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Abstract:  
 
An ultrasonic reflected wave at oblique incidence by porous medium with rigid frames is considered 
using equivalent fluid model. The viscous and thermal losses of the medium are described by two 
susceptibility kernels which depend on the viscous and thermal characteristic lengths. Analytical 
derivation of reflection coefficient is given in frequency domain. The simulated reflected wave is 
obtained at time domain by convolution between the reflected operator and the incident field. 
Experimental results for plastic foam samples of air-saturated porous media are given and compared 
with theoretical prediction. 
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1 Introduction  
 

Porous materials are ubiquitous in our environment; naturally, where soils and rocks are examples 
the most common; in industry, where the construction materials such as concrete and road surfaces are 
often used to reduce noise; in medicine, where the analysis of some living tissue such as the lungs or 
bone, requires description content of porous materials. Therefore in terms of applications, the 
materials porous represent considerable interest. That it is for analyzing seismic signals obtained in the 
oil industry or to optimize the efficiency an acoustic material, or to diagnose some diseases, the 
characterization of these materials is paramount. The determination of the properties of a medium 
from waves that have been reflected by or transmitted through the medium is a classical inverse 
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scattering problem. The important parameters which appear in theories of sound propagation in porous 
materials [5,16] at high frequencies range are the porosity, the tortuosity[15], the viscous [2] and 
thermal [15] characteristic lengths. Porosity is the relative fraction, by volume, of air contained in the 
connected pores in the material and presents a key parameter playing an important role in the 
propagation at all frequencies. As such, in studies of acoustical properties of porous materials, it is 
highly desirable to be able to measure this parameter. Beranek [13] described an apparatus 
(porosimeter) used to measure the porosity of porous materials. This device was based on the equation 
of state for ideal gases at constant temperature (i.e., Boyle’s law). Porosity can be determined by 
measuring the change in air pressure occurring with a known change in volume of the chamber 
containing the sample. The tortuosity, namely the structure factor ks by Zwikker and Kosten[14] or the 
parameter q[6] by Attenborough[12] is an important parameter which intervenes in the description of 
the inertial interaction between the fluid and the structure in the porous material at high frequency 
range. In the case of cylindrical pores making an angle θ with the direction of propagation              
∞ߙ = ߠଶݏ݋ܿ/1 . The tortuosity can be evaluated by electrical measurements [17] or by using a 
superfluid 4He as the pore fluid[8]. It can also be evaluated by acoustical techniques as an ultrasonics 
measurement of transmitted waves[6,7,17]. The viscous characteristic length Λ is a geometrical 
parameter introduce by Johnson et al on the characterization of viscous effects at high frequencies 

given by  ଶ
Λ

=
∫ ௨మௗ௦ೞ

∫ ௨మௗ௩ೡ
. where u is the speed of a microscopic incompressible perfect of fluid. The 

definition of this parameter applies to a smooth interface fluid/solid, and for a low boundary layer 
thickness to the radius of curvature characteristic of the interface. When the pore surface has 
singularities (peaks), this definition of the characteristic length is no longer valid. The parameter Λ is 
an indicator of the size of the narrow neck of the pore, i.e. the privileged place of viscous exchanges. 
Allard and Champoux[1], introduced by analogy with Johnson et al [2], a geometric parameter called 

thermal characteristic length given by  ଶ
Λ′

=
∫ ௗ௦ೞ

∫ ௗ௩ೡ
.  The length Λ’ is an indicator of the size of large 

pores, privileged place of heat exchange. The characteristic lengths can be deduced from the 
high‐frequency asymptotic behavior of either the velocity or the attenuation curves obtained in the 
sample saturated by air and by helium [19]. 

In this work, we present temporal model for the propagation of ultrasonic reflected wave at 
oblique incidence in homogeneous isotropic slab of porous material with rigid frame. Analytical 
expression of reflection coefficient at oblique incidence is calculated at frequency domain, this 
expression depend on the porosity, tortuosity, viscous and thermal characteristic length as well as the 
incidence angle.  Expression of reflection kernel in the time domain at oblique incidence is calculated. 
Finally, an experimental validation using ultrasonic measurement is performed for air-saturated plastic 
foam and compared with theoretical prediction.  
 

