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Abstract

With the increasing number of activities being performed using computers, there is an ever growing need for advanced

authentication mechanisms like biometrics. One efficient and low cost biometric modality is keystroke dynamics, which

attempts to recognize users by their typing rhythm. It has been shown that the biometric features may undergo changes

over time, which can reduce the predictive performance of the biometric system. Template update adapts the user model

to deal with these changes and, therefore, decreases the predictive performance loss. Most of the studies in the literature

only take into account samples classified as genuine to perform adaptation. This paper extends this common approach

by proposing an original framework to make use of samples classified as impostors too. This new approach, named

Enhanced Template Update, uses all collected unlabeled samples to support the adaptation process. According to our

experimental results, this new approach can improve the predictive performance when compared to current methods

depending on the scenario. Some improvements on the visualization of results over time are also proposed during the

analysis performed in this study. Although the proposed approach is evaluated on keystroke dynamics, it could also be

applied to other biometric modalities.
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1. Introduction

Keystroke dynamics is a behavioral biometric modality

that allows the recognition of individuals based on their

typing rhythm on the keyboard. This biometric modality

has some advantages over commonly adopted alternatives,

like fingerprint or iris recognition systems [1, 2]. First,

keystroke dynamics does not require an additional sensor,

since a common keyboard is enough to acquire keystroke

data. Second, this biometric modality can be applied in
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background, during other user daily tasks. These advan-

tages may contribute to a higher acceptability of this tech-

nology.

However, as a behavioral modality, keystroke dynamics

has a higher tendency to be subject to changes over time

[3]. Indeed, how the user types a password evolves with

time and can be different in a short timespan. The reasons

are numerous and cannot always be controlled: increased

practice, changes on the environment, etc. For example,

users can increase the speed to write the password due to

more practice. These modifications increase the intraclass

variability which, consequently, can increase the ratio of

authentication failure.

A strategy to reduce this performance decrease is to
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adopt a template update mechanism (sometimes referred

to as an adaptive biometric system) [4, 5]. The aim of the

template update is to automatically adapt the biometric

model/reference of the user to make it closer to the user

current biometric data (i.e., decreasing the deviation due

to template ageing). However, this update process is done

without supervision (i.e., it is totally automatic), and is

therefore subject to errors. This may lead to reduced pre-

dictive performance, illustrating the difficulty of this task.

There are not many studies on template update for

keystroke dynamics, highlighting the need for further in-

vestigations. Before introducing the proposed approach,

we should clearly specify some terms regarding the bio-

metric samples:

• True genuine/positive: a biometric sample which be-

longs to the genuine user.

• True impostor/negative: a biometric sample which

belongs to an impostor.

• Classified as genuine/positive: a biometric sample

classified as genuine by the classifier. It could be-

long to the genuine user (the classifier returned the

correct label) or it could come from an impostor (the

classifier returned the wrong label).

• Classified as impostor/negative: a biometric sample

classified as impostor by the classifier. It could belong

to the genuine user (the classifier returned the wrong

label) or it could come from an impostor (the classifier

returned the correct label).

The majority of the papers in the area updates the

user model only with biometric samples classified as

genuine/positive, discarding those classified as impostors

(negative). They usually employ a positive gallery, which

is a set of biometric samples classified as genuine/positive.

This paper proposes to investigate if taking into account

samples classified as impostors can improve the adaptive

procedure. Thus, there would be a negative gallery too.

This new template update approach, which uses samples

classified as both positive and negative for template up-

date, is named here as Enhanced Template Update (ETU).

The usage of negative samples in the template update pro-

cess has two main motivations:

• Reduce False Match Rate (FMR) 1: As some impos-

tor samples would be available, they may help to

avoid the inclusion of negative samples in the positive

gallery. We propose an approach to take advantage of

this concept in order to decrease the number of nega-

tive samples wrongly included in the positive gallery

during adaptation. The proposed approach is named

Positive Gallery Protection (PGP).

• Reduce False Non-match Rate (FNMR) 2: This can be

done by changing the classification decision. Some-

times the positive model alone (induced only from

positive samples) may reject a given positive sam-

ple, but with the help of a negative model (induced

from negative samples), it may be possible to verify

whether the sample is closer to the positive model

than the negative model. As a result, FNMR can be

reduced. We propose some alternatives to change the

classification decision based on this reasoning. Four

different methods to change the classification decision

are proposed, named as ETU 0 to 3.

It must be observed that a reduction of FNMR usually

results in an increase of FMR (and vice-versa).

The contributions of this paper are:

• Proposal of a framework for template update using

biometric samples classified as positive and the ones

1FMR measures the rate in which an impostor is wrongly accepted

by the biometric system (it is an error rate, so it must be as low as

possible).
2FNMR measures the rate in which the genuine user is incorrectly

rejected by the biometric system (it is an error rate, so it must be as

low as possible).
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classified as negative. This may lead to further stud-

ies by the adaptive biometric community using this

additional information;

• Study advantages and drawbacks of several configu-

rations of the proposed framework;

• Performance evaluation on public main keystroke dy-

namics datasets, including different types of feature

vectors. To the best of our knowledge, this is one

of the first papers to use the passwords part of the

GREYC-Web dataset [6].

• Improve the visualization of the performance of adap-

tive biometric methods over time.

This work does not aim at providing a new keystroke

dynamics authentication algorithm neither a performance

comparison of various authentication mechanisms linked

to our framework. The current study is only interested

in the architecture of the template update system and its

application with standard authentication algorithms from

keystroke dynamics literature, although our methods may

be directly applied to other classification algorithms.

This paper is organized as follows: Section 2 introduces

previous work on template update for keystroke dynamics;

Section 3 presents the enhanced template update frame-

work and the methods investigated in this paper; Sec-

tion 4 describes the experimental methodology, including

datasets, biometric data stream generation and parame-

ters adopted in the experiments; Section 5 shows the ex-

perimental results, including a discussion on the perfor-

mance over time; finally, Section 6 presents the main con-

clusions of this study and alternatives for future work.

2. Template Update for Keystroke Dynamics

The intra-class variation issue has been observed for var-

ious biometric technologies, like fingerprint and face recog-

nition [4]. Adaptive biometric systems/Template update

can deal with variations on the users characteristics by

adapting the user template/model over time [5]. There

are not many studies on the use of adaptive biometric sys-

tems in the literature; a possible reason is the lack of

public datasets for these systems, which occurs for sev-

eral biometric modalities [4]. These datasets have to meet

some requirements, such as having several samples per user

and such samples need to ideally be acquired in differ-

ent sessions. Some datasets that can be used to evaluate

keystroke dynamics in a template update context are de-

scribed in Section 4.1.

In these adaptive biometric systems, given a set of user

samples (labelled samples), a user model is initially in-

duced and it is continuously adapted as new unlabelled

samples are received during the biometric system oper-

ation. Some classical samples from literature are self-

update (mono-modal adaptation) and co-update (multi-

modal adaptation) [7]. The focus of this paper is on mono-

modal adaptation.

