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Numerical Study of GEZON Experiment

G. Chen, B. Roux, D. Camel, P. Tison, ].P. Garandet
J.J. Favier,A.S. Senchenkov, and R. Moreau

To prepare the microgravily experiment of crystal growth by
[floating zone method, GEZON, numerical studies of hydro-
dynamics of the melt are carried out. Calculations of zone
length and convection driven by surface-tension gradients are
presented for germanium floating zone operating under mi-
crogravity conditions. Results of linear stability analysis show
the instability of intense thermocapillary convection needed to
be damped by using a magnetic field; the critical magnetic
induction is obtained. It is expected to grow a striation-free
crystal with this magnetic field.

1 Introduction

Since microgravity environment provides the more stable
hydrodynamic situations of reduced hydrostatic pressure
and buoyancy convection, the floating zone method for the
crystal growth has received a great deal of attention as a
candidate for use in microgravity [1]. However, stabiliza-
tion of the molten zone and suppression of buoyancy-
driven convection in microgravity is not enough to
guarantee the growth of compositionally uniform crystals.
Intense thermocapillary convection driven by surface-
tension gradients is still present in floating zone, as it has
been demonstrated by many researchers; see the references
i [2]. In particular, the thermocapillary motion can be
intense enough to lead to transition to three-dimensional
oscillatory flows which gives striations in the growing crys-
tals [3]. Several techniques have been proposed to control
and suppress unsteady thermocapillary convection during
processing, such as differential rotation of the feed and the
crystal, application of magnetic fields (for electrically con-
ducting fluids), encapsulation and so on.

Because of the very high cost of microgravity experi-
ments, the numerical simulation approach has widely been
used to give insight into coupled transport process and to
design experimental systems. The present study deals with
the preparation of a microgravity experiment, GEZON,
prepared to be flown on the Photon mission in the Zona-4
facility. The aim of this experiment is to investigate the
influence of the axial magnetic field on the properties of a
growing crystal (germanium) by floating zone technique.
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This paper presents the numerical simulation results
associated with the GEZON experiment. Sect. 2 describes
the calculation of the zone shape and the thermocapillary
convection inside the molten zone. This is made of numeri-
cal modelling by using NEKTON code. In sect. 3 the linear
stability analysis, which combines the numerical solution of
an axisymmetric flow with the continuation method, is
applied to predict the onset of oscillations. It is shown that
for the operating parameters of the GEZON experiment,
the thermocapillary convection regime is beyond the pre-
dicted stability limit; the flow would be three-dimensional
and time-dependent. The stabilizing effect of an axial mag-
netic field is studied in sect. 4 and the minimum of magnetic
induction which should be applied to the experiment is
obtained. Finally conclusion is given in sect. 5.

2 Calculation of Zone Length

2.1 Governing Equation

The size of the zone is controlled by the radiative heat
transfer between the melt and solid phases with the sur-
rounding ambient and heater, and by the convection in the
melt due to surface tension gradients through the shape of
the melt. Calculations are based on the configuration as
shown in fig. 1. The computational domain consists of three
parts: solid feed (left part), the melt (middle part) and
crystal (right part). Following assumptions are made in
numerical modelling:
(a) axisymmetric model,
(b) absence of gravity, and
(c) flat free surface.

The governing cquations are the Navier—Stokes and
heat transfer equations in melt (liquid phase):

Q<%+u-Vu>= —Vp + uVu, (D
V-u=0, (2)
QC,,<%?+H -VT/>:K,V2T,, 3
and heat transfer equation in solids

QCF%=V>(KSVTS). (4)

2.2 Thermal Boundary Conditions

At the lateral surface, we consider the heat exchange be-
tween the sample and the surrounding by radiation

7

T
— K =2 o(T' =T, i=Ls, BN



Heater
T TSR

Ta(z)

Pulling
Feed Melt Crystal |
z
L

axis
0

Fig. 1. Configuration of floating zone model and coordinate system

where ¢ is the emissivity of the sample (liquid or solid) and
7,(z} is the ambient temperature distribution to be imposed
in the GEZON experiment along the heater (fig. 2). At the
melting/solidifying fronts, thermal boundary conditions are
that the energy is conserved across the interfaces and the
equilibrium condition

dr

KIVTI'”F—KJVTV'”F:Q-X)H}‘: (6)

T= Tmeln (7)

where ¢.% is the volumetric latent heat of fusion.
At the sample ends, the temperatures are specified

z=0:T=953K;, z=L:T=903 K. (8)
2.3 Numerical Method

The governing equations are solved numerically using
NEKTON [4]. The NEKTON solver is based on a spectral
element method which decomposes the computational do-
main in standard finite element fashion and expands the
dependent variables within each element in consistent ap-
proximation spaces (N-order Legendre polynomials for the
velocity and temperature, and (N —2)-order Legendre
polynomials for the pressure). The mesh used in the calcula-
tions consisted of 24 spectral elements (3 in the radial and
8 In the axial directions) with 10th order Legendre polyno-
mials In each coordinate direction (within each element).
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Fig. 2. Temperature distribution along the heater, T ,(z)

The accuracy of solutions was verified either by increasing
the number of spectral elements or by increasing the order
of the Legendre polynomials.

