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INTRODUCTION

Functional equations arise in most branches of mathematics:
from the functional equation of the Riemann function in number theory,
to the equation of entropy in probability theory; from the defining
equation of a derivation in the theory of Banach algebras, to numerous
equations in combinatorics; etc. Although lacking general results
in the way of existence and uniqueness, and those of a spectacular
nature, the thebry of functional equations was not made the object
of encyclopedic research until the end of the last decade.

' It is by no means the intention of this work to completely
cover the field in some systematic way. As a result of the kindness
of Professor Virool Boonyasombhat, a seminar on the subject took place
at the Departmént of Mathematics of the Chulalongkorn University of
Bangkok (Thailand) out of which these notes were born.

The goal of the geminar was to introduce and utilize several
classical tools of analysis: convex functions, Baire's theorem, the
Lebesgue measure, etc. One theme may have been chosen torgive'coherence
to the seminar, namely the study of conditional Cauchy equations, an
active area of functional equations.  On one hand one can quick]y
attain interesting resﬁ]ts in this area‘by elementary meahs; on the
other hand cérfain unresolved problems might have the effect of
attracting the interest of some of the participating graduate students
and imparting to them the attitudes of research in mathematics.

It was intended that the knowledge of mathematics usually

acquired after the first two years of university would suffice for the

understanding of these notes, that all major results used would be




proved therein and that a reasonably average 1evé1 of exposition would

be maintained. A strain is put on these principles when justifying the
study of conditional Cauéhy equations and when exhibiting some consequences
in functional analysis (in the last chapter for example).

It is a pleasure for me to thank all the participants in FOREWORD

. . .. ODUCT I ON
the seminar, as well as Chulalongkorn University and the French Ministry INTR

of Foreign Affairs for their financial aid which made the seminar and

this publication possible.

Jean DHOMBRES

Université de Nantes (France) :
Université d'Ottawa (Canada) - 1978 -
Chulalongkorn University (Thailand)
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Special thanks are due to Professor J. Aczel who scrutinized the whole manuscrip! 3.4

and to ProfessorsJ. Todd, R. Ger, PI. Kannapan and G. Targonski, who helped me 3.5

by making various comments. 3-?
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I also thank Ms Lyndé Hohner and Mrs Colette Riddle for their patience in the

typing.
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1.1

V Conditional Cauchy equations of tYpe I, IVand Vv : CHAPTER 1

Mikusinski functional equation

Generalizations of Mikusinski functional cquation
Conditional Cauchy equations of type 11,

A dual equation of Mikusinski functional equation
Conditional Cauchy equations in the tubular case
Conditional Cauchy equations of type V

Basic functional equation: Cauchy equation on the real axis

Programme In this Chapter, we introduce the Cauchy equation and solve 1t

vtwvivivivia
OV W0 N =

under mild regularity assumptions. We maintain an elementary Level

VI  Functional equations with superpositions of the unknown function : by avoiding comverse results and by choosing the real axis as a

6.1 0n a division model for a population domain for Cauchy solutions. We also try to avoid regularity %

6.2 A functional equation on an abelian group : lincar . . . . ;
iteration of order two assumptions by adding algebraic conditions (or supplementary !

6.3 Application : a characterization of inner product spaccs . . . .,

. 6.4 A functional equation in the theory of geomelric objects functional equations) to tﬁe Cauchy equation itself. We end the f

6.5 The functional equation of multiplicative symmetry on an . . . .. . ‘
abelian group q P yimerTy chapter with a quick glance at Cauchy inequalities on the real axis.

6.6 Applications to algebra : associative and commutative

mappings 1.1 Introduction There is no doubt that the most basic functional

VIl Operator theory and functional equations : equation is the so~called Cauchy functional equation for a functional

7.1 Reynolds operators f: R-R ‘
7.2 1 (K)operators

7.3 Derivation operators N L .

7.4 Multiplicatively symmetric operators (1) . ' fxty) = f(x) + f(y)

7.5 Extreme operators in L

valid for all” x, y in R,
Such an equation was solved, under a continuity assumption, by A.L. Cauchy,

in 1821, as a direct application of his new foundations for analysis

Index of notations and symbols V(It can be found in his Cours d'Analyse de 1'Ecole Polytechnique, vol. 1,

Subject index Chapter V). For the sake of completeness, let us prove here a slight

Bibliographical indications
generalization of Cauchy's result.