Recent studies have shown that the biometric features in

keystroke dynamics may change over time [8, 9], indicating

the need of adaptive approaches. Some previous work on

model adaptation for keystroke dynamics can be found in:

[8], [9], [10] and [11]. In [10], two simple methods based

on the concept of galleries were discussed: growing win-

dow and moving window. Later, in [8], these approaches

were further investigated and a new method, known as

Double Parallel was proposed. This method combines

the concepts of growing and moving window into a new

framework. According to their results, Double Parallel

presented the best overall predictive performance among

all tested approaches. Another paper focused on adap-

tation in a free text application [11]. In [9], the authors

proposed Usage Control R, which adapts the user model

based on the usage of detectors.

Next sections briefly describe some of these adaptive

methods. All of the adaptive methods described here fol-

low the general flow presented in Figure 1. In this flow,

user model/template can be updated every time a query
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sample is classified as positive/genuine. It must be ob-

served that this may result in errors, as the classifier may

not correctly classify all samples.

| | | | | | | | | | | | | | | | | | | | | |
Classifier (user 

model/template)

Adaptation

Query 

classified as 

positive?

Yes
Biometric data stream 

(containing both positive 

and negative samples)

Figure 1: Basic template update flow of the studied algorithms.

2.1. Model-based adaptive methods

Model-based adaptive methods involve retraining the

classification algorithm to adapt the user model over time.

In [8], a method which reached good overall performance

was Double Parallel and is part of our experiments.

Double Parallel keeps two user models in memory: one

is generated using growing window and another one uses

sliding window. In the growing window model, all training

samples are stored in memory and they are used to induce

it. Afterwards, in the matching phase, any sample recog-

nized as positive (genuine user) whose score is higher than

an update threshold is added to the set of samples and

the user model is re-trained. The sliding window model

follows a similar procedure, but it also removes the old-

est training sample before retraining the algorithm. As

Double Parallel keeps two user models, the query sample

is presented to both models, producing two score outputs.

For this study, the algorithm was implemented in the ver-

sion which computes the average between both scores and

uses it to perform classification.

Although Double Parallel (DB) presented good predic-

tive performance in the experiments reported in the liter-

ature, its memory usage can grow without limit over time.

It is due to the use of a model induced by the growing win-

dow method, which does not remove samples from mem-

ory. Later, in [13], the authors modified Double Parallel

when used with M2005 in order to make the algorithm in-

cremental. This new version, named IDB, solves the mem-

ory usage problem by updating the growing model incre-

mentally, updating mean and standard deviation. As me-

dian could not be updated incrementally, mean was used

instead. Both DB and IDB adapt the user model using

only use samples classified as positive/genuine.

2.2. Detector-based adaptive methods

Similarly to model-based, detector-based adaptive

methods also only update the detectors when a query sam-

ple is classified as positive/genuine. Two simple detector-

based adaptation methods are: Growing and Sliding.

They were implemented based on [8] and [10], which used

similar ideas. Their performance were evaluated in [9]. In

the Growing version, each sample classified as being from

the genuine user (positive) is included as a new detector.

The Sliding version works in the same way. However, it

also discards the oldest detector when a new detector is

added. This makes the amount of detectors constant and

is, therefore, more efficient than Growing regarding mem-

ory usage, which only grows the detector set. Due to this

problem with Growing over time and considering that Slid-

ing performed better than Growing in previous studies [9],

only Sliding is used here.

Another adaptive algorithm is Usage Control R [9]. This

algorithm assesses which detectors are more used in order

to decide whether to keep them in the detector set. The

storage of samples in memory and their replacement ac-

cording to their usage was also discussed in the context

of biometrics in a technical report [15], although their ap-

proach is different from Usage Control. For each detector,

two new attributes are assigned in Usage Control :

• Usage count : increases every time the detector

matches a query sample.

• Recent usage: decreases when another detector

matches a query sample. If the detector matches the

query sample, it returns to a maximum value (here

we adopted 10, the same value adopted in [9]). When
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the detector is firstly generated, it also assumes the

maximum value.

In Usage Control R, when a new sample is presented,

if a detector matches it, the additional attributes are up-

dated (i.e., only when the sample is classified as positive).

Detectors are checked from the newest to the oldest one.

The first one to match the query sample is considered as

“used”. All detectors with Recent usage = 0 are ordered

by Usage count. The detector with the lowest Usage count

is removed and a new detector is added to the set using the

matched sample. The effect of these additional attributes

in Usage Control R is the removal of detectors with low

usage without removing new detectors instantly (as their

Usage count is zero when they are created).

Later, Usage Control S was proposed in [16]. This al-

gorithm only updates the detector set if at least two de-

tectors are able to match the query sample. By doing so,

it is assumed that a sample matched by two or more de-

tectors has a higher level of confidence that it is a true

positive. Similarly, samples matched by only one sample

are assumed to have low level of confidence and, therefore,

are not used as a new detector. In addition, Usage Con-

trol S consider all detectors that are able to match the

query sample as “used” (this is different from Usage Con-

trol R, which only considers the first detector to match as

“used”). This avoids the removal of detectors that could

represent well the current user behaviour, although they

were not the first to match.

In both Usage Control R and S, when there is no de-

tector with Recent usage equals to zero, no adaptation

occurs and the recognized sample is discarded. However,

this could lead the algorithm to lose key information for

adaptation when faced to small changes. To overcome this

problem, Usage Control 2 adds all matched samples as de-

tectors, regardless of the Recent usage values. However,

this could result in an endless increase in the set of de-

tectors (when new detectors are included and no detector

has Recent usage = 0). This is related to the behaviour

of the Growing approach. In order to avoid this problem,

whenever a new sample is recognized as positive, the Us-

age Control 2 algorithm, instead of just removing a single

detector (the one with least Usage count), it removes all

detectors with Recent usage = 0. As a result, the set of

detectors in Usage Control 2 can increase (when no detec-

tor has Recent usage = 0) or decrease (when more than

one detector has Recent usage = 0). Consequently, the

number of detectors is not constant, different from Usage

Control R or S.

3. Proposal of Enhanced Template Update

This section presents the Enhanced Template Update

framework. The main flow is shown in Figure 2. Firstly,

at enrollment/training phase, it stores all genuine train-

ing biometric samples and induces the positive classifier.

Afterwards, during the recognition phase, query samples

will be received. Initially, if they are classified as positive,

they are added to the positive gallery (the older sample is

also removed from the gallery) and the positive classifier

is updated. Otherwise, if the sample is classified as nega-

tive, it is added to the negative gallery. Until this stage,

the behaviour of the template update process is similar

to a standard Self-update procedure, retraining the posi-

tive algorithm based on the updated gallery (although the

standard Self-update does not store negative samples).

After a minimum amount of samples classified as neg-

ative is obtained, the negative procedure is enabled. The

negative classifier is then induced and updated similarly to

the way the positive one is. If the target amount of samples

classified as negative has been obtained, the oldest sam-

ple is removed from the negative gallery every time a new

negative sample is added. When the negative procedure

is enabled, the classification of the new query samples is

based on both the positive and the negative models. Note

that our proposal is different from [17], which only up-

dated the negative gallery (named as impostor database)

to retrain novelty detectors. Enhanced Template Update
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Add query sample 

to positive gallery

(sliding)

Add query sample 

to negative gallery

(sliding)

Samples from 
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Negative samples 
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pos score only

Classify query 

samples based on 

pos and neg 

score

Biometric training 

samples

Remove all samples 

classified as positive by 

Positive Classifier

Negative Procedure
(change between enhanced 

template update methods)

Positive 

gallery

Negative 

gallery

Enhanced Template Update

Positive gallery 

protection (PGP) 

check

Allow adaptation?