2 Model  
 

In porous material acoustics, a distinction can be made between two situations depending on 
where the frame is moving or not. In the first case, the wave dynamics due to coupling between the 
solid frame and fluid are clearly described by the Biot theory [10, 11]. In air-saturated porous media, 
the structure is generally motionless and the waves propagate only in the fluid. This case is described 
by the equivalent fluid model which is a particular case in the Biot model, in which fluid-structure 
interactions are taken into account in two frequency response factors: dynamic tortuosity of the 
medium α(ω) given by Johnson et al.[2] and dynamic compressibility of the air in the porous material 
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β(ω) given by Allard[1]. In the frequency domain, these factors multiply the fluid density and 
compressibility, respectively, and show the deviation from fluid behavior in free space as frequency 
increases. The ultrasonic regime corresponds to the range of frequencies such that viscous skin 

thickness ߜ = ඥ2ߩ߱/ߟ௙  is much small than the radius of the pores r,  ఋ
௥
≪ 1. This is called also the 

high-frequency range. In the asymptotic domain (high frequency approximation) the expressions of 
the responses factors α(ω) and β(ω) are given by[1, 2]: 

(߱)ߙ = ∞ߙ ൭1 + ଶ
Λ
൬ ఎ
௝ఠఘ೑

൰
భ
మ
൱,                                               (1) 

(߱)ߚ  = 1 + ଶ(ఊିଵ)
Λ′

൬ ఎ
௉ೝఘ೑

൰
ଵ/ଶ

ቀ ଵ
௝ఠ
ቁ
ଵ/ଶ

                                  (2) 

In these equations, ω is the pulsation, Pr is the Prandtl number, η and ρf  are, respectively, the fluid 
viscosity and the fluid density, and γ is the adiabatic constant. The relevant physical parameters of the 
model are the tortuosity of the medium α∞ initially introduced by Zwikker and Kosten[14], the viscous 
and the thermal characteristic lengths Λ and Λ’ introduced by Johnson et al.[2] and Allard[1]. 
 

 
3 Direct problem  
 
The direct scattering problem is that of determining the scattered field as well as the internal field that 
arises when a known incident field impinges on the porous material with known physical properties. 
The reflected and transmitted fields are deduced from the internal field and the boundary conditions. 
The geometry of the problem is shown in Fig. 1. 
 
 
                                                                                        Porous material 
            Reflected wave  pr 
                                                                                                                     θ0        Transmitted wave pt 

                              

   Medium (I) θ0                                          Medium (III)                      
                             θ0     

Incident wave  pi 

      
0      L   x 

 
 

Figure 1 – Geometry of the problem. 
 

A homogeneous porous material occupies the region 0 < x < L. This medium is assumed to be 
isotropic and to have a rigid frame. A short sound pulse impinges at oblique incidence on the medium 
from the left, it gives rise to an acoustic pressure field p(x,z,t) and an acoustic velocity field v(x,z,t) 
within the material, which satisfying the Euler equation and the constitutive equation (along the x 
axis): 

ݒ݆߱(߱)ߙߩ = ఉ(ఠ)                 ,݌∇
௄ೌ

݌݆߱ = ∇.  (3)                                  ݒ

   
(II) 
    θ1 
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where ݆ଶ = −1, ρ is the suturing fluid density, and Ka is the compressibility modulus of the fluid. The 
expression of a pressure wave incident plane, unit amplitude, arriving at oblique incidence to the 
porous material is given by  

,ݔ)௜݌ (߱,ݖ = ݁ି௝(௞௫௖௢௦ఏబା௞௭௦௜௡ఏబ)݁ି௝(ିఠ௧),                            (4) 

where θ0 is the incident angle, ݇ = ఠ
௖బ

= ߱ට
ఘ
௄ೌ

,  k is the wave number of the free fluid. 