Theorem 1.1 Let f: R ~R. Let us suppose that on a non-empty open

subset of R, f is bounded above (i.e. there exists a real A and an

open set 0 cR, 6 # @, such that f(x) <A for all x in 8). Let us

suppose that f satisfies the Cauchy equation (1) for all x, y in R.




Then there exists a constant a

(a real number a =

f(1))

in R

such that for all x

f(x) = ax

The éame result holds if f 1is. bounded be1ow {or if [f]| is bounded

above) on a non-empty open subset.

Proof Let us consider g(x) = f(x) - xf(1). By rep]écing, if necessary,

- the open subset 6 by a bounded open subset of R (still called 8) we

get a function g which is bounded above on 6. Moreover, g: R =R

also satisfies Eq (1) with g(1) = 0.

Then Eq (1), with y = 1, as applied to g, proves that g is
periodic‘and of périod 1. If 6 contains an interval of length at
least 1, we obtain that g is bounded above on the whole of the real
axis R. However we made no assumption over the size of the nonQempty
open set 6. To get the same conclusion - global boundedness of g from
above - it is enough to prove that g possesses.as small a period as

we wish. To prove this, we notice that for any positive integer n

due to Eq (1).
Thus g(%) = 0 for any such integer n. Going back to Eq (1) we get

as required.
g(x+%) = g(x) for all x in R.

in R such that for all x

We may now suppose that there exists a B

in R

g(x) < B.

1.3

and g(-x) = -g(x)

1
«©
—

x
~—
+

{e]
—
o
~—
—

Clearly g(0) = 0 (g(x) = g(x+0)

g(0) = g(x=x) = g(x) + g(-x)). So that for all

-B <

1If B £ 0, wevimmediate1y deduce g ='0. But such is also the general

case. Due to Eq (1), we have dg(nx) = ng(x) for any positive integer n.

This yields

B

<g(x) < B

As n  js arbitrary, we get g(x) = 0 for all x, which ends the proof

for an upper bound. When f is bounded from below,

of Theorem 1.1

then -f satisfies all conditions of the first part of Theorem 1.7 and

so -f(x) = ax. Thus f(x) = (-a)x for all x in R. If [f[ s

bounded from above on 6, so is f.

"Corollary 1.1 The general solution of Eq (1), where f: R >R is

continuous at least at one point, is f(x) = ax.

A’funétion f: R -+ R, continuous at one point of R, is Tocally bounded
and so Theorem 1.1 applies. In order to show how the Cauchy equation
translates propérties, in particular properties at one'pdint to pointwise
ones, we give the following easy, direct proof. Eq (1) shows that if f

is continuous at point xo,'then f s continuous at zero as is easy to see,

in F(xghy,) = Flxp)

->00

(If Lim Yy = 0, then f(xo+yn) = f(xo) + f(yn); and h

n->oo

implies Lim f(yn) = 0). In turn, this implies that f is continuous at
n-oo




every point x (If kim X, = Xs then F(x ) = fx -x+x) = f(x _-x) + f(x)
|00

and Lim f(x -x) = 0. Thus Lim f(xn) = f(x)). Now, for a positive
n-oo n n->o

integer p, we deduce f(px) = pf(x). Due to F(-x) = -f(x), the same

result holds for any integer p. Similarly Tet q be a positive integer.

X

From Eq (1), we write f(an = f(x) = qf(é). Then f(ax) = af(x) for any

rational o and for all x in R. Using the already proved continuity

of f on the real axis, we thus get another proof for Corollary 1.1.

Corollary 1.2 Let f: R >R be a function satisfying the Cauchy functional

exists some x, where g(xo),# 0. The set of all rg(xo), when r runs
through Q, is dense in R. As g(rxo) = rg(xo), there exists some

rational r, and g(roxo) e Ja',b'[ which contradicts our inequalities.

equation (1) for all x, y in R. Suppose f is not continuous. -For

any non-empty open subset 6 of R, the subset £(0) s dense in R.