Yes

Induce 

Positive 

Classifier

Induce 

Negative 

Classifier

No. neg. samples > 

MIN_SAMPLES_NEG_ 

ACTIVATION

Yes

No

Figure 2: Enhanced Template Update Framework. It makes use of two galleries: one for samples classified as positive and another for the

samples classified as negative. There are four ETU methods: ETU 0 to 3. They basically change the Negative Procedure, highlighted in the

figure.

(ETU) makes use of two models/galleries to support clas-

sification and adaptation.

The way the classification decision is taken will vary

among the four ETU methods: ETU 0 to 3. These four

ETU methods can work with either model or detector

based techniques, such as M2005 [12] or Self-Detector [14]

(using cosine distance). These are two static algorithms

previously used under adaptive approaches for keystroke

dynamics. Hence, we can directly compare the perfor-

mance of ETU methods to current adaptive approaches

using the same reference static algorithms. However, the

methods proposed here can also be applied to other clas-

sification algorithms, as long as they output a similarity

score (the single exception is ETU 2).

3.1. Positive Gallery Protection Check

Enhanced Update Template framework includes an op-

tional Positive Gallery Protection (PGP) check. When

activated, it attempts to avoid the inclusion of negative

samples in the positive gallery. Note that the negative

gallery must reach a minimum amount of samples, as PGP

uses them to support its decision.
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It works in the following way. First, it clusters all

samples in the negative gallery using K-Means++ [18].

KMeans++ is a K-Means [19] variant which is less prone

to poor random initialization of the centers. We applied

a simple algorithm just to illustrate that it may improve

the performance under the given scenario. Other cluster-

ing algorithms may be investigated in the future. The k

parameter is tuned according to the method described in

Section 3.5. Afterwards, it computes the center of all ob-

tained negative clusters (negative centers). In addition,

the whole positive gallery is considered a single positive

cluster and a positive center is also obtained.

q3

q2
+

+

+

+

+

+
+

++

-

-
-

--

-

-

-

-

-

+

q1

Do not update 

positive gallery

Do not update 

positive gallery

Update positive 

gallery

Figure 3: Enhanced Template Update - Positive Gallery Protection

(PGP). Each positive circle (+) represents a sample in the positive

gallery and each negative circle (−) represents a sample in the neg-

ative gallery. (q) is the newly classified sample, the query (there are

three queries in the figure to represent three situations). Note that if

the closest center is a negative one, positive gallery is not updated.

After obtaining the centers, PGP looks for the cluster

center which is closest to the query sample classified as

positive. If the closest cluster is the positive cluster, the

query sample can be added to the positive gallery, and,

therefore, the positive model is adapted. Otherwise, if

the closest cluster center is a negative one, the positive

gallery is not updated. Some hypothetical situations are

shown in Figure 3 to illustrate the PGP check. Query 1

is easy to identify as it is outside of the positive cluster.

However, queries 2 and 3 are inside the positive cluster, so

they are likely to be true positive samples. As there is an

overlapping negative cluster closer to query 3, this sample

is not used to update the positive gallery.

3.2. ETU 0: Simple Comparison of Scores (Model and De-

tector)

This was the first method evaluated. As it is the sim-

plest one, it is called ETU 0. It adopts a simple rule:

classify the query sample as positive if the positive score is

higher than the negative score (Figure 4). Note that this

method is applicable to both Model and Detector-based

methods, as it is possible to obtain a score from these two

algorithms. For Detector-based, the score is the correla-

tion between the query sample and the closest detector to

the query sample.

Positive = (posScore > negScore)

Induce negative 

classifier from 

negative gallery

negScore

posScore

Classification result

Negative gallery

Figure 4: Enhanced Template Update - Method 0.

However, this method may not be suitable to be used

with model-based algorithms, particularly M2005. The

negative gallery has samples from several different users.

Thus, the standard deviation on the negative gallery is

probably high and it can potentially result in a misleading

high score for several samples. Consequently, this simple

rule may result in high FNMR. A solution for this issue is

presented in Section 3.5, which discusses ETU 3.

3.3. ETU 1: Simple Comparison of Scores (Detector)

It is an incremental modification over ETU 0 for

Detector-based methods (Figure 5). Now, the sample is

classified as positive if the positive score is higher than the

negative score and if the difference between them is higher

than twice the self-radius. As a result, the classification

becomes more rigorous, which may contribute to decrease

false match in Detector-based algorithms.
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In some situations, an impostor query sample can be

very far from both the positive and the negative model,

although it may be closer to the positive model. In this

case the sample should be rejected, but it would be ac-

cepted in ETU 0 as positiveScore > negativeScore (even

though both are low score values in this hypothetical ex-

ample). To avoid this issue, we propose to check if the dif-

ference between the scores is large enough. This method

was designed to deal with a possible problem of ETU 0

when applied to Detector-based methods. However, it can

be applied to other algorithms using the similarity score

instead of the self-radius.

Positive = (posScore – negScore > α*selfRadius)

Induce negative 

classifier from 

negative gallery

negScore

posScore

Classification result

Negative gallery

Figure 5: Enhanced Template Update - Method 1.

3.4. ETU 2: k-NN like (Detector)

Detector-based algorithms can be understood a

instance-based algorithms. Thus, if we group positive and

negative detectors (from positive and negative galleries),

as shown in Figure 6, the k-Nearest Neighbour algorithm

can be used. If most of the k closest detectors are positive,

then the query sample is classified as positive, otherwise,

as negative (note that if k is even, a draw can happen. In

this case, we opted to classify the sample as negative in

this case since it is likely to be a impostor attempt).

3.5. ETU 3: Clustering Negative Samples (Model)

As discussed earlier, the negative gallery may have high

standard deviation, implying in high negative scores for

model-based algorithms, particularly for M2005. ETU 3

Sort scores

Induce negative 

classifier from 

negative gallery

negScores

posScores

Classification result

Negative gallery

Get the k highest scores
Positive = most scores 

are positive

Figure 6: Enhanced Template Update - Method 2.

deals with this problem by applying clustering to the neg-

ative gallery (Figure 7). For each cluster, a negative model

is generated using M2005. To classify a query sample, it

is tested against each negative model. The negative score

is the average of the scores output from all negative mod-

els. This method was designed based on a possible issue

of M2005 in ETU 0, so this algorithm is only applied to

Model-based in this work.

The use of clustering reduces the standard deviation of

the sample sets. KMeans++ [18] algorithm was used.

negScore = avg of all negative classifiers

posScore

Classification result

Negative gallery

Positive = (posScore – negScore > minScore / β)

Cluster samples 

from negative 

gallery

Induce a negative 

classifier for each 

cluster

Clustered 

samples

Figure 7: Enhanced Template Update - Method 3.

A method based on OMRk (Ordered multiple runs of k-

means) [20] was used tune the k parameter of KMeans++.

This method executes the clustering algorithm for several

values of k and selects the value using a clustering valid-

ity index (k ranged from 3 to the negative gallery size /

2). The validity index used here is based on the maxi-
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mum standard deviation among all obtained clusters. If

this maximum standard deviation is smaller than the tar-

get value, the current k value is returned. The target value

is the standard deviation in the positive gallery, which is

considered as a single cluster in this case. We adopted this

strategy in order to reduce standard deviation in the clus-

ters and possibly avoid the ETU 0 problem when applied

to model-based algorithms.