In the medium (I) (x < 0), the movement results from the superposition of incident and reflected 
waves: 

,ݔ)ଵ݌ (߱,ݖ = ൫݁ି௝௞௫௖௢௦ఏబ + ܴ(߱)݁௝௞௫௖௢௦ఏబ൯݁ି௝(௞௭௦௜௡ఏబିఠ௧)              (5) 

where ܴ(߱) is the reflection coefficient. 
 According to Eq. (3), the expression of the velocity field in the medium (I) wrote: 

,ݔ)ଵݒ (߱,ݖ = ௖௢௦ఏబ
௓೑

൫݁ି௝௞௫௖௢௦ఏబ − ܴ(߱)݁௝௞௫௖௢௦ఏబ൯݁ି௝(௞௭௦௜௡ఏబିఠ௧)                          (6) 

Where ௙ܼ = ඥܭߩ௔ 
In the medium (II) corresponding to the porous material, the expressions of the pressure and velocity 
field are: 

,ݔ)ଶ݌ (߱,ݖ = ൫ܣ(߱)݁ି௝௞೘௫௖௢௦ఏభ +  ௝௞೘௫௖௢௦ఏభ൯݁ି௝(௞೘௭௦௜௡ఏభିఠ௧)             (7)݁(߱)ܤ

,ݔ)ଶݒ (߱,ݖ = ௖௢௦ఏభ
௓೘

൫ܣ(߱)݁ି௝௞೘௫௖௢௦ఏభ −  ௝௞೘௫௖௢௦ఏభ൯݁ି௝(௞೘௭௦௜௡ఏభିఠ௧)        (8)݁(߱)ܤ

In these expressions θ1 is the refracted angle in the medium (II), ܣ(߱) and ܤ(߱) are functions of 
pulsation for determining, Z(ω) and k(ω) are the characteristic impedance and the wave number, 
respectively, of the acoustic wave in the porous medium. These are two complex quantities: 

݇(߱) = ߱ටఘఈ(ఠ)ఉ(ఠ)
௄ೌ

,           ܼ(߱) = ටఘ௄ೌఈ(ఠ)
ఉ(ఠ)                               (9) 

Finally, in the medium (III), the expression of the pressure and velocity fields of the wave transmitted 
through the porous material are 

,ݔ)ଷ݌ (߱,ݖ = ܶ(߱)݁ି௝௞(௫ି௅)௖௢௦ఏబ݁ି௝(௞௭௦௜௡ఏబିఠ௧),                                (10) 

,ݔ)ଷݒ   (߱,ݖ = ௖௢௦ఏబ
௓೑

ܶ(߱)݁ି௝௞(௫ି௅)௖௢௦ఏబ݁ି௝(௞௭௦௜௡ఏబିఠ௧)                             (11) 

where ܶ(߱) is the transmission coefficient. 
To derive the reflection scattering operator, it is assumed that the pressure field and flow velocity are 
continuous at the material boundary:  

ଵ(0ି,߱)݌     =  ଶ(0ା,߱)                                                (12)݌
(߱,ିܮ)ଶ݌   =  (13)                                                (߱,ାܮ)ଷ݌
ଵ(0ି,߱)ݒ =  ଶ(0ା,߱)                                             (14)ݒ߶

(߱,ିܮ)ଶݒ߶  =  (15)                                                (߱,ାܮ)ଷݒ

where ϕ is the porosity of the medium and the ± superscript denotes the limit from right and left, 
respectively. Using boundary and initial condition (12)-(15), reflection coefficient can be derived: 
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ܴ(߱) = (ଵିாమ(ఠ))௦௜௡௛(௝௞(ఠ)௅)
ଶா(ఠ)௖௢௦௛(௝௞(ఠ)௅)ା൫ଵାாమ(ఠ)൯௦௜௡௛(௝௞(ఠ)௅)                               (16)                         

 
where, 

(߱)ܧ  = ߶ ௖௢௦ఏభ
௖௢௦ఏబ

ටఉ(ఠ)
ఈ(ఠ)  ,  ݇(߱) = ߱ටఘఈ(ఠ)ఉ(ఠ)

௄ೌ
ଵߠݏ݋ܿ   ଵ  andߠݏ݋ܿ = ට1− ௦௜௡ఏబమ

ఈ(ఠ)ఉ(ఠ)       (17) 

 
The incident and scattered fields are related by the scattering operators (i.e., the reflection operators) 
for the material. These are integral operators represented by: 

,ݔ)௥݌ (ݐ = න ෨ܴ(߬)݌௜ ൬ݐ − ߬ +
ݔ
ܿ଴
൰݀߬

௧

଴

. 