. Suppose by contradiction that for some non-empty open subset & of R,
the subset f(8) ds not dense in R. There exists an open interval
la,b[, a < b, such that f(08) n (Ja,b[) = §. In other words, for every
X in e,veither f(x) <a or f(x) =b. Using the function g,

g(x) = f(x) - xf(1), as in the proof of Theorem 1.1, and using possibly

a smaller non-empty subset 6', included in 6, with a' < b', we get

for every x in ©', either g(x) <a' or g(x) =b'. But as in

Theorem 1.7, the function g 1is periodic and of period %- for every
positive integer n. For some positive integer Ng» an interval of length
ﬁ% is included in ©6' and so we deduce that for all x in R, either
g(x) <a' or g(x) =b'. At this point, we could use some manipulation
to prove that g must have a constant sign and get a contradiction via

Theorem 1.1.. A direct proof is shorter. As f is not continuéus, there

1.5

Theorem 1.1 leads us to think that any slight regularity
assumption concerning the solution of a Cauchy equation, at least on

the real axis, implies in fact a strong regularity which in turn yields

V Such appears to be the case and Cauchy solutions are either
very regular or extremely pathological. (A pathology which is already
described with Corollary 1.2). : »

We shall postpone the construction of pathological - but useful - |
solutions of Cauchy functional equations to Chapter IV (§3). The interest
of the set of all Cauchy solutions will be seen in Chapter IIT (§5).

In the present chapter, we shall try to find various conditions

concerning regularity for the Cauchy solutions.

1.2 A generalization

Theorem 1.2 Let f: R ~ R be a function satisfying the Cauchy functional

equation for all x,y in R.

M - Flxty) = F(x) + £(y)

Suppose that there exists a subset E of R of {strictly)

positive Lebesgue measure on which f 1is bounded above by a | ebesque

measurable function g: R +R. There exists a constant a and f(x) = ax

for all x 1in R. in the sequel, a subset of positive Lebesgue measure

obviously means its measure is strictly positive.




1.7

Proof As g: E >R {is a Lebesgue measurable function, and as m(E), a) It is known (via Fubini's theorem) that h is an element of

the Lebesgue measure of E, is positive, there exists an integer n such L'(R). Moreover, if x ¢ F = E+E, then h(x) = 0. (As x -t /E

that the subset E = [x|xeEs g(x) < n] 1is of positive Lebesgue measure for all t in E if x ¢ F, then XE(X-t) =0 for all t e E. Thus,

if x £ F, hix) = JXE(x-t)dt = 0). The set of all x in R where
E ) .
h(x) # 0 1is included in E + E = F.

(As 0 < m(E) = Lim m(En)). So, without loss of generality, we may suppose
, N
that there exists a subset E of R, of (strictly) positive Lebesgue measure

and a constant A such that

b) However, h is not almost everywhere equal to zero. A quick way ‘L

to-see this is to take the Fourier transform of h

f(x) < A for all x in E

H(y) = JeZiﬂyxh(x)dx

(We even may suppose that m(E) is finite which will prove technically useful
. . 4

Now, applying Eq (1) and defining F = E + E = [z]|zeR, z = x + y, xeE, yeE],

and to notice that

we notice that f s bounded above by 2A on F

hiy) = (g2

f(z) = f(x) + f(y) < 2A

due . to thé following computations which are justified by Fubini's theorem

If we prove (Lemma 1.1) that F contains an open and non-émpty subset

of R, then using Theorem 1.1, we immediately deduce Theorem 1.2.

() = [2TOHEIL L (1 (x-tdtTox
et

L

= th(t)EZTHytdt[I321ﬂ(X_t)yX
R R :

Lemma 1.1 Let E be a subset of R of positive lLebesque measure. Then

F=E+ E has non-empty interior.

e?‘ﬂy(x't)XE(x—t)e21ﬂthE(t)QX dt

First proof We may always suppose that E is of finite Lebesgué‘measure. R

Then Tet us define Xg» the characteristic function of E(XE(x) =1 if

(x-t)dx]

X e E and 0 if x ¢ E). Clearly Xg is an element of L1(R), the £

Lebesgue space of all real-valued Lebesgue integrable functions on R.