4. Experimental Methodology

This section presents the experimental methodology

adopted to evaluate the proposed ETU methods.

4.1. Datasets

In order to facilitate the reproducibility of the experi-

ments, the following public datasets were used. Datasets

for the study of template update need to meet some re-

quirements, such as containing several samples per user

and these samples should ideally be acquired at different

sessions.

• CMU [21]: 51 users typed the password “.tie5Roanl”

plus the Enter key 400 times in eight sessions. Consid-

ering all users, a total of 20,400 samples are available

in this dataset.

• GREYC-Web [6]: 118 users contributed to this

dataset, some of them for more than 1 year. The up-

dated version, available in the authors website, was

used here. This dataset has data for logins and pass-

words. Hence this dataset can be separated into two

datasets:

– Logins: for the transcription of the login (“lab-

oratoire greyc”), we considered the 35 users with

at least 100 valid samples. This results in more

than 7,000 samples.

– Passwords: for the transcription of the pass-

words (“SÉSAME”), we considered the 29 users

with at least 100 valid samples. This results in

more than 5,500 samples. To the best of our

knowledge, this is the first study to use the pass-

words part of this dataset.

Another important public dataset for keystroke dynam-

ics is GREYC [22]. However, this dataset has an average

of 67.5 samples per user (only one user has more than 100

samples and we consider that this is not enough for our

study). To the best of our knowledge, the datasets men-

tioned here are the only ones publicly available that have

enough data for a study of template update over time.

From these datasets, the feature vectors are extracted.

Self-Detector uses two feature vectors here, both using

order-based techniques: flight time type 1 using rank

transformation [23] and nGdv [24]. Flight time type 1 [25]

computes the time difference between the instants when

a key is released and the next key is pressed. According

to [26], this is one of the most used features in previous

keystroke dynamics studies. Over these data, rank trans-

formation is applied. Regarding nGdv, it considers the

time difference between the instants that consecutive keys

are pressed (n-graphs). Our experiments considered di-

graphs, which measure n-graphs for each two consecutive

keys, the same that the original nGdv paper did. The

time differences are then ranked and transformed using

inequalities. Additional details of nGdv are presented in

[24]. M2005, however, uses only raw data, since our pre-

liminary experiments have shown that raw data results in

higher accuracy than order based data for this algorithm.

In order to allow a direct comparison with previous work

using M2005, flight time type 1 raw data is used [13].

4.2. Evaluation Methodology

The user model/template is induced only by the first

genuine samples (training phase) for each positive user.

Afterwards, in the test phase, a biometric data stream is

generated as described in the next section. The generated

data stream is then presented to the classifier, sample by

9



sample, which will perform classification and adapt the

user model.

The samples in the data stream do not have a class label,

thus, the classifier does not know their true label. Several

studies in the area of data stream mining assume that the

true label is provided to the classifier after the classifica-

tion. However, in this study, the true label is never pro-

vided to the classifier. This is done on purpose, to perform

an experiment closer to a biometrics practical scenario. It

is also important to highlight that, when generating a data

stream for a given positive user, samples already used for

training are not part of the data stream for that user.

The reported results shown ahead in this paper are the

average values of the performance measures considering all

users, since the test is performed per user. Furthermore,

due to the stochastic nature of the data stream generation

(true positive and true negative samples are interleaved

randomly), all experiments are repeated 30 times. Next

section describes how the biometric data stream is gener-

ated.

4.3. Biometric Data Stream Generation with User-

crossvalidation

In this paper, the biometric data streams generated are

based on the user cross-validation methodology presented

in [13]. This methodology divides the users into N groups

of similar size (N assumed the value 5 in this paper, as

in [13]). Based on these N groups, N test scenarios are

evaluated. For each scenario, the users in the (N − 1)

groups form the positive set and the remaining group form

the negative only set. Next section describes the meaning

of each set and how the data stream is generated.

The positive set has users that will be tested as genuine

users, so a biometric data stream will be generated for each

of them. These users can be understood as the employees

from a company that are enrolled in the biometric system.

During the experiments, some of these genuine users may

be attacked by other genuine users (e.g. some employees

may want to attack other employees accounts). By doing

this, we are able to simulate internal attacks (insiders).

The other set is the negative only, which has impostor

only users. These impostors are used to perform attack

simulation from unknown users. Following the same ex-

ample of the company, these negative only users are not

enrolled in the biometric system. They would be people

that do not work in the company and want to attack the

system. As a result, we can also simulate external attacks.

4.3.1. Biometric Data Stream

As previously mentioned, a data stream is generated for

each user in the positive set. The generated data stream is

formed by all test samples from the genuine user randomly

interleaved with samples from impostors. The biometric

stream has 70% of genuine samples and 30% of impostor

samples, as previously considered in keystroke dynamics

studies [8, 9, 13]. Among the 30% negative samples, there

is a 50% chance of getting a impostor/negative sample

from the negative only set (external attack) and a 50%

chance of getting a negative sample from the positive set

(internal attack). For all users (including impostors), the

order in which the samples appear in the dataset is main-

tained. This is a key aspect, as it allows to verify possible

concept drift/change in the way the user types on the key-

board over time.

4.4. Authentication Algorithms

This paper uses one-class classification algorithms al-

ready used in previous work dealing with template up-

date for keystroke dynamics [8, 9, 13]. These algorithms

are: M2005 [12] for Model-based and Self-Detector for

Detector-based [14]. These algorithms were chosen be-

cause they have been used in previous work dealing with

template update for keystroke dynamics. By using them,

it is easier to compare the obtained results to other papers

in the area of template update. They are both described

in the next sections.
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4.4.1. M2005 Algorithm

This algorithm, named M2005 in this paper, was pro-

posed by [12] for keystroke dynamics recognition. It ex-

tracts statistical values from the training samples for each

feature (mean, median and standard deviation), which are

used to represent the user model. Afterwards, in a test

phase, M2005 verifies each feature of the given sample

to check if it meets conditions shown in (1) and (2), in

which di is the value of the feature i in the given sample

and meani, mediani and stdi are the mean, median and

standard deviation, respectively, of the feature i from the

training samples.

min(meani;mediani) ∗ (0.95− stdi/meani) <= di(1)

di <= max(meani;mediani)∗(1.05+stdi/meani)(2)

For each feature i which satisfies conditions (1) and (2),

the algorithm computes a sum according to the following

rules:

• if di is the first feature, 1.0 is added to the sum;

• if d(i−1) does not meet (1) and (2), 1.0 is added to the

sum;

• if d(i−1) also meets (1) and (2), 1.5 is added to the

sum.

After verifying all features of the sample, the algorithm

computes a score using Equation (3), in which max sum

is defined as 1.0 + 1.5 ∗ (feature count− 1.0).

Score = sum/max sum (3)

For the classification of a new sample, if the computed

score is higher than a given threshold, the sample is classi-

fied as positive (genuine user) and, otherwise, as negative

(impostor).

