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We present a theoretical, numerical, and experimental study about the sliding motion of an angular particle
down a vibrated smooth plane. The model is based on a Coulomb’s friction law with a unique friction coefficient.
The model is solved numerically and is tested with controlled experiments. Different motion regimes are identified
and the particle behavior is governed by two dimensionless parameters. The comparison between experimental
and numerical results gives an indirect access to the dynamic friction coefficient.

DOI: 10.1103/PhysRevE.85.011307 PACS number(s): 45.70.−n, 46.55.+d

I. INTRODUCTION

The handling of powders or granular matter is a major
issue for many industries. A large amount of granular matter
is handled worldwide by the building industry (cement, sand,
gravel), the pharmaceutical industry (excipient powders), agro-
chemical (seeds, nutriments), food industry (wheat, starch,
cereals), moulding processes (metallic powders, plastics,
ceramics). Among the numerous physical and mechanical
parameters that describe the powder, the flowability is a
complex parameter arising from the interactions between
particles, and from the interactions of the particles with the
substrate. The flowability is obviously affected by the nature
of contacts and forces between adjacent particles. In addition of
weak adhesive forces (especially van der Waals or electrostatic
forces), the geometry and roughness of particle surfaces
influence strongly the flowability. This problem is acute for
nonconvex particles where particle imbrication may lead to
clusters formation and blockage. While a spherical model
for the particle shape is convenient for many calculations
and computations, it is far from realistic for many actual
powders.

When the handling is driven by gravity, the friction
coefficient between the particles and the walls or the substrate
is a governing parameter. Despite the great difficulty to
understand the friction coefficient at a fundamental level [1], it
is a unique parameter in the simple Coulomb’s law. Due to the
strong nonlinearity of the Coulomb’s friction law, the response
of a sliding block submitted to various external solicitations has
been the subject of numerous studies. The motion of a block on
a horizontal vibrated substrate has long attracted earthquake
and building engineers [2,3]. Since the works of Newmark [4],
the sliding block model is widely used to understand the
dynamics of landslides along inclined soil failures subjected to
a seismic periodic loading [5]. The coupling between friction
and vibration may lead to friction-induced oscillations, leading
to squeaking noises [6].

Since the friction hinders the motion and displacement of
granular particles, external mechanical vibrations have been

proven as a good technical solution to increase the flowability.
On a horizontal plane, asymmetric vibrations may lead to a
net transport velocity; this behavior has been studied in detail
by Buguin et al. [7] and Fleishman et al. [8] for a single
block. Considering symmetric vibrations, Sanchez et al. [9]
studied the spreading of a granular pile on a vibrated horizontal
plate.

More recently, Méndez et al. [10] have studied the tra-
jectory of a sliding block down a plane with a longitudinal
vibration. A parametric dynamic friction coefficient has been
introduced to model the behavior of the block, putting aside
the simplicity of a constant friction coefficient in a mechanical
model.

In this paper we present in Sec. II a simple model of an
angular solid grain sliding down an inclined and vibrated
smooth plane. Due to its angular shape and its aspect ratio,
the particle does not rotate while sliding down the plane. The
inclination is characterized by an angle θ , while the friction
force between the grain and the plane is modeled with a
simple Coulomb’s law with a unique friction coefficient μ.
The vibration axis is perpendicular to the longitudinal axis of
the plane, projection of the gravity field vector.

From the movement equation we can identify three regimes:
a stick regime where the grain has no relative motion to
the plane, a stick-slip regime when a sliding motion is
periodically observed, and a pure-slip regime where the grain
never sticks. The movement equation is solved numerically
in Sec. III and the main features of the grain trajectory,
such as the transverse amplitude and the mean longitudinal
velocity, are measured. After a presentation of the experimental
setup (Sec. IV), the experimental data are compared with
the numerical results in Sec. V and a conclusion closes the
paper.

II. THEORETICAL MODEL

We consider a block lying on an inclined plane with an
angle θ to the horizontal (see Fig. 1). The plane is transversally
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FIG. 1. Sketch of the setup.

vibrated in the y direction with a single frequency ω/2π and
an amplitude A. In the plane reference frame, the velocity V
is governed by

m
dV
dT

= mg sin θex + F − mAω2 cos(ωT + ϕ)ey, (1)

where ex and ey represent the base vectors of the plane,
and m the particle mass. The friction force F between the
block and the plane is modeled by a simple Coulomb’s law
with a unique friction coefficient μ = tan θc where θc is the
angle of friction: F = −μmg cos θV/‖V‖ when the velocity
is nonzero. In expression (1) ϕ is an arbitrary phase.

