, ny(p) = 2 and c(p) > 0 may both depend on p, the function t — W(p, t)
is continuous and increasing on [0, T,) such that W(p,0) = 0. Then for all € > 0 and for
all p and & such that 5 'H,(p &) belongs to the range of W(p, ), it holds

P{enin > V(2= vP) + W (p, 6 H,(p5)) + £} < c(p)e PP,

P{enas > VP2 +VP)+ W (0,67 H(p8)) + £} < c(p)e P00,
where D(p,6,¢) > 0.
3.2. Key lemmas using singular values.

Lemma 7. Assume that for all 0 < p < 1, the largest singular value o, and the smallest
singular value o, of a s x n matrix (where s := | pn]) with i.i.d. entries with respect to a
law £, satisfy for all n = ny(p),

YO < t < /po, IP{(% —1+vp)V(1-vp)— %) >t} <c(p)e P

where ny(p) = 2 and c(p) > 0 may both depend on p, the function t — W(p,t) is
continuous and increasing on [0, ,/pg) such that W(p,0) = 0. Then for any 0 < 6 < 1
and 0 < p < pg such that

1 W[p, 33+ V2—V7+6v2)— /p]
5>Eexp[1— 5 ],

any sequence of n x p matrices (M™). -, with i.i.d. entries with respect to ¥ and such
that n/p — & satisfy

Mmoo .
]P{ i satisfies (FL-y(2s)) with 2s < Lan} -1

as n tends to infinity.

Proof. The proof follows the same lines as in Lemma 6. In this case, the conditioning
event is {cpa < (1+ /P +t)> =1} U {cpin < 1—(1— /p — t)*}. Eq (11) becomes

—(B+vV2—V7+6V2)+2/p+2t<0.

Indeed, observe that

1+cmax<(1+1/ﬁ+t)2
1-yp—t)’

1- Cmin
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so that Condition (FL-y(2s)) is implied by

1+ +t
L< 442—3.
1—/p—t

Eventually, notice that

P{3x e, st n Y Mx|? > (1+ vp + O3Ix|P} < > P{n 20, > 1+ yp+ 1},
CSTI

where the sum is over all choice of s columns over the p in M. O

Corollary 2. Assume that for all 0 < p < 1, the largest singular value o, and the smallest
singular value o, of a s x n matrix (where s := | pn]) with i.i.d. entries with respect to a
law £, satisfy for all n = ny(p),

Vo<t<1y, IP{(%—(1+¢5))V((1—¢5)—

GS
J/n

where T, € R, ng(p) = 2 and c(p) > 0 may both depend on p, the function t — W(p, t)
is continuous and increasing on [0, T,) such that W(p,0) = 0. Then for all € > 0 and for
all p and & such that 5 *H,(p &) belongs to the range of W(p, ), it holds

P{emar > (VP + 1)+ VP + 10) + €} < c(p)e ™00,
and if further ty + /p <1 then

P{enin > (VP + )2 = VP —to) + £} < c(p)e P00,

) > t} < c(p)eWet)

where D(p,5,€) > 0 and ty := W (p, 5 'H,(p5)).

3.3. Davidson and Szarek’s deviations. Consider a s x n matrix X with i.i.d. standard

Gaussian entries. In the paper [DS01], Davidson and Szarek have shown that for all
0 < p <1itholds

01(X) o,(X) -

Yt>0, Py(——-(1+ V(11— - >t} < 2e7Wns(o.0)

{(FF-a+vm)va-vm-=5)> 1)

where o;(X) denotes the singular values of X and Wys(p, t) := t2/2, see [FR13, Page

291] for instance. This inequality relies on the concentration of measure phenomenon.

Invoke Lemma 7 to get Theorem 5. This deviation has been used in the paper [CTO5,

Lemma 3.1] to bound the RIP constant.