4.4.2. Self-Detector Algorithm

Another algorithm used in the context of template up-

date for keystroke dynamics is Self-Detector, which is an

immune algorithm of the positive selection class. The stan-

dard Self-Detector [14] uses training samples from the gen-

uine user as detectors and assigns a radius to each of them.

Whenever a query sample is presented to the classifier, all

detectors are tested against it. If any detector matches

the query sample, it is classified as self (genuine user),

otherwise, as non-self (impostor). In this study, a detec-

tor matches a sample if the distance between its center and

the sample is smaller than its radius. The original version

of this algorithm uses a ROC analysis to define the radius.

A different approach is used here, as described in Section

4.5. An overview of the behaviour of the algorithm under

an adaptive context is presented in Figure 8.

Self samples

Save self 

samples as 

detectors

Detectors 

Set

Any detector 

match query?
Query sample Self

Non-self

Yes

No

Training

Matching

Adaptation

Figure 8: Adaptive Positive Selection Algorithm (figure from [9]).

Detectors may be updated when the query sample is classified as

Self.

4.5. Parameters

The current study has adopted the same parameter

values from [9] and [13] for the classification algorithms.

GREYC-Web Passwords has not been used in those stud-

ies, so we applied the same parameter tuning method from

[13] using the current user crossvalidation approach. Self-

Detector algorithms used cosine distance, so the cluster-

ing algorithm adopted the same distance measure when

applied to Self-Detectors. We employed the K-Means++

implementation from Apache Commons [27]. A summary

of the parameter values are shown in Tables 1 and 3.

Regarding the size of the positive and negative galleries,

we recommend that both should be of the same size. In
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our experiments, 40 samples were used for training and

this defines that the positive gallery has 40 samples. Con-

sequently, the minimum size of the negative gallery to ac-

tivate ETU methods should also be 40. However, several

GREYC-Web users have far less samples than the users in

CMU. As a result, using 40 as the minimum for GREYC-

Web would imply that the negative procedure would not

be activated for some users. In order to avoid this sit-

uation, the minimum amount of samples for activating

the negative procedure is 20 in GREYC-Web (the max-

imum size was kept at 40). For CMU, we maintained 40

as the minimum since all users have 400 samples, which

can enable ETU. Decreasing the minimum size lead to a

imbalance between the positive and negative galleries (neg-

ative gallery would be used with 20 samples while positive

gallery contains 40 samples), hence it can imply in reduced

predictive performance.

Table 1: Parameter values for the classification algorithms.

Self-Detector (Detector-based) M2005 (Model-based)

Dataset Self-radius Threshold

CMU 0.02 0.7

GREYC-Web Logins 0.04 0.6

GREYC-Web Passwords 0.01 0.6

Table 2: ETU - Negative gallery.

Dataset Minimum size for activating Maximum size

negative procedure

CMU 40 40

GREYC-Web Logins 20 40

GREYC-Web Passwords 20 40

Table 3: Parameter values specific of ETU methods.

Method Parameters

ETU 0 -

ETU 1 α = 2

ETU 2 k = 2

ETU 3 β = 2

4.6. Performance Measures

In the experimental results, the following performance

measures were adopted:

• False Match Rate (FMR);

• False Non-Match Rate (FNMR);

• Balanced Accuracy: combines FMR and FNMR in

a single rate and is defined here as 1.0 − (FMR +

FNMR)/2.0.

Throughout the paper, we present results for these mea-

sures globally (average results over the whole biometric

data stream) and over time.

4.7. Evaluation Over Time

In order to evaluate the performance over time, we used

an improved version of the methodology adopted in a pre-

vious paper [13]. The measures FNMR and FMR are ex-

tracted using a window of size 50 in steps of 10 samples.

The measured values are plotted in the graph. The average

performance over all positive users of the first group divi-

sion of user cross-validation is reported. This procedure

allows to see the rates measured through the biometric

data stream. However, if each positive user has a differ-

ent number of samples in the data stream, the graph is

limited to the shortest stream. Otherwise, the later parts

of the graph would be the average of a decreased number

of users. It is how the previous version of this evaluation

methodology worked.

The new version of this graph, introduced in this work,

does not stop at the shortest stream, but, instead, presents

average values for all available users. Since, in the later

parts of the stream, a reduced number of users may be

part of the results, the graph also shows the interval based

on the standard error of the mean (shaded area), as de-

scribed in Equation 4 (CIi : confidence interval), which

makes use of SE calculated in Equation 5. In Equation

5, stdi is the standard deviation among the measures at
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window i and usersi is the number of users with avail-

able data at window i. This does not restrict the graph to

the shortest data stream and provides additional results

to support the experimental analysis. The new graphs are

shown on Section 5.2.

CIi = mean(measure)i ± 1.96 ∗ SEi (4)

SEi = stdi/
√
usersi (5)

5. Experimental Results

This section presents the results obtained in the experi-

ments. It starts with the global results. Next, a predictive

performance over time is presented and discussed.

5.1. Global Results

Initially, overall results for both datasets are shown in

Tables 4, 5 and 6. These tables show the results for FMR,

FNMR and Balanced Accuracy. Both FMR and FNMR

are error rates, so they should be as low as possible. PGP

was applied to all adaptive algorithms which use a single

positive gallery. That is the case for all ETU methods

and Sliding. In these Tables, the detector-based (Self-

Detector) and the model-based (M2005) algorithms are

grouped. Detector-based algorithms used both flight time

and nGdv, while model-based only used flight time. As

described in Section 4.1, M2005 performs better using raw

data while Self-Detector benefits from the use of order-

based feature vectors. The baseline in the tables is the

static algorithm of each group. Hence, for instance, ETU 2

should perform better than Self-Detector (no adaptation).

Similarly, ETU 3 should perform better than M2005 (no

adaptation).

Some tendencies can be observed in the global results.

In general, all ETU methods without PGP presented a bet-

ter predictive performance than the static algorithm, with

the exception of ETU 0 and 1, which had a lower accuracy

performance for the GREYC-Web dataset. It is interesting

that even for a small password (“SÉSAME”), the accuracy

increased when an adaptive algorithm was used. There-

fore, it indicates that the typing behaviour affects the pre-

dictive performance even for short sentences. When com-

pared the predictive performance of Self-Detector against

M2005, the static Self-Detector (flight time) obtained

higher balanced accuracy than static M2005 in all datasets.

When their adaptive algorithms are applied, M2005-based

tend to obtain a higher performance difference between the

static and the adaptive algorithm. In CMU and GREYC-

Web Passwords dataset, for example, this higher perfor-

mance gain resulted in better accuracy for adaptive M2005

when compared to adaptive Self-Detector.

Adaptive approaches managed to improve FNMR in

most cases. However, this was not true for some adap-

tive algorithms in GREYC-Web Passwords. The reason

can be the high FMR in the static algorithm, which may

have contributed to the inclusion of many impostor sam-

ples in the positive model. As a result, the positive model

has become far from the genuine user.

ETU 0 was applied to both Self-Detector and M2005,

but FMR and FNMR behaviours were the opposite.

M2005 managed to decrease FMR at the cost of the high-

est FNMR. This may be explained by characteristics of the

M2005 algorithm, which increases the rate of acceptance

as the standard deviation increases. It is expected that the

standard deviation increases in ETU 0, as it stores nega-

tive samples from several different users in the negative

gallery. As a result, the negative model has a tendency to

return higher scores, contributing to the rejection of more

users.