Using the dimensionless time and velocity variables

t = T

(
g cos θ

A

)1/2

, v = V√
Ag cos θ

, (2)

the governing equation (1) writes

1

μ

dv
dt

= βex − v
‖v‖ − α cos(

√
αμt + ϕ)ey, (3)

with an angle parameter β and a vibration parameter α defined
as

β = tan θ

μ
, α = Aω2

μg cos θ
. (4)

In dimensionless form, the sticking condition is written as
(

1

μ

dvx

dt
+ β

)2

+
(

1

μ

dvy

dt
−α cos(

√
αμt + ϕ)

)2

< 1, (5)

meaning that the block is stuck on the plane when the vector
sum of inertia and gravity forces is lower than the friction
force.

A. Stick, slip, and stick-slip regimes

When the sticking condition (5) is valid at any time, both
velocity and acceleration are zero, thus the sticking condition
is β2 + α2 cos2(

√
αμt) < 1, which is true at any time for any

α below a critical value

αstick =
√

1 − β2. (6)

Following Westermo [3], a permanent sliding regime can be
found. According to Eq. (5), the beginning of the sliding
motion occurs at a time t0, such as

√
αμt0 = arccos

(√
1 − β2

α

)
. (7)

Assuming that the acceleration vanishes at the beginning and
at the end of the sliding motion (at t0 and tf ), we have from
the x component of Eq. (3)

β =
(

vx

‖v‖
)

t=t0,tf

(8)

hence, since ‖v‖ =
√

v2
x + v2

y ,

vy

‖v‖ =
√

1 − β2. (9)

Integrating the y component of Eq. (3) and using Eq. (9) gives

(tf − t0)(1 − β2)1/2 =
√

α

μ
[sin(

√
αμt0) − sin(

√
αμtf )].

The sliding motion never stops when the sliding duration tf −
t0 equals a half vibration period τ/2 = π/

√
αμ. In that case

sin(
√

αμtf ) = − sin(
√

αμt0) and finally we obtain

arccos

(√
1 − β2

α

)
= arcsin

(
π

2

√
1 − β2

α

)

and the permanent sliding motion (permanent slip regime)
occurs for any α larger than

αslip = αstick

√
1 + π2/4 ≈ 1.862αstick. (10)

Expressions (6) and (10) are drawn in a (β,α) plane in
Fig. 2. These two curves separate the space in three regions:
the permanent stick regime where the block has no relative
motion to the substrate, the stick-slip regime where the block
has an intermittent sliding motion, and the permanent slip
regime where the block is continuously sliding.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

stick

stick-slip

slip

accelerated slip

vibration-driven gravity-driven

FIG. 2. Map of the different regimes in the (β,α) plane. For
inclination angle above the friction angle (β > 1), an accelerated
slip regime (a.s.r.) is expected. The rectangle indicates the range
accessible experimentally for a static friction angle of 40◦. The dotted
line separates the vibration-driven regime and the gravity-driven
regime. The star refers to the trajectory presented in Fig. 3 and the
diamond refers to the trajectory presented in Fig. 4. The empty circle
and the square symbol refer to experimental and numerical results
presented in Figs. 11 and 12 in Sec. V (permanent slip and stick-slip
regimes, respectively).
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B. Energy balance for periodic solutions

During the motion, Eq. (3) holds without condition.
Multiplying by v gives

1

2μ

dv2

dt
− βvx = −‖v‖ − α cos(

√
αμt + ϕ)vy

or

1

2μτ
[v2(t + τ ) − v2(t)] − 1

τ

∫ t+τ

t

βvxdt

+ 1

τ

∫ t+τ

t

‖v‖dt + 1

τ

∫ t+τ

t

α cos(
√

αμt + ϕ)vydt = 0

(11)

Assuming that the velocity v is a periodic function after the
transient motion from rest, the variation of v2 between t and
t + τ is thus zero and Eq. (11) reduces to

1

μ
(Ēp + Ēd + Ēi) = 0 (12)

with the time-averaged potential and the dissipated and
injected energies defined as

Ēp = βμ

∫ t+τ

t

vxdt = βμτ v̄x, (13)

Ēd = −μ

∫ t+τ

t

‖v‖dt, (14)

Ēi = −αμ

∫ t+τ

t

cos(
√

αμt + ϕ)vydt. (15)

These averaged energies are numerically computed and the
results are presented as powers Ēp/τ , Ēd/τ , and Ēi/τ in the
next section.