3.4. Ledoux and Rider’s deviations. Ledoux and Rider proved in [LR10] small de-
viation inequalities for 3 Hermite and Laguerre Ensembles. Their work rely on the
tridiagonal model for these matrix ensembles and on a variational formulation of the
Tracy-Widom distribution. For real covariance matrices, their deviation inequality for
the largest eigenvalue is the following. For all 0 < p < 1 and for all n = 2, setting
s=|pn],

¥e>0, P(A—(1+yp)?>t) <c(p)e "HED

where A; denotes the eigenvalues of a s x n covariance matrix C with i.i.d. standard

Gaussian entries and
1

ENT

3

P

3 P2
max —
WLR (p, t):= CLR(l n p)3 t21,¢ /5(1++/P)> + CLR(l n p)2 tl,s /B6(1+/p)? >
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where C;z > 0 may be bounded explicitly from [LR10]. This inequality is of the ex-
pected order in t, i.e. t3/2, for t < 0(/p) and of linear order in t for larger t. The
authors discuss this change of behavior in [LR10] p.1322. As explained in Section 1.4,
the dependency of function W in parameter p is of crucial importance in our analysis.
Therefore, we choose to write the most precise deviation inequalities the paper reached,
even in the case when s/n is bounded. For A, we follow the procedure explained in
[LR10, Section 5, Page 1338] to write the following

Ve>0, P((1—ypP—2A,>1t)<c(p)e ™ ®0

where
1 1

(15) WIr(p,t):= C‘LR(]_pfl’\/_p)iit%]'tgﬁ(lfﬁ)z + Cm(lpfz\/—p)ztlb*/ﬁ“**/ﬁ)z'
In Qrder to simplify the analysis of the phase transition, observe that Wiz*(p, t) <
WTR'(p, t) for all p and t. This yields

Ve>0, P{(A,—(1+vP)?) V(- VPP —2) >t} <c(p)eule:D
where
(16) Wir(p, t) :=WiE(p, t).

Invoke Lemma 6 to get Theorem 4. Note that, in Figure 2, c_;, is plotted in the top-right
panel using (15) instead of (16) to get a more precise plot.

3.5. Feldheim and Sodin’s deviations. For all 0 < p < 1 and for all n = n,, setting
s = |pn] it follows from [FS10] that

V>0, P{(xl —(1+vp)?)v(A—vp)Y -2, = t} < c(p)e Wrslpt)

where A; denotes the eigenvalues of a s X n covariance matrix C with i.i.d. Rademacher
entries and

3
plog(1l+55)>

Crs(1+ /D)2
where 0 < Cpg < 837, as shown in Proposition 8. Invoke Lemma 6 to get Theorem 4.

Wes(p, t) :=

3.6. Ideal deviations. Considering the expected small deviation inequalities (7) due
to the convergence to the Tracy-Widom distribution, and the expected sub-exponential
behavior (9), it may be possible to prove the following for sub-Gaussian random ma-
trices.

Ve>0, P{A,—(1+ P>t} <c(p)e (P

where A; denotes the eigenvalues of a s x n covariance matrix C with i.i.d. sub-Gaussian
entries and

P ! t1
Crw(1+ /P> Crw(1+yp2 T
where Cry, > 0 and t(p) > 0. A similar deviation inequality may be established for
the smallest eigenvalue A, with almost the same W function. Indeed, using (8) instead
of (7), the only change would be to replace (1 + ,/p)? by (1— ,/p)?. Lemma 6 could

then be invoked to get a theorem similar to Theorem 4. Ledoux and Rider’s results
combined to Davidson and Szarek’s ones actually achieved this ideal lower bound on

3
Wrw(p,t):= t2licip)
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the phase transition (except for a (1+ ,/p)? instead of (1+ ,/p)?, which is not of great
importance for small p) for Gaussian covariance matrices.

APPENDIX A. SMALL DEVIATIONS FOR THE RADEMACHER MODEL

In this section we follow the steps of the work [FS10] to get small deviation inequal-
ities on the extreme eigenvalues of Gram matrices built from the Rademacher law. The
paper [FS10] focuses on the asymptotic distribution of the fluctuations of the extreme
eigenvalues, and it proved that the extreme eigenvalues of the sample covariance ma-
trices built from sub-Gaussian matrices asymptotically fluctuate around their limiting
values (with proper scaling) with respect to the Tracy-Widom distribution. Their results
follow from an interesting estimation of the moments of the fluctuations. While their
estimation is interestingly of the right order (namely £%2), the authors of [FS10] did
not pursue on giving an upper bound of the constant appearing in their rate function,
see Claim (a) and (b) of Point 2 in [FS10, Corollary V.2.1].

Unfortunately, the constant Cpg appearing in the rate function is of crucial impor-
tance when deriving phase transitions, see Section 2 for instance. Hence, we need to
track the proof of [FS10] in order to provide an upper bound on Cgg and its dependence
on the ratio p of the sizes of the Rademacher matrix. This strenuous hunt necessitates
to recast all the asymptotic bounds appearing in [FS10] into non asymptotic ones as
sharp as possible. The benefit of this elementary but non trivial task is two fold. First
it gives, for the first time, an explicit expression of small deviations of extreme eigen-
values of the sample covariance matrices at the sharp rate £3/2. This section is devoted
to prove the following result.