Compute h ='XE*XE’ that is

- ‘th<t>e2*”ytdt)<je3‘“xyxE(x>dx) = (e)?
R 7 R

h(x) = |xe(t)xe(x-t)dt = |x (x-t)dt
[—

E being of positiye Lebesgue measure, Xg is not in the zero class of



1.9

n > 0 such that for every o with |a| <n, we get f{c(u+u) - c{u)|du < €.

L1(R) and so X;(y) is not the zero function as it is known that

n .. . 1 . e .
f > f~ s an injection from L'(R) into COGR), the set of all corntinuous We have proved the continuity of h.

complex-valued functions over R, tending to zero at infinity. Summarizing, we have obtained a non-empty open subset

. 3 . - ~ . f K3 . . . . . .
(cf Bibliography). Thus h 1is not the zero function and so h itself [x|n(x) # 01, which is included in F = E + E. This proves lemna 1.1.
is not zero in the Lebesgue sense, that is, h 1is not almost everywhere

equal to zero. ~ Second proof The previous proof of lemma 1.1 was chosen for its

c) We may even prove that h is a continuoﬁs function. functional analysis flavour and the possib111ty of obtaining easy

generalizations for any locally compact abelian topological group. However,

() - h(x) = [Oglerat) - xp(e-t)ldt

E

on R or on a metrizable topological group, a far shorter proof of a

similar Temma reads as follows. It concerns now E - E = [X|xR x =y - z;

y e E; z e E]. Let E be a closed, bounded subset of R with positive

e - 000 = [ (ura) - ()

[x]-E

Lebesgue measure. We shall prove that E - E has a non-empty interior.

where (x}-E denotes the set of all x-y with y in E. Thus " There exists an open subset 6 = E such that 6 nfE has Lebesgue

measure strictly less than half of the Lebesgue measure of E. Let

§ = Inf |z-y| > 0 and let x be any real number such that |x] < 6.
T aoE ;

yel9

Inixtm) = )| = [Ixglura) - xlu) o
R

We have to estimate the last integral as o goes tozero. First we Clearly 6 n ((E-x) has.the same Lebesgue measure as 8 n [E since

estimate XE; An €)0 being gﬁven, then there exists a continuous E-xc6 and since the Lebesgue measure is translation-invariant.
function c: R + R, zero outside a bounded interval, such that Now 6 n. (PEuB(E-x)) has Lebesgue measure strictly Tess than the measure

) of E, and a fortiori less than the measure of 6. Therefore E n (E-x)
JlXE(U) - c(u)|du e , ,
R S is not empty, which means that for every x, |x| < &, there exists
YeE; zeE and x =y - z. In other words ]-8,+8[ 1is included in
E-E,or E-E contains.a non-empty open interval. This kind of
J[XE(u+a) - XE(u)Idu < 2 + []c(u+d) - c(u)|du :
R R proof will be used in conjunction with a similar notion in topology,

the one of Baire category (cf Chapter III, §2).
Due to the uniform continuity of ¢ on its bounded support, we may find -




Corollary 1.3 A locally lebesgue integrable function f: R +R,

satisfying Cauchy's equation is of the form f(x) = ax for some a

in R.

Proof We may just quote Theorem 1.2, but a direct proof is of some interest.

We integrate Eq (1):

f;f(x+y)dy = J;

’

1
fly)dy

f(x)dy + Jo

x+1 1
J f(t)dt = f(x) + o, where o = Jof(y)dy

As f s Tocally lebesgue integrable, Eq (2) proves that f is

continuous. Then Eq (2) in turn proves that f is differentiable.:

Differentiating both members of Eq (2), we get

f(x+1) - f(x) = F'{x).

But f(x+1) - f(x) = f(1). Thus f(x) = f(1)x + B. Going back to Eq (1),

g = 0.

we deduce This kind of proof shall be used later to solve the

so-called "tubular" case (cf Chapter V, §5).

A natural question arises once Theorem 1.2 is proved. Does there exist

a characteristic -property for a non-empty subset E of R such that any

Cauchy.solution bounded above on E has to be of the form f(x) = xf(1)?

We shall solve this converse question in Chapter IV.

1.3 Some conseguences

We shall now make additiona1 algebraic assumptions to avoid
any regularity hypothesis. In this vein, the most interesting result
js the following easy one:

Corollary 1.4 A1l ring automorphisms from R into R are trivial.