III. NUMERICAL METHOD AND RESULTS

A. Numerical method

Equations (3) and (5) are implemented in a MATLAB

code using an implicit scheme. The numerical method has
been tested with various classical configurations without the
transverse vibration. In the stick-slip mode a time step of 10−4

was chosen to capture accurately the beginning and end of
each sliding phase. In the slip mode, a time step of 10−3 was
sufficient.

B. Typical trajectories

A typical block trajectory is shown in Fig. 3 illustrating the
stick-slip mode for α = 1.25 and β = 0.2. The trajectory is
shown in the plane reference frame (a) and in the laboratory
reference frame (b). The grain is stuck on the plane until the
sum of the weight and the inertia force overcomes the friction
force. The onset of motion is indicated by an empty circle on
the trajectory. When the grain slides, the trajectory is mainly
downward oriented, and its kinetic energy is dissipated by the
friction with the substrate. The relative motion stops when the
friction force overcomes the other forces, and this is indicated
by a solid black disk. After a short transient (0 < t < 3), the
trajectory reaches a periodic regime with an alternation of stick
and slip phases.
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FIG. 3. Example of a trajectory of the block in the stick-slip
regime in the plane reference frame (a) and in the laboratory reference
frame (b). The corresponding velocity evolution (vx,vy) is shown in
(c) and (d). The empty circles indicate the beginning of the sliding
phase, and conversely the solid black disks indicate the end of the
sliding phase. Vibration and angle parameters are α = 1.25 and
β = 0.2 (see the star symbol in Fig. 2).

Also shown in Fig. 3 are the velocity components vx (c)
and vy (d) of the particle. Obviously the downward velocity
vx is either zero or positive whereas the transverse velocity vy

has a zero mean value after the transient has vanished.
Figure 4 illustrates the permanent slip mode, where the

sticking condition (5) is never valid except during a short
transient at the beginning of the motion. After the transient,
the trajectory reaches a periodic regime, as in the stick-slip
regime. In this regime the friction force is never strong enough
to overcome other forces and the block slides downward
continuously with a nonzero velocity.

C. Block vibration amplitude and its mean downward velocity

Several quantities can be computed from the numerical
trajectory. Since the trajectory is periodic, it is easy to compute
the block vibration amplitude such as |y| � Ab and the mean
downward velocity v̄x as defined in Eq. (13).

The block vibration amplitude Ab (computed in the labora-
tory reference frame) is shown in Fig. 5(a) with a continuously
varying angle parameter and five typical values of the vibration
parameter. The limit Ab = 1 means that the grain is stuck on
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FIG. 4. Example of a trajectory of the block in the permanent slip
regime in the plane reference frame (a) and in the laboratory reference
frame (b). The corresponding velocity evolution (vx,vy) is shown in
(c) and (d). The empty circles indicate the beginning of the sliding
phase, and conversely the solid black disks indicate the end of the
sliding phase. After a transient (t > 3), no stop occurs. Vibration and
angle parameters are α = 2 and β = 0.2 (see the diamond symbol in
Fig. 2).

the plane in the stick regime. When β increases, the block
amplitude decreases, and eventually goes to zero for β > 1,
where the block experiences a permanently accelerated regime
where the weight dominates the vibration force. The amplitude
Ab also depends on the vibration parameter α as shown on
Figs. 5(a) and 6(a). An increase in the vibration intensity
decreases the grain amplitude since the vibration helps the
block to slide down the substrate.

The block mean downward velocity v̄x [Fig. 5(b)] varies
with the angle parameter and increases strongly when 0.8 <

β < 1. This velocity diverges obviously when β → 1 when
the block approaches the accelerated regime. Plotting v̄x versus
α/αstick − 1 shows that the mean velocity is close to zero for
(α/αstick − 1) � 0.5, then increases nonlinearly [Fig. 6(b)].