Proposition 8. Let N > M = 54 and consider
C:=XX' where X e {#1}*¥ with i.i.d. Rademacher entries

then

P{AM(C) >(VM++V/N)>*+ sN} < Wl%p;)zvf exp(—NWps(p, €))

P{1,(C) < (VM — VN)* — N} < %”:)M exp(—NWs(p, €))

where p = M /N and
€
Wo(p,€) := coexp |:Co log(l + m)}
plog(1+ %)%
Crs(1+ y/P)?

for some universal constants ¢, > 0 and 837 > Crg > 0. Furthermore, for any C > 3242
there exists a constant v := v(p, C) > 0 that depends only on p = M /N and C such that,

forall0 <e < ,/p,

WFS(p7 8) =

p1/4

(1+ \/5)2'9%)

1/4

P{2,(C)> (VM +VN)*+eN} <vexp(—C7'N

lP{/ll(C) < (W—W)Z—EN} < vexp(—C_lN(lfw,s%).
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A.1. Sketch of the proof. The result of [FS10] is based on a combinatorial proof.
Interestingly, this approach is suited for the Rademacher model since, in this case, traces
of polynomials of the covariance matrix C can be expressed as the number of non-
backtracking paths of given length. In this section, we change notation and we use the
notation of the paper [FS10] to ease readability when referring to this latter. Hence,
we consider a Rademacher matrix of size M x N with M < N (referred to as s x n with
s < n in the rest of this paper). We draw this proof into the following points.

(1) The proof [FS10] is based on a moment method that captures the influence of
the largest and the smallest eigenvalues considering a new centering
~ C—(M+N-2
c._ Sl )

2/(M—D(N—-1)

The authors [FS10] then use the trace of C*™ + C*™! (resp. C*™ —C*" 1) to
estimate the moments of the largest (resp. smallest) eigenvalue.
(2) The control of

A, = Et[C*] + Ete[C*™ 1]

(resp. B,, := Ett[C*>™]— Et[C*™"1]) is given by a control of traces of polyno-
mials Q,(C) of C. Up to a proper scaling, these polynomials are the orthogonal
polynomials of the Marchenko-Pastur law which can be expressed by Cheby-
shev polynomials U, of the second kind.

(3) In the Rademacher model, the aforementioned traces, namely Ett[Q,(C)], are
exactly the number f}% (n) of non-backtracking paths on the complete bi-partite
graph that cross an even number of times each edge and end at their starting
vertex. This claim can be generalized to general random sub-Gaussian matri-
ces, up to technicalities.

(4) To estimate the number of non-backtracking paths fl%(n), the article [FS10]
begins with a mapping from the collection of non-backtracking paths into the
collection of weighted diagrams. Then it provides an automaton which con-
structs all possible diagrams. The number of diagrams constructed by the au-
tomaton ending in s steps is denoted D; (s). Lemma 9 provides an upper bound
on this quantity. Summing over s, it yields an upper bound on XAI%(n), see (17)
in Lemma 10.

(5) In the Rademacher model, ﬁ)%(n) is the expectation of the trace of Q,. Hence,
we deduce an upper bound on these traces.

(6) Using Markov inequality and optimizing over the parameters, we deduce small
deviation inequalities on the smallest and largest eigenvalues.

A.2. Number of diagrams. Recall that D,(s) denotes the number of diagrams con-
structed by the automaton ending in s steps. The description of the automaton can be
found in [FS10] Section I1.2 page 101.

Lemma 9. It holds, for all s = 1,
D;(s) < Co pCyy s 1/2
where Cy , and Cp, can be chosen as Cyp = 8.31 and Cp, = 53.8.