Self-Detector may be affected by another issue in ETU

0. In some cases, a true negative query may be very far

from both the positive and the negative models, although

it may be closer to the positive model (remember that the

score in the Self-Detector is the correlation between the

query sample and the closest detector). In this case, the

sample should be rejected, but it is accepted in ETU 0

as positiveScore > negativeScore (even though both are

13



Table 4: Global results for the CMU dataset (best results in bold and standard deviation between parenthesis). Both baseline non-adaptive

algorithms are highlighted in bold and their respective adaptive methods are shown below. The methods proposed in this paper are denoted

as ETU. For detector-based algorithms, results for both flight time and nGdv are reported.

CMU Dataset

Without PGP With PGP

Algorithm FMR FNMR Acc (balanc.) FMR FNMR Acc (balanc.)

F
li

gh
t

ti
m

e

Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009)

Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) 0.250 (0.021) 0.251 (0.015) 0.750 (0.011)

Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009)

Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015)

Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008)

Proposals

Self-Detector (ETU 0) 0.538 (0.016) 0.102 (0.007) 0.680 (0.009) 0.573 (0.018) 0.088 (0.009) 0.670 (0.009)

Self-Detector (ETU 1) 0.251 (0.015) 0.203 (0.017) 0.773 (0.013) 0.271 (0.012) 0.201 (0.015) 0.764 (0.010)

Self-Detector (ETU 2) 0.285 (0.019) 0.207 (0.013) 0.754 (0.013) 0.268 (0.016) 0.224 (0.014) 0.754 (0.011)

n
G

d
v

Self-Detector (No adaptation) 0.281 (0.018) 0.457 (0.012) 0.631 (0.008)

Self-Detector (Sliding) 0.327 (0.030) 0.232 (0.009) 0.721 (0.016) 0.290 (0.022) 0.252 (0.011) 0.729 (0.012)

Self-Detector (Usage Control 2) 0.157 (0.014) 0.355 (0.010) 0.744 (0.010)

Self-Detector (Usage Control R) 0.339 (0.029) 0.237 (0.009) 0.712 (0.015)

Self-Detector (Usage Control S) 0.247 (0.018) 0.283 (0.010) 0.735 (0.011)

Proposals

Self-Detector (ETU 0) 0.581 (0.017) 0.110 (0.007) 0.654 (0.008) 0.602 (0.022) 0.094 (0.008) 0.652 (0.009)

Self-Detector (ETU 1) 0.260 (0.028) 0.378 (0.014) 0.681 (0.011) 0.260 (0.028) 0.378 (0.014) 0.681 (0.011)

Self-Detector (ETU 2) 0.319 (0.019) 0.223 (0.009) 0.729 (0.012) 0.304 (0.017) 0.231 (0.010) 0.732 (0.011)

M2005 (No adaptation) 0.273 (0.028) 0.451 (0.019) 0.638 (0.013)

M2005 (DB) 0.129 (0.014) 0.373 (0.014) 0.749 (0.010)

M2005 (IDB) 0.122 (0.011) 0.306 (0.008) 0.786 (0.006)

Proposals

M2005 (ETU 0) 0.064 (0.008) 0.623 (0.019) 0.656 (0.009) 0.064 (0.009) 0.669 (0.015) 0.633 (0.008)

M2005 (ETU 3) 0.244 (0.016) 0.143 (0.006) 0.807 (0.009) 0.175 (0.017) 0.243 (0.011) 0.791 (0.010)

low score values in this hypothetical example). To make

things worse, when this occurs, the sample is added to the

positive gallery, contributing to increase FMR.

An important result for balanced accuracy was obtained

by ETU 3, which, apart from improving FNMR, obtained

the highest accuracy in CMU. ETU 3 was also the best

ETU method in GREYC-Web Passwords. Conversely, for

GREYC-Web Logins, Double Parallel methods were bet-

ter than ETU 3. This indicates that ETU 3 (which uses

clustering) managed to improve the performance over ETU

0.

Regarding the positive gallery protection check, accord-

ing to the results, it reduced the FMR in several cases.

The main exception is for ETU 0. However, it may be a re-

sult of the high number of classification errors obtained by

ETU 0. ETU framework is based on sliding gallery man-

agement, so we also applied PGP to the standard Sliding

Self-Detector. Even for this algorithm, FMR managed to

be reduced on both datasets. Nevertheless, this implied

in a slightly decrease of the balanced accuracy. It sug-

gests that some positive samples may have been wrongly

rejected by PGP. The main benefit was observed for ETU

3 and Self-Detector Sliding, which reduced FMR up to

approximately 6% depending on the dataset.

When Self-Detector is referenced here, the conclusions

for flight time and nGdv are almost always the same. This

is an interesting result, since it illustrates that even us-

ing different feature vectors, behaviour change occurs and

the adaptive methods have similar tendencies of improve-

ment. Although the adaptive methods resulted in similar

improvements on both feature vectors, it must be observed

that the overall performance of flight time is higher than

that of nGdv in our scenario. It does not mean that nGdv

is not an appropriate solution, as it has proven a good

feature vector in previous work using free text [24]. How-

ever, some important remarks must be made. First, the
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Table 5: Global results for the GREYC-Web Logins datasets (best results in bold and standard deviation between parenthesis). Both baseline

non-adaptive algorithms are highlighted in bold and their respective adaptive methods are shown below. The methods proposed in this paper

are denoted as ETU. For detector-based algorithms, results for both flight time and nGdv are reported.

GREYC-Web (logins) Dataset

Without PGP With PGP

Algorithm FMR FNMR Acc (balanc.) FMR FNMR Acc (balanc.)

F
li

gh
t

ti
m

e

Self-Detector (No adaptation) 0.066 (0.008) 0.141 (0.005) 0.896 (0.005)

Self-Detector (Sliding) 0.074 (0.011) 0.085 (0.004) 0.920 (0.007) 0.067 (0.010) 0.106 (0.008) 0.913 (0.008)

Self-Detector (Usage Control 2) 0.035 (0.007) 0.148 (0.010) 0.908 (0.007)

Self-Detector (Usage Control R) 0.069 (0.009) 0.086 (0.004) 0.922 (0.006)

Self-Detector (Usage Control S) 0.053 (0.007) 0.123 (0.005) 0.912 (0.005)

Proposals

Self-Detector (ETU 0) 0.353 (0.030) 0.034 (0.011) 0.807 (0.017) 0.355 (0.032) 0.042 (0.010) 0.802 (0.020)

Self-Detector (ETU 1) 0.065 (0.013) 0.146 (0.020) 0.894 (0.011) 0.064 (0.013) 0.151 (0.019) 0.893 (0.010)

Self-Detector (ETU 2) 0.103 (0.014) 0.071 (0.009) 0.913 (0.010) 0.099 (0.014) 0.078 (0.011) 0.911 (0.011)

n
G

d
v

Self-Detector (No adaptation) 0.158 (0.010) 0.104 (0.007) 0.869 (0.007)

Self-Detector (Sliding) 0.190 (0.022) 0.058 (0.004) 0.876 (0.013) 0.171 (0.017) 0.059 (0.004) 0.885 (0.010)

Self-Detector (Usage Control 2) 0.094 (0.011) 0.097 (0.007) 0.905 (0.008)