D. Energies

In the periodic regimes, the time-averaged energies
are computed for any (α,β) parameters from expressions
(13)–(15). Figure 7 shows the variation of these energies when
α increases from 0. For a low plane inclination (β = 0.1),
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FIG. 5. (a) Vibration amplitude of the block varying with β

for different values of the vibration parameter: α = 0.75 (circles),
1.5 (crosses), 2 (triangles), 3 (stars), 5 (squares). (b) Plot of the
mean downward velocity v̄x . (c) Ratio of the potential to injected
averaged energies. The solid line is the empirical expression H (β) =
3.6{exp[(1 − β2)−1/3 − 1] − 1}. For the three plots the dotted line
separates the vibration-driven regime (left) from the gravity-driven
regime (right).

the potential energy is negligible compared to injected energy,
which is balanced by friction dissipated energy. As the
inclination angle increases (for example, for β = 0.5) the
potential energy is no longer negligible. For a large inclination
angle the potential energy overcomes the injected energy.

Figure 8 shows the variation of the averaged energies with
the angle parameter β. One can notice that the Ēp and Ēd

curves cross for a critical value β∗ ≈ 0.722. This critical value
appears to be independent from the vibration parameter α.
Therefore we can define a vibration-driven regime for β < β∗
and a gravity-driven regime for β > β∗. The critical value β∗
is shown as a dotted line in Fig. 5.

As can be seen in Fig. 5(c), the energy ratio Ēp/Ēi is a
function of the angle parameter β only and does not depend
on the vibration parameter α despite Ēp and Ēi being functions
of α:

Ēp

Ēi

= −β

α

∫ t+τ

t
vxdt∫ t+τ

t
cos(

√
αμt + ϕ)vydt

= H (β).

This ratio tends to zero for a small inclination angle, and
diverges when the inclination angle reaches the friction angle.

IV. EXPERIMENTAL SETUP

The experimental setup is drawn as a sketch in Fig. 1. The
inclined plane is an mirror-polished stainless-steel board of
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FIG. 6. Block amplitude dependence on the vibration parameter
α (a) and mean downward velocity depending on the vibration
parameter α (b). For plots (a) and (b) the symbols are β = 0.1
(circles), 0.3 (crosses), 0.5 (triangles), 0.7 (stars), and 0.9 (squares).

size 40 × 20 cm2. The plane inclination can be varied from 0
to 35◦ with an accuracy of ±0.2◦. The plane is mounted on
a horizontal sliding rail and rigidly connected to a permanent
magnet shaker (LDS V406-PA driven by a 500L amplifier).
We checked that the plane vibration was one dimensional and
monochromatic. The maximum acceleration was varied from
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0 0.5 1 1.5 2 2.5 3
−1

0

1

(a)
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(c)

FIG. 7. Time-averaged energies per time unit (powers). (a) β =
0.1, (b) β = 0.5, (c) β = 0.9. Potential energy Ēp: continuous line;
injected energy Ēi : dash-dot line; dissipated energy Ēd : dashed
line.
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FIG. 8. Time-averaged energies per time unit (powers). (a) α = 1,
(b) α = 1.5, (c) α = 2. Potential energy Ēp: continuous line; injected
energy Ēi : dash-dot line; dissipated energy Ēd : dashed line.

0 to 3g with a fixed frequency ω/2π = 30 Hz. Using the
parameters defined in Sec. II, the range of the angle parameter
was 0.09μ−1 < β < 0.7μ−1, and the range of the vibration
parameter was 0 < α < 3.7μ−1. For a friction angle of 40◦,
the range of accessible parameters is shown as a rectangle in
Fig. 2.

The particles are made from crude Al2O3 alumine powder
(BA13 produced by Baikowski), a powder usually used in
nuclear industry to simulate the UO2 powder. In a first step,
tablets are obtained from uniaxial mechanical compression at
400 MPa. These tablets are then sawed in order to obtain two
parallel faces. The thickness of the tablet is lower than 500 μm.
This slat is broken to several grains until the size is lower than
500 μm. Resulting particles hence have two parallel facets and
a very angular shape, as can be seen in the picture of Fig. 9.
These particles have two preferential facets for sliding, and
their large facets prevent an easy tilting of the particle. The
horizontal to vertical aspect ratio varies from 5 to 10 from one
particle to another. The particle keeps a constant mechanical
contact with the substrate. The particles were placed on the

FIG. 9. Photography of a Al2O3 grain.
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plate with the help of a copper brush to evade electrostatic
effects. A great care is taken during experiments to prevent
any effect that can alter the friction force between the alumine
particle and the substrate, such as the presence of very fine
particles emanating from poorly compacted grains.