Proof. We follow Proposition I1.2.3 of [FS10] but we focus on the case (of sample covari-
ance matrices) corresponding to 8 = 1. In this case, there are three types of transitions



18 SANDRINE DALLAPORTA AND YOHANN DE CASTRO

from one state to the following one. Let s = 2g + h be the number of steps in the au-
tomaton at the end, where h is the number of transition of type 3 and g the number of
transition of type 1.

e If h = 0 then the number of ways to order the transitions of the type 1 and 2 is ex-
actly %. Informally, the state of the automaton can be seen as a “thread” made of
straight pieces and loops. The total length of this thread changes at each step. These
changes of length are encoded by non-negative integers m;. For precise definition of
these numbers, see [FS10] Section II.2 page 103. In the present case, the number

of ways to choose the numbers m; is at most (621). The number of diagrams corre-

sponding to a fixed order of transitions and fixed m; is at most (6g —1)?¢ (indeed, the
following state is then determined by choosing an edge and there are 6g — 1 edges in
the diagram). As in [FS10], we deduce that an upper on D; is

2¢)! - 2 —1)!(6g—1)%
(2¢) (6g 1)(6g— 1)% = g(6g—1)!(6g —1)

gilg+ I\ 4g g!(g + 1)!(4¢)!
Using Lemma 12, this number is upper bounded by

ez+l/60 (6g _ 1)8g71/2
p g gg+1/2(g + 1)g+3/2(4g _ 1)4g71/2 :

(6g71)8g—1/2
g&+1/2(g+1)8+3/2(4g—1)4s1/2

Writing 6 = in exponential form, we get

1
0 =exp (Zg log g + g(8log(6) —4log(4)) —3log g — 5(3 log2+log3) + )/(g)),
with . ; 3 .
y(g) = (Sg — E)log(l — @) — (g + E)log(l + E)
Note that y is non decreasing on (1, o) and goes to —% when g — oo. Therefore, the
number of diagrams in this case is upper bounded by (recall that s = 2g here)

1 ¢7/2108(3)-3/210g(2)+1/60-1/3 (40 51552 < 3 84(40.5) 1552,
T
e If g = 0 then there are only transitions of the third kind. The number of ways to
choose the numbers m; is at most (2::11) The number of diagrams corresponding to
a fixed order of transitions and fixed m; is at most (3h —1)" (indeed, recall that the
number of edges of the diagram is 3h — 1). We deduce that an upper on D, is
(2h—1)!
hi(h—1)!
Note that this number is 2 when h = 1. For h = 2, using Lemma 12, this number is
upper bounded by

(3h—1)".

el/]z (zh _ 1)2h—1/2(3h _ 1)]’1

J2r  hhH2(R—1)h-1/2

. . —1)2-1/2(3K—1)h . . ..
Once again, we write 6 = % in exponential form. This yields

0 =exp [(h - %)logh + (2log(2) + log(3))(h -1+ % log2 +log(3) + y(h)] s
with

100 = (213 )og (1= 55) g (1 55) (= s (15
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Note that v is non increasing on (2, h*) and non decreasing on (h*, c0) for some h* > 2.
Therefore, y(h) is bounded by max(y(2),limy,_,, y(h)). This yields y(h) < —0.33 for
all h = 2. Finally, the number of diagrams in this case is upper bounded by (recall that
s = h here)

1/12

/
€ eS/Zlog(2)+log(3)70.33(12)5715571/2 < 2‘65(12)5718571/2.

var
o If h # 0 and g # 0 then the number of ways to order the transitions of the three types
is exactly

2g+h\ (2g)!  (2g+h)!
( h )g!(g +1)! higl(g+ 1"
The number of ways to choose the numbers m; is at most (Zggfhh:ll). The number of
diagrams corresponding to a fixed order of transitions and fixed m; is at most (6g +
3h—1)%*" (indeed, recall that the number of edges of the diagram is 6g + 3h — 1).
We deduce that an upper bound on D; is
(2g+h)! (6g+2h—1
h'g!(g+1)! ( 2g +h—-1
Using the fact that s = 2g + h and Lemma 12, this number is bounded by
6131/126 SS+1/2(38—h—1)3S_h_1/2(33—1)s
(2m)3/2 Rh+1/2gs+1/2(g + 1)8+3/2(s — 1)5-1/2(25 — h)2s—h+1/2"
Let t =h/s €[1/s,1 —2/s] so that an upper bound is
6131/126 Ss+1/2(35_ts_l)Ss—ts—l/Z(BS_l)s
(2,”;)3/2 (ts)ts+1/2(s1_;)s(17t)/2+1/2(s1% + 1)5(17t)/2+3/2(s _ 1)571/2(25 _ ts)Zsfterl/Z‘

)(6g +3h—1)%*h,

Once again, we write this in exponential form and get

131/126 5
W exp (s logs — 5 logs + B(t)s + a(t) +v(s, t)),
with
1 1 1
a(t)=2log2— > log(3—1t)— > logt—2log(1—t)— > log(2 —1t),
B(t)=(38—1t)log(3—1t)+10g(3)
—tlogt—(1—1t)log(1—¢t)+1log(2)(1 —t)—(2—1t)log(2—1),