Self-Detector (Usage Control R) 0.175 (0.018) 0.057 (0.004) 0.884 (0.011)

Self-Detector (Usage Control S) 0.144 (0.010) 0.066 (0.004) 0.895 (0.006)

Proposals

Self-Detector (ETU 0) 0.381 (0.024) 0.023 (0.002) 0.798 (0.012) 0.379 (0.026) 0.022 (0.002) 0.799 (0.013)

Self-Detector (ETU 1) 0.089 (0.016) 0.591 (0.033) 0.660 (0.012) 0.089 (0.016) 0.591 (0.033) 0.660 (0.012)

Self-Detector (ETU 2) 0.186 (0.015) 0.042 (0.004) 0.886 (0.008) 0.183 (0.015) 0.044 (0.006) 0.887 (0.008)

M2005 (No adaptation) 0.096 (0.013) 0.245 (0.016) 0.829 (0.008)

M2005 (DB) 0.083 (0.012) 0.179 (0.012) 0.869 (0.008)

M2005 (IDB) 0.095 (0.015) 0.131 (0.011) 0.887 (0.008)

Proposals
M2005 (ETU 0) 0.073 (0.011) 0.427 (0.046) 0.750 (0.021) 0.067 (0.010) 0.505 (0.037) 0.714 (0.018)

M2005 (ETU 3) 0.163 (0.017) 0.118 (0.018) 0.860 (0.013) 0.120 (0.016) 0.151 (0.018) 0.865 (0.013)

referred work for nGdv has not considered a template up-

date scenario, which requires a different methodology. As

described in Section 4, our paper adopts an evaluation

methodology which uses only the first samples for train-

ing/enrollment and applies the remaining ones for test, in

the form of a biometric data stream. This is done to check

possible typing rhythm change over time. Second, the pa-

per which proposed nGdv used a dataset for free text,

which contains samples with 700 to 900 characters. This

is a completely different case than that of our datasets

for template update, which are composed by short fixed

expressions. For instance, the largest expression is from

GREYC-Web Logins, which has 17 characters. Due to

these reasons, the remainder of the paper only discusses

the results for flight time.

To evaluate the statistical significance of the results, a

statistical test (Wilcoxon Signed Rank Test) [28] was ap-

plied with α = 0.05. Holm’s correction [29] was used as

we are doing multiple comparisons. The results are shown

in Table 7.

This table shows the ETU proposals (without PGP)

compared to two baselines: one static and one adap-

tive. The static baseline for Self-Detector based algo-

rithms is the standard Self-Detector (no adaptation) and,

for the M2005 based algorithms, the baseline is the stan-

dard M2005 (no adaptation). The adaptive baseline is

the adaptive algorithm which obtained the best balanced

accuracy (considering an average on all tested datasets).

For Self-Detector, it is the Sliding algorithm. For M2005,

is the IDB (incremental version of Double Parallel). The

results of the statistical test are shown per measure. A

positive sign (+) means the performance of ETU is sta-

tistically better than the baseline, while a point sign (.)

shows that there is no statistical evidence that ETU per-

forms better than the baseline. The statistical test results

show the ETU proposals mainly improve FNMR, in which
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Table 6: Global results for the GREYC-Web Passwords (best results in bold and standard deviation between parenthesis). Both baseline

non-adaptive algorithms are highlighted in bold and their respective adaptive methods are shown below. The methods proposed in this paper

are denoted as ETU. For detector-based algorithms, results for both flight time and nGdv are reported.

GREYC-Web (passwords) Dataset

Without PGP With PGP

Algorithm FMR FNMR Acc (balanc.) FMR FNMR Acc (balanc.)

F
li

gh
t

ti
m

e

Self-Detector (No adaptation) 0.388 (0.014) 0.180 (0.002) 0.716 (0.007)

Self-Detector (Sliding) 0.330 (0.021) 0.205 (0.008) 0.733 (0.012) 0.292 (0.023) 0.254 (0.011) 0.727 (0.012)

Self-Detector (Usage Control 2) 0.186 (0.013) 0.396 (0.012) 0.709 (0.010)

Self-Detector (Usage Control R) 0.360 (0.022) 0.188 (0.006) 0.726 (0.012)

Self-Detector (Usage Control S) 0.255 (0.017) 0.296 (0.009) 0.725 (0.009)

Proposals

Self-Detector (ETU 0) 0.483 (0.018) 0.115 (0.012) 0.701 (0.010) 0.494 (0.018) 0.118 (0.012) 0.694 (0.010)

Self-Detector (ETU 1) 0.441 (0.019) 0.140 (0.014) 0.710 (0.011) 0.448 (0.019) 0.141 (0.014) 0.705 (0.011)

Self-Detector (ETU 2) 0.364 (0.020) 0.171 (0.009) 0.733 (0.011) 0.331 (0.021) 0.213 (0.011) 0.728 (0.012)

n
G

d
v

Self-Detector (No adaptation) 0.405 (0.021) 0.274 (0.008) 0.660 (0.010)

Self-Detector (Sliding) 0.284 (0.020) 0.367 (0.009) 0.674 (0.010) 0.271 (0.018) 0.380 (0.010) 0.675 (0.009)

Self-Detector (Usage Control 2) 0.147 (0.013) 0.611 (0.015) 0.621 (0.009)

Self-Detector (Usage Control R) 0.312 (0.022) 0.346 (0.008) 0.671 (0.010)

Self-Detector (Usage Control S) 0.241 (0.018) 0.443 (0.008) 0.658 (0.009)

Proposals

Self-Detector (ETU 0) 0.547 (0.020) 0.153 (0.019) 0.650 (0.012) 0.564 (0.020) 0.145 (0.017) 0.645 (0.012)

Self-Detector (ETU 1) 0.245 (0.018) 0.394 (0.023) 0.680 (0.016) 0.260 (0.017) 0.375 (0.020) 0.683 (0.015)

Self-Detector (ETU 2) 0.364 (0.018) 0.284 (0.013) 0.676 (0.011) 0.349 (0.018) 0.300 (0.011) 0.676 (0.009)

M2005 (No adaptation) 0.329 (0.035) 0.251 (0.015) 0.710 (0.024)

M2005 (DB) 0.251 (0.026) 0.240 (0.014) 0.754 (0.018)

M2005 (IDB) 0.247 (0.023) 0.190 (0.006) 0.781 (0.013)

Proposals
M2005 (ETU 0) 0.138 (0.020) 0.583 (0.026) 0.640 (0.013) 0.134 (0.018) 0.614 (0.025) 0.626 (0.011)

M2005 (ETU 3) 0.294 (0.016) 0.177 (0.021) 0.765 (0.013) 0.247 (0.019) 0.268 (0.017) 0.742 (0.014)

Table 7: Results from the statistical test (Wilcoxon Signed Rank

Test).

Algorithm FMR FNMR Acc (balanc.) FMR FNMR Acc (balanc.)

Static baseline Adaptive baseline (Sliding)

Self-Detector (ETU 0) . + . . + .

Self-Detector (ETU 1) . + + . . .

Self-Detector (ETU 2) . + + . + .

Static baseline Adaptive baseline (IDB)

M2005 (ETU 0) + . . + . .