The motion of the particles down the plane is captured
with a Photron high-speed camera with a frame rate of 1000
frames/s and a spatial resolution sufficient to distinguish the
rotating grains from the slipping grains. With an appropriate
lightening, the particles appear as white objects on a dark
background and their positions are easily tracked with the
ImageJ image analysis software. The position of the block
is compared at each frame with the position of a reference
white spot on the plane. The rough trajectory data are altered
by roughness variations of the plane surface and a random
large-scale motion can be observed. The trajectory is corrected
in the y direction by subtracting the floating mean y position
(the mean y is computed over a wavelength). This experimental
setup allows us to measure the static friction coefficient, the
onset of motion predicted by Eq. (6), and to record the block
trajectory for various inclination and vibration conditions.

V. EXPERIMENTAL RESULTS

A. Static friction coefficient and onset of motion

As already noticed by various authors, the static friction
coefficient μ is influenced by many parameters (see Table 2 in
Blau’s paper [1]). Despite this difficulty, we tried to estimate
the coefficient of friction between the alumine particle and the
mirror-polished stainless-steel plate using two methods. In
the first method, the alumine particle is slowly laid on the
plate with a fixed angle with the help of a copper brush. When
the brush is drawn back, the particle either slides or rests. This
is repeated for various increasing angles. In the second method,
the particle is laid on the plane at the horizontal then the plane
inclination is slowly increased until the particle starts sliding
down.

The dispersion of results is rather large since the static
friction coefficient depends on the measurement method, on
the particle, and also on the location on the plane where the
particle is laid. Despite this lack of accuracy, we find a static
friction angle θc = 30 ± 5◦ (μs = 0.58 ± 0.15).

Expression (6) has been tested experimentally, despite the
difficulty of detecting the onset of particle motion. For each
inclination angle θ < θc, the vibration intensity is gradually
raised until the particle motion is detected. To detect the
motion, the particle position is measured for each frame by a
MATLAB routine and compared to its initial position. When the
particle displacement exceeds 50 μm, the vibration frequency
and amplitude is recorded as the vibration threshold. This
was repeated five times for each inclination angle, and the
results are presented in Fig. 10. The error bars represent the
minimum and maximum values of the experimental vibration
parameter α measured for each inclination angle. We find a
good qualitative agreement between the experimental results
and the theory. Most of experimental values of α are larger
than the predicted ones. The agreement is the best for low
inclination angle (β < 0.6) where the input vibration energy
dominates. For larger inclinations (β > 0.6), the gravity force
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FIG. 10. Comparison of experimental results with expression (6).
Solid disks are mean experimental results with five realizations.
Angles where 0◦, 5◦, 7.5◦, 10◦, 12.5◦, 15◦, 17.5◦, 20◦, 22.5◦, 25◦,
and 27.5◦.

dominates and the onset of motion seems to be more sensitive
to the initial condition and position of the particle.

B. Experimental particle trajectories and dynamic
friction coefficient

An example of a block corrected trajectory is plotted in
Fig. 11 (dots connected with a solid line). In this example, the
angle parameter is β = 0.65 and the vibration parameter is

−0.5 0 0.5
−46

−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

FIG. 11. Comparison between an experimental trajectory (dots
linked by a solid line) captured at 1000 frames/s and the corresponding
computed trajectory (dashed line) for α = 2.41 and β = 0.65.
Both trajectories are plotted in the laboratory reference frame and
correspond to a permanent slip regime.
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α = 2.41, computed with a friction coefficient μ =
tan(22.5◦) = 0.41. The corresponding numerical trajectory is
plotted as a dashed line in the same figure. There is a very good
agreement between the two trajectories, only the phase ϕ of
the numerical trajectory has been tuned. The grain amplitude is
strikingly similar in the two cases (Ab = 0.42 in the simulation
and Ab = 0.43 in the experiment), and the wavelengths are
also very close with λ = τ v̄x = 2.83 in the simulation and
λ = 2.82 in the experiment. In this example the block is sliding
continuously, as predicted by the square symbol in the (β,α)
map of Fig. 2. As expected, the static coefficient of friction
is larger than the dynamic coefficient of friction suitable for a
comparison with the numerical model. The dynamic friction
coefficient is here an adjustable parameter to find the best fit
between the numerical trajectory and the experimental result.