1.0 05 gJln(1 - ) wstes 13

_%(5(1—t)+3)log(1+s(%t))—(s—%)1og(1_§)_

o We focus first on . This function is non decreasing on (0, t*) and non increasing on

(t*,1), with t* = % — @ ~ 0.24. Therefore, it reaches its maximum at t*. Computing
it yields B(t) < 3.985 for all t € (0,1).

o We focus now on a. This function is non increasing on (0, t’) and non decreas-
ing on (t’,1) with t" € (0,1). Recall that t € (1/s,1 —2/s). Therefore, a(t) <
max(a(1/s),a(1 —2/s)). Computing these two values and using the fact that s > 3
leads to a(t) < a(l1—2/s) forall t €(1/s,1—2/s). Consequently

a(t) < Zlogs—%log(2+%)—%log(l—é)—%log(l-i- %)
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o Let’s turn to y. Recall that ¢t € (1/s,1—2/s). Dealing separately with the two terms
((3 —t)s— %)log(l — ﬁ) and %(5(1 —t)+3)log(1+ 5(1—{0) yields

rs (BS_%)log(l_3s1—1)+51°g(1_%)

—%(s+2)log(1+si)—(s—%)log(l—%).

-1

Going back to the number of diagrams in this case, it is bounded by

£131/126 1

W exp (s logs — > logs + 3.985s + 5(5)),
with

o(s)=— —log(2+ E)—llog(l— —)— —log(l + —)
s 2 2
3
+(33—§)10g(1—3 )+slog(1——)

This function is non decreasing on (3, o) and goes to —% - 10%2 < —1.67 when s goes

to 0o. Therefore, there are at most
131/126-1.67

(2m)3/2
diagrams in this case. This leads to the result. O

(63.985)5—155—1/2 < 1.82(53.8)5_185_1/2

A.3. Number of paths. Let n > 1 be fixed. Recall that Ett[Q,(C)] is equal to the
number ﬁl%(n) of non-backtracking paths, see Page 115 in [FS10]. Recall that M < N
denotes the sizes of the Rademacher matrix.

Lemma 10. It holds

. Cs(1+ v/ M/N)n®/?
a7 31(n) < Cy gn(MN)Y? exp[ 2( «/M/ ) ]
where Cj ¢, = 160.4 and Cg, = 13.3. As a consequence,
n3/2
E[[Q1,(C)] < Co 5(MNY"2nexp (Cs(1 + ,/M/N)W).

Proof. The number of diagrams is D;(s) for 1 < s < n. The number of ways to choose
the vertices on a diagram constructed in s steps by the automaton is at most

1
E(MN)H/Z[(]_ + /M/N)(M—l/Z + N—1/2)25—2 + (1 _ /M/N)(M—I/Z _N—1/2)25—2] ,
see [FS10, Page 117]. The number of ways to choose the weights on a diagram con-
structed in s steps by the automaton is at most
3s+1 —3s+1 35—2
(3s )(n ST y3s-2) .
(3s—2)! 2

We deduce that the number ﬁl%(n) of non-backtracking paths is at most

$l(n) < %(MN)”/Z[(l + \lg)n +(1- \lg)n]
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where

n
3s+1) rn—3s+1 35—2
Ty o= > Dy(s) (M2 + NTH2)2 ( ) ( +35—2)

" (3s—2)! 2
S - o5 (3s+1) fn—3s+1 352
Ty = D DM - N e (o 35— 2)

We can bound each term. It reads as follows.

T < Cop Z Cy s 2 (M2 4 NTY2)R2 (3s+1) (n —3s+1 o 2)3572

& (3s—2)! 2
<c Z cs—l[ 1++/M/N ]Z(H) (3s +1)(n 4 3s —3)¥25571/2
= Lo, 4 D JM (3s —2)1235—2

using Lemma 9. Invoke Lemma 12 to get that
(2(s —1))! (3s 4+ 1)(n + 35 —3)* 257112

n3G—1) (35— 2)!23572
es+1/12 -2 35 — 3352 (25 _ 2)25723571/2
Sn——@Bs+1 1+
9352 ( ) 35 — 2( n ) (3s — 2)32
— _ 9)2s—2.—1/2
< nel/1? _Zs 2235_2(35 +1) (25 —2)"" y