                                                                  = ෨ܴ(ݐ) ∗ (ݐ)௜݌ ∗ ߜ ቀݐ + ௫௖௢௦ఏబ
௖బ

ቁ                                         (18) 

In Eq. (18) * denotes the convolution operation, the function ෨ܴ(ݐ)  is the reflection kernel, for 
incidence from the left, its temporal expression is obtained numerically by taking the inverse Fourier 
transform of Eq.(16), ݌௜(ݐ) is the incident field and δ is the Delta function. Note that the lower limit of 
integration in Eq. (18) is chosen to be 0, which is equivalent to assume that the incident wave front 
first impinges on the material at t=0. The scattering operators given in Eq. (18) is independent of the 
incident field used in the scattering experiment and depends only on the properties of the materials. 
 

4 Experimental validation  
 
As an application of this model, some numerical simulations are compared to experimental results. 
Experiments are carried out in air with two broadband Ultran NCT202 transducers having a 190 kHz 
central frequency in air and a bandwidth at 6 dB extending from 150 kHz to 230 kHz. A goniometer 
used in optic has been employed for the positioning of the transducers. Pulses of 400 V are provided 
by a 5052PR Panametrics pulser/receiver. The received signals are amplified up to 90 dB and filtered 
above 1 MHz to avoid high frequency noise. Electronic perturbations are removed by 1000 acquisition 
averages. The experimental setup is shown in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Experimental set-up of the ultrasonic measurement in reflected mode (H.F.F-P.A: high frequency 
filtering-pre-amplifier) 

 
                                                                                   Sample     
                                                 Transducer 
                                                                      θ0    
Triggering 
 
                                                  Transducer 
                                                                                            
                                                                             

Pulse 
generator 

H.F.F-P.A Oscilloscop
e 

PC 
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The distance between the transducers and the samples is 20 cm. The duration of the signal plays an 
important role; its spectrum must verify the condition of high frequency approximation referred to in 
the previous section. The parameters of the first investigated plastic foam M are: resistivity σ = 2500 
Nm-4s, thickness 4.1 cm, The value of the porosity given by the porosimeter [22] is ϕ = 0.97±0.02, and 
the value of the tortuosity α∞, viscous and thermal characteristic length Λ, Λ’ given by classical 
method [7-9, 19, 21] is α∞ = 1.06 ± 0.08,    Λ = 230 μm and Λ’ = 460 μm.  
 Figures 3(a), 3(b), 3(c) and 3(d) show the incident signal generated by the transducer (dashed line) 
and the reflected signal by the plastic foam M (solid line) and their spectra for different incidents 
angles (θ = 00, 17°, 230 and 350). From the spectra of these signals, the reader can see that they have 
practically the same bandwidth which means that there is no dispersion. The reflected signal from the 
foam M is very small compared with the incident signal because of the low value of its flow resistivity  

 
Fig.3(a)- Experimental incident signal (dashed line) and experimental reflected signal (solid line) at left and 

their spectrum at right (0°= ߠ). 

  
Fig.3(b)- Experimental incident signal (dashed line) and experimental reflected signal (solid line) at left and 

their spectrum at right (17°= ߠ). 

 
Fig.3(c)- Experimental incident signal (dashed line) and experimental reflected signal (solid line) at left and 

their spectrum at right (23°= ߠ). 
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Fig.3(d). Experimental incident signal (dashed line) and experimental reflected signal (solid line) at left and 

their spectrum at right (35°= ߠ). 
 
Figures. 4 show the comparison between experimental reflected signal (dashed line) and simulated 
signal (solid line) given by (18) for different incidents angles. In each case the correlation of 
theoretical prediction and experimental data is good. 
 

  

  
Figs.4 Comparison between experimental reflected signal (dashed line) and simulated reflected signal (solid 

line) for the plastic foam sample M (23° ,17° ,0°= 0ߠ and 35°) 
 

5 Conclusion 
 

In this paper, analytical expression of reflected coefficient at oblique incidence is calculated at 
frequency domain. The reflected field is obtained by convolution between the reflected operator and 
the incident field. Experimental validation using reflected waves at oblique incidences by air-saturated 
porous medium with rigid frames was performed at high frequency and found to produce excellent 
agreement between theory and experiment. This leads to the conclusion that the expression of 
reflected coefficient obtained is correct. One future hope is to solve the inverse problem and return to 
the physical parameters; porosity, tortuosity, viscous and thermal characteristic length of the medium, 
from reflected experimental data. 
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