When the vibration intensity is weaker, another behavior
can be observed. Figure 12 shows an example of a grain
trajectory in the stick-slip regime. The agreement is not as
good as in the previous example still a good agreement is
found on the trajectory amplitude. The experimental trajectory
is rather disymmetric but we have evidence of the stick-slip
regime, where the grain is periodically stuck on the plane.
These results are obtained for α = 1.00 and β = 0.72, and the
stick-slip regime is again confirmed by the empty circle in the
(β,α) map of Fig. 2.

The difference between experimental and computed trajec-
tories can be explained by the fact that the particle-to-substrate
interaction seems to change during the sliding motion. Despite
the care taken during the experiments, the local roughness is
not identical all over the plate. In this case, the grain has to
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FIG. 12. Comparison between and experimental trajectory (dots
linked by a continuous line) captured at 1000 frames/s and the
computed trajectory (dashed line) for α = 1.00 and β = 0.72.
Both trajectories are plotted in the laboratory reference frame and
correspond to a stick-slip regime.
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FIG. 13. Example of the downward position of a grain (a) and
the corresponding downward velocity (b) during a permanent slip
regime for α = 2.6 and β = 0.74. The velocity is time-averaged
over two periods of vibration. The velocity fluctuates around a well
defined mean value. Plot (c) shows a comparison between numerical
results and experimental results for the mean downward velocity.
The continuous line was computed with β = 0.7 and the dotted
lines represent the experimental error bar on the angle parameter
β = 0.7 ± 0.05.

overcome the static friction each time it is stuck on the plane.
As observed in the previous experiments (Sec. V A), the static
friction is very sensitive to the local roughness. This explains
the irregularity of the experimental trajectory in Fig. 12.

Figures 13(a) and 13(b) present the mean downward
velocity v̄x in the permanent slip regime (α = 2.6 and
β = 0.74). This velocity is fluctuating around a mean value
[see Fig. 13(b)] but the mean global downward sliding
motion is still observed as a periodic regime without mean
acceleration. Our experimental results confirm the validity
of the single friction coefficient model. From different tra-
jectory measurements, the average dynamic friction coeffi-
cient is tan(20 ± 5◦), lower than the measured static friction
coefficient.

The mean downward velocity has been measured experi-
mentally for an inclination parameter β = 0.7 ± 0.05 and the
results are compared with the numerical predictions for a large
range of vibration parameter α in Fig. 13(c). On this plot,
the continuous line is the velocity v̄x computed for β = 0.7
whereas the lower and upper dotted lines are computed
with β = 0.65 and β = 0.75, respectively. The experimental
results appear as solid circles with error bars and this plot
shows a good agreement with the predicted mean downward
velocity.
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VI. CONCLUSION

The handling and the flow of very angular particles is
limited by strong friction effects which can be overcome
by the help of transverse vibration. In our particular setup,
the slip and stick-slip regimes have been identified and we
propose two analytical limiting curves αstick(β) and αslip(β).
The validity of the simple theoretical model presented in this
paper is assessed by various experimental results. The role of
the vibration intensity is negligible when the inclination angle
is larger than the friction angle of the particles (β > 1) but
may be very important when the inclination angle is weak. The
study of the different energy contributions highlighted a critical
value β∗ = 0.722, below which the transverse vibration plays
a major role.

The mean downward velocity v̄x is seen to depend both
on the angle parameter β and the vibration parameter α.
A constant mean velocity suggests that the gravity force is
balanced by a self-tuned friction force. From a practical point
of view, the transport of such an angular particle down a plane
is efficient only for α/αstick � 1.5. This result is a first step to
the understanding of the flow and mass flux of an assembly of
angular particles.

Through the comparison of the experimental and numerical
trajectories, our vibrated inclined plane setup can be seen
to have an indirect measurement device for the dynamic
friction coefficient, combining the gravitational and oscillating
methods. Despite a lack of accuracy on determining the
friction coefficients, this study allows further work on the
vibration-induced flow of angular or cohesive powders.
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