35—2 BCEDEEE

But 2%72(3s + 1)%65 < exp(s + f(s)) where

f(s) = (35—2)10g(2)+(25—2)10g(25—2)+10g(35+1)+(s—%) log(s)—(3s—2) log(35—2).
Some elementary computations give the following:

fls)= %logs +(5log2—3log3)s +3log3 —4log2+(2s —2)log(1 — %)
—(35—2)log(1 - %) + log(l + %)
= (5log2—3log3)s + 3log3 —4log2+ g(s),
with g(s) = % logs + (2s — 2)log(1 — %) —(3s—2)log (1 — 3) + log(l + = ) We have

, 3s—1 1 2
————— +2log(1—=)—3log(1—=—
gl)= 25(3s +1) Og( ) Og( Bs)’
p —27s% +995% — 2152 + 11s + 2
g (s)=

252(s —1)(83s —2)(3s + 1)
It may be shown that there exists s, > 2 such that g” is positive on (1,s,) and neg-
ative on (s,, 00). Therefore, g is strictly concave on (s,, 00) and its curve is below
its tangents, which write y = g’(so)(s — so) + f(so). Fors € [1,s,], g(s) < g(1) =
2log2. As a consequence, we are looking for the point s, € (s,, 00) such that the
tangent at s, goes through the point (1,2log2). This tangent goes through the point
(1, g(sg)+(1—s0)g’(s0))- Set h(s) = g(s)+(1—s)g’(s). This function is non decreasing
and there is a unique point s, € (s,, ©0) such that h(s,) = 2log 2. It may be shown that
s € (39.66;39.67). As g’ is non increasing on this interval, g’(sy) < g’(39.66) < 0.013.
This leads to

g(s) <0.013(s —1) +2log 2.
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Then
(2(s—1)! (3s+ 1)(n+ 3s —3)>2s1/2
n3G—1) (3s —2)1235—2

2
< nel/lz\l;exp ((510g2—310g3 +1.013)s +3log3 —2log2—0.013)

2
< nel/lz\l;exp(l +3log2)exp((Slog2—3log3+1.013)(s — 1))
<19.3n(3.27) L.

As a consequence,

n

< 1 1.81(1 + v/M/N)n®/? q2(-1)
T, <19 3c0DnZ o 1))![ = ]
<19.3Cypnexp(1.814/Cp(1 + \/M/N)Ml/z)

Similarly, one gets
< . 1 1.81(1 — v/M/N)n®/? q2(-1)
T, < 19'3nC°DZE =) I N ]
- D
1.81(1 — +/M/N) CDn3/2]

VM
This yields the result. O

<19.3nC, p exp [

A.4. Bound on the traces.
Lemma 11. It holds that
18)  (Ba[C®™)]+E[{C"1]]) v (E[6[C"]] - E[«[C?"1]]) < A,

where

A = Co,Rad m[( MN )m M]exp(CRad(1+ /M/N)4 )

PR TR AN GV Grauy
and
Co,rad = 594Cy 3, = 95,278
Crad = 355.7C} = 830, 415.
Proof Invoke Lemma IV.1.1 Page 115 in [FS10] and Lemma 10 to get that

(19) B, e @1 < s ) mesp (Got1 + VAN,
(M—2)*

Set's 1= grop=p) Form =1, letA, = = E[t[C?>"]] + E[t[C*"']]. Following Pages
95-96 in [FS10] yields:

= WZ(Z 1)(2m+ )E[tr[Uzn(C)]]

(20)

2m22m ( ) [6e[Uzna (O]
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Using the fact that V; ; = Uy + +/sU;_, it holds
2m+1 k k/2
An = (2m+ 1)22m £ Z(Zn 1)( )Z( D"t Va5 (O)]]

2n—1

1 N 2m vk k/2 =
+ 2m22m zzn(m_n) é( 1) S E[tt[VZrl—k—l,s(C)]]-

Note that the expectation ]E[tt[Vk,s(E)]] is non-negative. Indeed, one can check that
E[tt[Vk,s(é)]] = E[ft[Qk(é)]] = ﬁ)%(k) up to a multiplicative positive constant. It fol-
lows that

o= e 2 (2

k=0

ZmZZmZ (2" )nZs"E[tr[vznzm,s(é)]]
=0

2m+

(2m+1)22 Z(Z +1)(m

)(ZS ELtt[Varis(C)]] +5"M)

m n—1
1 2m X ~
1) t o 20 Zn(m 3 n) k;s BLte] Vayac-1,4(C)]]