A ring automorphism from R into R is a function .f: R-+R such that

both following functional equations hold for every x, y in R

(1) fxty) = f(x) + f(y)
and
(3) f(xy) = fF(x)f(y)

Eq (3) provides us with f(xz) = (f(x))z, that is f(x) = 0 for all

x =2 0. Theorem 1.1 immediately yields for some a in R.

But equation (3) implies »a(a-]) =0, Either a=1 and so f(x) = x,

or a=0 and f(x) = 0. These are the trivial automorphisms of R.
The complex situation is far different from the real one. We all know
that z > z s an.automorphism of C. Theré even exist non continﬁous
solutions of both Eq (1) and Eq (3) in the complex plane.

In the real case, we only used for Corollary 1.4, a positivity
argument based on Eq (3). We may still expect some generalization by

replacing Eq (3) wi th
(4) ‘ f(xm) =

for a given positive integer 'm.




Clearly, if m is even, Eq (4) yields as well f(x) = 0 for every

x = 0 and the same conclusion holds as in Corollary 1.4. What would
happen if we were to take n to be an odd integer? To make things worse,
what would happen if we were to restrict Eq (4) by only assuming its
validity when both x > 0 and. f(x) > 0?

Corollary 1.5 Let f: R-»R such that

(1) flx+ty) = F(x) + fly) - for all x, vy in_R.

For a given 1nte§er m, strictly greater than 1, let us suppose that

(4)' ' FGM) = (F)™ for all x such that both x > 0

and f{x) > 0 hold.

Then f s continuous and either f(x) = x for all x 1in R or there

exists a real a, a =0 and f(x) =ax for all x in R.

We already noticed, in the second proof of Corollary 1.1, that an f
satisfying (1) also satisfies f(ax) = af(x) for any rational o and.
for all x 1in R. Let us start with m =2 1in Corollary 1.5. First

suppose the existence of some Xgs Xg 0, such that f(x,) > 0. For

0 0)
each x 1in R, and some sufficiently large rational o (o 2 ags o

depending upon x), we get x + ax, > 0 and f(x+ax,) = f(x) + af(x

0 O) O)

Therefore Eq (4) applied to x + axy in its restfictive domain of
validity yields
F((xraxg)?) = (Flxaxg))?

and so for all rational o 2> a

> 0.

Then (x?) = (£(x))2 for all x in R, which is Eq (4)'with m= 2
and the restriction on its domain of validity removed (Eq (4)).
If no XqP 0 with. 1’(')(0)> 0 exists, then
F(x) has to be non positive for all x > 0. According to theorem 1.1,
then there exists an a in R and f(x) = ax. However,such an a must
be non positive. |
Clearly the same trick works for any integer m > 1 as well
as for m = 2, yielding f(x") = (F(x))". Therefore we now only have
to solve simultaneously Eq (1) and Eq (4),
We have already proved Corollary 1.5 for even m. In the case where
m 1is odd (m > 1), we may reduce the problem to an even -m, by using
some Tinear combination of x and unity. |
Using (4) and (1),we may expand  f((ox+8)™) 1in two ways

for two rational o and BR.

F((wxtp)™) = (™) + clom™ # o+ OGN (M)

+ o+ gF(1)

it

(@f(x) + Bf(1))"

WM+ clmTar(1) (£ + L ¢l e (1) (£ (x)) ™

As o and B are arbitrary rational numbers, by identification of the

m"]B and 8", we get f(])(f(x))m'1 = f(xm'1) and

terms in «
(F(I™ = f(1). But m being odd, we get (f(x))mr] >0 for all x.-
We get now two cases : If f(1) =0, then f(x) =0

for all x = 0 and if f(1) < 0, then f(x) <0 for all x = 0. In both



cases, Theorem 1.1 yields f(x) = f(1)x with (f(1))m = f(1). Thus
f(1) = 0, (1) = -1 or f(1) = 1, which ends the proof.

Note 1 If f is a Cauchy solution and‘satisfﬁes Eq (4) with no

restriction, then either m is even and we only have the trivial

solutions (f(x) = x; f(x) = 0) or m 1is odd and we have the trivial

ones plus f(x) = -x.