2.4 Results

We present here the flows driven by surface-tension gradi-
ents; buoyancy-driven flows are not considered in this
work. The thermophysical properties of Ge and the operat-
ing parameters used in the calculations are listed in table 1.

Computed zone shape, flow and temperature fields are
shown in fig. 3. The flow driven along the surface by
surface-tension gradients moves from the hot spot (near the
middle of the zone) to the solid surfaces and results in two,
axially-stacked toroidal cells (fig. 3b). Because of small
Prandtl number of Ge (Pr =6-10-3) the isotherms are
only slightly deformed from those for a conduction-domi-
nated zone. The calculations demonstrate the asymmetry of
flow structure that results from the temperature field asym.-
metry caused by solidification (or fusion), and by heater
temperature distribution used. The melt/solid interfaces are
deflected inward showing that the melt is losing heat. Some
characteristic results are given in table 2.

Table 1. Thermophysical properties of Ge used in the calculations

sample radius R 0.75 cm
sample length L 13cm
temperature derivative of

surface tension ¥ 0.105 dyn/(cmK)
thermal conductivity (melt) K, 0.38 W/(cm K)
thermal conductivity (solid) K, 0.18 W/(cm X)
density (melt) o 5.32 gfem?
density (solid) 2, 5.43 gfem?
heat capacity C, 0.4 J/(gK)
volumetric latent heat of

fusion A 2,758.44 Jjcm?
melting point temperature T ete 1,210K
dynamic viscosity U 5.973- 1073 g/(cm - 5)
emissivity (melt) & 0.18
emissivity (solid) & 0.5
pulling rate v, 1.4-10~*cm/s
electrical conductivity a, 1.52 - 104(Q cm)

Tin = 1210K Tnaz = 1215K
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Fig. 3. Numerical axisymmetric solution: (a) temperature field; and
(b) stream-function



Table 2. Charcteristic numerical results

temperature difference in the melt AT 50K
maximum velocity at the surface Wope 6.2 cm/s
zone length at the periphery 8 2.1cm
zone length at the axis H, 1.9cm

An appropriate parameter that characterizes the intensity
of the surface-tension driven flow is the surface-tension
Reynolds number
_yATR
=

Re =1.1986 - 10*- AT ©)
Using the value of AT given in table 2 leads to
Re =5.9929 - 10*. We shall show in the following section
that the melt flow at this Reynolds number is beyond the
stability limit; the flow would be three-dimensional and
time-dependent.

3 Linear Stability Analysis

In this section, stability of steady axisymmetric thermocapil-
lary convection is investigated by linear stability theory.
Details of the numerical technique employed can be found
in an earlier paper [5], only the outline is presented here. A
floating zone (liquid bridge) is constructed such that the
length of zone is held fixed at H = (H, + H,)/2 where H, and
H, are zone lengths at periphery and at axis, respectively.
Using the values of H, and H, obtained in the previous
section (see table 2) gives a floating zone with length
H = 2 cm, which corresponds to an aspect ratio 4 = H/(2R)
=4/3, The finite difference discretization of governing
momentum and energy equations in the floating zone of
volume

V={(02|0<r<R0<6<2n0<z<H}

yields a system of ordinary differential equations of the form
ox
ot
where x is the solution vector (velocities, pressures, and
temperatures), T}, is the maximum temperature of the heater.
For certain given T}, the steady-state solution x, of eq. (10)
(which is assumed to be axisymmetric) will satisfy the
equation

f(x,, T,) = 0. (11)
The linear stability of the steady-state solution x,(7,) can be
analyzed by taking small perturbations of the form

&(r, z) e+ linearizing in eq. (10) to obtain a generalized
eigenvalue probiem

£.6 = oM, (12)

M—_ +f(x, 7,) =0, (10)

Table 3. Computed critical values

where » is the azimuthal wave number and f, is the dis-
cretized Jacobian matrix of the linearized perturbation
equations of eq. (10).

As T, is varied, an axisymmetric steady-state solution
may lose stability in one of two ways. One or more general-
ized eigenvalues of eq. (12) may cross the imaginary axis
with zero imaginary part. This case corresponds either to a
limit point or to a bifurcation to another steady solution.
Alternatively the eigenvalue may cross the imaginary axis at
a non-zero imaginary value. This corresponds to a Hopf
bifurcation to a periodic solution which is of interest to us.
To locate this Hopf bifurcation, we solved an extended
steady-state system of equations proposed in [6].

The results of computed critical values (maximum tem-
perature of the heater, corresponding temperature differ-
ence in the melt, and Reynolds number) are summarized in
table 3 for three azimuthal wave numbers (n =0, 1, and 2).
It can be seen that the lowest Re, corresponds to n =1,
showing that three-dimensional disturbances of n =1 are
the most dangerous ones.