Invoke (19) to get with Cy; y = C¢(1+ +/M/N),

Z 2n+1 (Zm + 1)
(2m +1)22m\ m—n

n—1 MN n—k 2%( _k)%
xk Osk oz( DN )) 2(n—k)exp[CM’N’;/[7%:|
D3 N
n—1 ) , )
ey MV Yo Dyole, 20k =12

1 S 2m+1Y) ,
+ —(2m T ;(Zn + 1)( e )s M

2Cy ¢ “
< 0,3 zZ[ 2n+1 (2m+1)+ n ( 2m )]
71— M=2) 2m+1)22"\ m—n ) m22"1\m—n

MN n=1
MN 22
“(m) exp | Cury Mn]

2m+1
(2m+1)22m Z(Z +1)( n) M-

From Lemma 13 it holds

n+1/22m+1 n ( 2m n?
log[ 2om (m—n)]\/log[zz_’“(m—n)]\_Cl_czz

N
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where ¢; =—5 and ¢, = 0.6321. We deduce that

4Co,z exp(—c;) - MN n n2 23/2,13/2
< > ——
Ap 1‘% m ;n((M_l)(N_l)) exp( c2m+CM’N Vi )
Mexp( 1) n?
— > s"exp| —cy— ),
2 s exp( e
4C 5 eXP(—Cl) MN us 93/2,,3/2
< Yosore)y P M1 (e 2
M — —
1-% M-1)N-1) p— M1/2
Observe that the maximum of —ax* + bx? is 22576”:3 . We deduce that
n2 93/21,3/2 3
_CZ_+CMN—M1/2 S Crag(1+ \/M_/N)4W
where
4 4 402
2 ¢ 27C;,  271.81%C
Crad = 7 uy S W Y
GU+VM/NY A E 4 ]
as claimed.

The bound on B,, := E[t[C*"]] — E[t:[C*>"']] follows the same lines. The minus
in front of E[t:[C*"']] change the line (20) to its opposite. The change of indices k
leads to the term s**1/2IE[ tt[ Vy(,__1)(C)]]in (21). Since we uniformly bound n—k—1
by n in the rest of the proof and s/? < 1, we get the same result. O

A.5. Small deviation on the largest eigenvalue. Observe that

P{Ay(C) = (VM + VN)* + eN} = P{A,(C) = ey v},

with
D1+ —) > ey Al — e >14—r
53\ 2. /M/N ' \/(M DIN—1) 2/(M—D1)(N—-1) 2/M/N’

for all N > M > 54. Set f(x) := x?™ + x?>m1 and note that f is non-increasing on
(—o0,—1+ —] and non-decreasing on [—1 + 00). Furthermore, its minimum is
—e,, where

2m’

_@mo1prt (g1
me (2m)2m 2m—1 2em

and it is non-negative on (—oo,—1]U[0, co). Using Markov inequality, we deduce that

IP(AM(E) = ey n) S P(f (X‘M(E)) +em = flemn) +en)
E[f Au(C)] +e,
flemn) +en
< 2 (B (O] + e)
flemn)
_Ap+Mey,
B f(EM,N)

>

(22)
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Invoke Lemma 11 to get that
m 3
Comaam{ (@ iti) + ] exp (Craal + VMI/NY' ) + 50

1- %)f(EM,N)

for all m € IN. Using that M = 54 and log(1 + x) < x, we get

>

]P(AM(E) = EM,N) <

3
Conaa[m + 126 M ] a1/ MNY* B 54m(+ ) log( )
> e

P(A(C) > &4,) <
(Au(C) > ey, (1—)f (eprn)

2log(ey n)

3Craa(1+4/M/N)*

for all m € IN. Optimizing on m yields the choice m = M and

P{A(C)> (VM + VN)* +eN} < %‘O‘;)S)Mexp(—Nwl(p,s))
where p = M /N and

Copad(1 +2€)/3Crag(1 + /P)* + Ze\/21og(%(1 +5))

Wy(p,€) =
o(p-e) 2¢ v/3Craa(1 + YD)
21log(2(1 + 5%=))
X exp 5410g(5—4)(1+p)\/ - 2ve
53 (1+ vP)?/3Craa
4y3 plog(1+55)2
Wy(p,€) = P

3v3 (1+ vP)*v/Craa
Using that p < 1, we derive that
4Co pad(1 +2€)4/3Cpaq + 2e\/2 log((1+ 755))
26\/ SCRad
55 €
54 \/2log(§(1 +355)