M2005 (ETU 3) . + + . + .

it is better than both the static and adaptive baselines in

most cases. It is important to note that a point sign (.)

does not mean that ETU is worse, but that it was not

statistically better. For balanced accuracy, for example,

we have seen that ETU 3 obtained better accuracy than

the baselines in CMU, although it was not the better in

GREYC-Web dataset.

5.2. Performance Over Time

Figures 9, 10, 11 and 12 present the experimental results

over time. A description of how these graphs are plotted is

shown in Section 4.7. Each line is the average performance

at the indicated window index, while the shaded area rep-

resents a confidence interval based on standard error. The

shaded area shows how the performance varies among the

users at the specified evaluation window. Thus, a large

shaded area means that the performance presented a high

variation among the users.

As expected, static algorithms tend to increase FNMR

over time. For Self-Detector, adaptive algorithms manage

to decrease FNMR over time when compared to their static

counterpart (although for GREYC-Web Passwords, which

has a short expression, some adaptive algorithms could not

decrease it). Thus, adaptive methods showed to be better

alternatives than static Self-Detector in terms of FNMR.

All ETU methods have the same behaviour in the very
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Figure 9: Self-Detector - False non-match rate (FNMR) over time.

first moments. This happens because they work as a sim-

ple Sliding method before reaching the minimum amount

of samples for using the rules involving the negative gallery.

Note that in GREYC-Web, some users have few samples,

resulting in short data streams. It must be reminded that

a lower value was used for negative ETU activation in

GREYC-Web. Hence, the negative procedure can be acti-

vated earlier than in the experiments on the CMU dataset.

Overall, ETU methods for Self-Detector were better

than Sliding in terms of FNMR. In some cases, the per-

formance difference was small. With regard to M2005,

there was a decrease in FNMR over time with ETU 3

(it is clearer on CMU). This is a good result as a recent

study has shown that adaptive M2005 methods tend to

increase FNMR over time, although in a lower rate than

static M2005 [9] (Figure 10 for CMU illustrates this be-

haviour). ETU 3 initially increased the FNMR for the

CMU dataset, until the negative procedure was activated

(when the minimum amount of negative samples was ob-

tained).

Still regarding ETU 3 in CMU, the improved plot shows

that the deviation of FNMR performance among all users
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Figure 10: M2005 - False non-match rate (FNMR) over time.

was lower than for the other M2005-based algorithms, as

the shaded area shows. It is a good result, since all users

have the same amount of samples in this dataset, so the

decreased variation is not due to a change in the number of

considered users. On GREYC-Web datasets, for example,

some users have more samples than others and, therefore,

their data streams have different sizes. Thus, in later win-

dows of the analysis, some users are not considered. In the

very last part of these graphs over time only one user re-

mained in the end (only for GREYC-Web as CMU has the

same amount of samples per user). In this case, we con-

sidered a hypothetical variation over the full range [0; 1],

which is the reason why the graph suddenly increases to a

constant very high standard error in the very last part of

GREYC-Web plots.

Figures 9 and 10 show the FNMR for all algorithms, as

the main goal of the algorithms evaluated here is to reduce

FNMR (i.e. the user model should be closer to the current

user behaviour). However, for FMR, only the graphs for

the algorithms that support PGP are shown in Figures 11

and 12. This allows to evaluate the effect of ETU PGP

over time (PGP main goal is to reduce FMR).

In terms of FMR, the behaviour of the algorithms did

not change much over time when PGP was applied. The

usage of a reduced value for activating the negative pro-

cedure in the GREYC-Web dataset may have negatively

affected the performance of PGP, since it creates an im-

balance between the positive and negative galleries. How-

ever, it is possible to see that the FMR was reduced in

some cases. For Self-Detector, it mainly occurs on datasets

CMU (ETU 0) and GREYC-Web Passwords (Sliding and

ETU 2). M2005-based algorithms improved FMR for ETU

3 on all datasets (this improvement on FMR was also ob-

served in the last section on the overall results).

6. Conclusion

Some recent studies on biometrics have shown the im-

portance to adapt the user model/template using template

18



Self−Detector (Sliding) Self−Detector (ETU 0) Self−Detector (ETU 1) Self−Detector (ETU 2)

Self−Det. (ETU − Sliding) PGPSelf−Detector (ETU 0) PGP Self−Detector (ETU 1) PGP Self−Detector (ETU 2) PGP
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Window Index

F
M

R

(a) CMU

Self−Detector (Sliding) Self−Detector (ETU 0) Self−Detector (ETU 1) Self−Detector (ETU 2)

Self−Detector (ETU − Sliding) PGPSelf−Detector (ETU 0) PGP Self−Detector (ETU 1) PGP Self−Detector (ETU 2) PGP
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Window Index

F
M

R

(b) GREYC-Web (logins)

Self−Detector (Sliding) Self−Detector (ETU 0) Self−Detector (ETU 1) Self−Detector (ETU 2)

Self−Detector (ETU − Sliding) PGPSelf−Detector (ETU 0) PGP Self−Detector (ETU 1) PGP Self−Detector (ETU 2) PGP
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50
Window Index

F
M

R

(c) GREYC-Web (passwords)

Figure 11: Self-Detector - False match rate (FMR) over time - PGP.

update/adaptive biometric systems. Keystroke dynamics

is an important biometric modality which has been re-

ported to undergo changes over time. Most of current work

in the area only makes use of samples classified as gen-

uine/positive to adapt the user model. This paper inves-

tigated several strategies to use all available samples, in-

cluding those classified as impostor/negative. It is named

as Enhanced Template Update (ETU).

ETU methods work mainly to change the classifica-

tion decision, reducing FNMR. In addition, the Positive

Gallery Protection (PGP), which is also part of the ETU

framework, was specifically designed to avoid errors dur-

ing template update, reducing FMR. From the results ob-

tained in this paper, we conclude that ETU approaches

have competitive performance, although may not the best

solution in all cases. For the CMU dataset, which is the

largest one, ETU 3 was the overall best algorithm regard-

ing balanced accuracy. However, for the other shorter

datasets, current adaptive algorithms performed better.

It also indicates the need for additional research on the

combination of positive and negative galleries. An investi-

gation of the proposed approach on other datasets (which
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Figure 12: M2005 - False match rate (FMR) over time - PGP.

do not exist today) would clarify this point. The paper

has also shown that different feature vectors can impact

the predictive performance, but the tendencies of improve-

ment for the adaptive methods are similar among them.

Moreover, the current study contributed by showing im-

provements on visualization tools for analyzing the be-

haviour of algorithms over time. An interesting result from

the graphs produced by these tools is that ETU 3 has a

reduced FNMR performance variation among all users in

CMU (illustrated by the reduced shaded area). Further-

more, it was possible to see the performance over time for

the whole data stream of all users in the GREYC-Web

dataset.

This study proposed the use of both positive and nega-

tive samples to support template update. Several aspects

of performance evaluation of template update have been

discussed too. We expect that this paper can lead to fur-

ther studies in the area, mainly to expand the idea of using

negative samples to support adaptation. In line with this,

we highlight some aspects for future studies. The usage of

another mechanism to avoid the inclusion of weakly clas-

sified samples could be investigated. Other strategies to

combine positive and negative data under our framework

can also be proposed. The proposed Enhanced Template

Update framework can also be evaluated on other biomet-

ric modalities.
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