In the previous section we computed the melt motion
and heat transfer in the whole sample using the operating
parameters of the experiment, and obtained corresponding
experimental Reynolds number, Re = 5.9929 - 10%. Stability
analysis presented here revealed that transition of thermo-
capillary convection from steady-state to oscillation regime
occurs at Re = 8.597 - 10°, leading to conclude that the melt
motion would be three-dimensional and time-dependent
(without magnetic field). However, as it will be demon-
strated in the following section, application of an axial
magnetic field may stabilize the flow.

4 Effect of Magnetic Field
4.1 Formulation

We use the same physical model as defined in sect. 3

to investigate the influence of an uniform axial magnetic

field on the onset of oscillations. The magnetohydrody-
namic (MHD) equations that we used in this work are
based on the assumptions that the flow field has no influ-
ence on the externally applied magnetic field B = B, e, while
the Lorentz forces are still present. This approximation has
been tested and justified in [7] if the magnetic Reynolds
number and the magnetic Prandtl number are both small,
which is the case in the GEZON experiment. The governing
momentum equations for velocity # =(u, v, w) and the
equation for the electrical potential ¢ are

d
Q(§+M-Vu)=—Vp +uViu+0,(—V¢ +uxB) xB,

(13)
Vi =B - (V xu), (14)

azimuthal wave temperature of temperature difference critical Reynolds
number » the heater T}, [K] in the melt AT [K] number Re,
0 1,257 1.15 1.3762 - 10*
1 1,242 0.72 8.597 - 103
2 1,249 0.96 1.1476 - 10*




Table 4. Computed critical Reynolds numbers and associated oscillation periods

magnetic induction Hartmann number critical Reynolds number oscillation period
B, [mT] Ha = B,R(c,|gv)'? Re, T [s]
0 0 8.597-10° 3.96
13 5 1.0345 - 10* 3.83
26 10 1.5741 - 10* 3.52
40 15 2.8208 - 10* 3.01
53 20 6.2523 - 10* 2.28

Equations of conservation of mass and energy are the same
as in [5]. The boundary conditions for ¢ are deduced from
the assumption that the normal component of the current (j,)
is zero, which implies

c—0m 2y, (15)
8z
r=R: —%‘fuf+30v=o. (16)

4.2 Results

For given magnetic induction B,, the linear stability analysis
presented in sect. 3 is again performed to compute the critical
maximum temperature of the heater. Computed critical
Reynolds numbers and associated oscillation periods (at the
transition) are listed in table 4 for the magnetic induction
varying from 0 to 53 mT. The results demonstrate that the
presence of an uniform axial magnetic field can stabilize the
unstable non-axisymmetric disturbances, thus suppress the
thermocapillary instability, With B, =53 mT we obtain
Re_, = 6.2523 - 10* so that using an axial magnetic induction
higher than 53 mT is expected to cause a steady thermocap-
illary convection in the melt.

In [8] an estimate has been established to consider the
dominance of magnetic field effect on the hydrodynamics of
the melt; in the first approximation, we got:

Ha > Ha, = Re'?. 1

In experiments on crystallization of doped germanium sam-
ples in the presence of a steady magnetic field carried out on
the satellite Kosmos-1841 the Hartmann number has been
found to be 15 while Ha, = 34 (i.e. Ha < Ha_). No significant
effect of the magnetic field on macro-nonuniformity has been
observed, but it has been found a decrease of micro non-
uniformity: 1.9 to 2.5 % without the magnetic field; and 1.1
to 2.1 % with the magnetic field (Ha = 15). Also, when taking
into account the assumptions used herein, uncertainties of
material properties and processing conditions, a magnetic
induction of 100 mT has been suggested to be applied in the
flight experiment. This corresponds to the estimate of eq. (17).

5 Summary and Conclusion

To prepare the microgravity experiment of crystal growth by
floating zone technique, GEZON, we concluded a numerical
study of hydrodynamics of the melt. First, the zone shape and
the thermocapillary convection applied to GEZON experi-
ment were modelled numerically. The zone length and the
maximum of temperature difference in the melt were ob-

tained. The corresponding Reynolds number was found to
be Re =5.9929 - 10* (Pr =6 - 107%). A linear stability anal-
ysis, which combined the numerical solution of an axisym-
metric flow with the continuation method, was then applied
to predict the appearance of oscillatory regime. Using the
calculated zone length, the critical Reynolds number was
determined to be 8.597 - 10°, indicating that for the operating
parameters of the GEZON experiment, the thermocapillary
convection regime is beyond the predicted stability limit; the
flow would be three-dimensional and time-dependent. Fi-
nally, the effect of an axial magnetic field on the stability of
the thermocapillary convection was studied. Application of
such magnetic field stabilizes the flow in the melt. When
magnetic induction is higher than 53 mT, the computed
critical Reynolds number is 6.2523 - 10, which is higher than
the experimental Reynolds numbers; the thermocapillary
convection will be damped to be steady state. A stronger
magnetic induction of 100 mT has been proposed to apply
during the flight experiment in order to obtain a striation-free
crystal.
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