53 Neow

WO(p: 8) <

x exp | 1081log(

< ¢ exp[cO log (1 + %)}

for some universal constant ¢, > 0. We deduce the following useful bound
COMeCM”Og(H—ﬁ)

(23) P{2(C)> (VM + VN)* +eN} < = e NWilp.e)

For ¢ < ,/p we can deduce a small deviation inequality as follows. Observe that for

any 7 > 0 one can pick a constant ¢;(n) > 0, that depends only on 7, such that for all
M = 1, it holds M < ¢;(n) exp(nM). Note that log(3/2)‘/€—ﬁ < log(l + 255) and set

_— 34/3Cra
a4 2 10g(3/2)32
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We deduce that for any C > Vy,q ~ 3242 there exists a constant v := v(p, C) > 0 that
depends only on p = M/N and C such that, forall 0 < ¢ < ,/p,

ol ;
(1+ \/5)28 )

A.6. Small deviation on the smallest eigenvalue. Observe that

P{1,(C) < (VM — VN)? —¢'N} = P{1,(C) < —¢}, .},

@4  P{Au(Q)> (VM + VNP +eN} <vexp(—C7'N

with
1+ e'27 281,\“]:: vMN —1 + e'N 22(14- e'27 )’
53+/M/N : VIM=1(N-1) 2¢/(M—1)(N—-1) 54 53,/M/N

for all N > M > 54. Set g(x) := x*™ —x?™! and note that g(x) = f(—x). It holds
P{1,(C) < —€y Nt S P{g(1,(C) +e, > g(—ey n) +em}
< E[g(1,(C)]+e,
fleyn)+en
< 2 BL(©)] +en)
fleyn)
_ B, +Me,
fleyn)

and we recover an upper bound of the form (22) for which Lemma 11 can also be
applied and we get that

Comaa[ (r2—5) " + 2 |exp (Craa(1 + VM/N)* 2 ) + 24
(=) (epy )

for all m € IN. The rest of the proof follows the same lines as in Section A.5 where we
2log(54¢), 5 /53)

3Craa(1++/M/N)*
harmless constant ¢, in W,. Eventually, note that (24) has been obtained from (23)
and we can use the same argument for the deviation on the smallest eigenvalue. This
proves Proposition 8.

P{2,(C) < —¢}, v} <

>

change ¢y, y by €, 5, we choose m = M and may have changed the

APPENDIX B. STIRLING’S FORMULA AND BOUNDS ON BINOMIAL COEFFICIENTS

Lemma 12. Let 2 > 0 then there exists 6 € (0, 1) such that:
1,2\z 0

T(z+1) = (2712)7(= —).

(z+1)= @)} () exp (o

Proof. See [AS65] Eq. 6.1.38. O

Lemma 13. It holds, forall1 <n<m,
2 2
log[ = ( m )] <5-0.6321—
m

22m\m—n

n+1/22m+1 n?
1 <2-—0.6555—
og[ 22m (m—n)] 6 m
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Proof. If n =m then the result is clear. Otherwise, using Lemma 12, one has

log[L 2m ]<—0.364+logn+(2m+1/2)logm
22m\m—n

—(m—n+1/2)log(m—n)—(m+n+1/2)log(m+n),
< —0.364 —1/2log((m? —n?)/(mn?))
2n/m N2
— ) —log(1—(— .
1+n/m) 0g( (m) )]
The last term in the right hand side can be upper bounded thanks to the identity
xlog(1—2x/(1+x))—log(1—x?) < —x2 for all 0 < x < 1. It yields

2n/m
1+n/m

Let x = n/m and observe that x < 1 —1/m. It holds that the middle term of the
aforementioned right hand side can be expressed as

—1/2log((m? —n?)/(mn?)) = 1/2log(mx?/(1 —x?)).
If x < 0.99995 then, using that log(z) < z/e, we have
1/2log(mx?/(1 —x?)) < 4.6052 + (1/(2e))mx?.
If 0.99995 < x < 1—1/m then
1/2log(mx?/(1—x?)) <logm < m/e < 0.3679mx?> .
In all cases, we get that

1/2log(mx?/(1 —x?)) < 4.6052 + 0.3679mx>

+ m[2 log(1 —
m

2
)—log(l—(%)z)] <-=.

m[ﬁlog(l—
m m

We deduce that
n 2m 2
log [?_m(m i n)] < 4.24—0.6321n%/m,
as claimed. H
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