Note 2 For the sake of completeness, we may try‘to Took for a

simultaneous solution of both Eq (1) and Eq (4) when m s any real

number. However, for Eq (4) to make sense, when m 1is no longer an
integer, we have to assume in addition that f(x) >0 for x > O,

and that Eq (4) holds for x > 0 only. But then, from this condition

Theorem 1.1 yields that f(x) = ax for some a in R, and there is

nothing new in such a system of equations However if ‘m 1is a negative

integer, we only have to suppose f(x) # 0 for Eq (4) to make sense.
We then get
Corollary 1.6 Let f: R >R be such that f {s not identically 0 and

(M fxty) = f(x) + fly) for all x, y in R

(5) £(xM) = (FO)™

where m is an integer different from 1 or 0. Then f(x) =x or

f(x) = -x, the latter being possible only when |m| is odd.

When m. is a positive integer, different from 0 or 1, Corollary 1.5

proves the result. When m is a negative integer, different.from O

or -1, then

for all x_such that x # 0 and f(x) #

for x # 0 and f(x) #0 we get X" #0, f(xm) # 0 so that

2 2
FxM ) = F(OM™) = (FM)™ = (F(x))"

and we are back to the positive integer case. Notiée that m2

is odd
if and only if |m| 1is odd. It only remains to treat the case m = -1.

Eq (5) reads (and we suppose f to be non identically zero)

(6) f(%& = ?Tij' for all x # 0 yand f(x) # 0. | ?

If for some X, Xq # 0, we get f(xo) = 0, then Eq (6) applied to
X = 1 shows by contradictionthat also f(;ld = 0. Now, we notice that

0 ‘ : ' 0

|x+§- > 2 for all x 1in R/[0]. Therefore, using f(x+%0 = f(x) + f(%) = f(x) +
we notice that for all x, |x| = 2, we get either f(x) = 0 or

[f(x)] = 2. TCorollary 1.2 immediately proves the continuity of f, that

is f(x) = ax for some a in R. Eq (6) yields a° = 1, which ends

the proof of Corollary 1.6.
Note 3 If we were to replace Eq (4) by the same equation, but with absolute
values on both sides, it can be proved that solutions of both Eq (1) and

(7) will stil1 be necessarily continuous, at least when m s an even .

~integer.

(7) lf(Xm)] = | f(x)|™ for all x # 0, f(x) # 0, m e Z
m # O; m#1

The general solution for m ¢ R remains to be found (with the restriction

X > 01n Eq (7)) both for f: R+R and f: R~ C).




1.4 Other algebraical conditions on Cauchy equations W) F(xty) = F(x) + £(y) for all x, y in R
Another natural candidate for a supplementary algebraic condition and |
implying the continuity of a solution for the Cauchy equation is a (11) f(l? i} —%-f(x) " for all S0 in R ?
) X
X

behaviour 1ike a derivation. For instance

2 1 1 Then f s continuous and so f(x) = ax for some a in R. In the
(8) f(x°) = 2xf(x) or (9) f(;) = —‘E-f(x) for x# 0

X

same way as with Eq (5), we dedice an equation

In case (8), using Eq (1), we deduce . 2)

£(x%) = 2xf(x) - x*F(1)

f((X+y)2) = f(xz) +2f(xy) + f(‘yz) = 2x+y) (F(x)+F(y)) ' The use of x + y in place of | x vyields

and thus obtain a derivation
- fxy) = xf(y) + yf(x) - xyf(1)

10 fxy) = xf(y) + yf(x) ‘ :
(10) (xy) With vy = %3 X # 0, we deduce f(x) = xf(1), which ends the proof of

In the second case (9), using Eq (1), we deduce for x # 0 and x # 1 Proposition 1.1 as f(0) = 0.

1y = 1 PR N I IR L
f(x(x-1)) = - 2o fx(x-1)) = fi37 - ) = Feg) - T | 1.5 Some vocabulary In order to solve Eq (1), we have made full use

of the group properties of R, as well as some topological or measure-

i 1 , Flx1) + theoretic -properties. We sha]]rtry to make a distinction between the
(x-1) X algebraical and the topological properties. To get a'convenfent

which provides f(xz) = 2xf{x) - xzf(l). But Eq>(9) yields f(1) =0 vocabulary, we shall agree on the following definition.

and the last equation holds for all x. We are back to Eq (8) and to , Definition 1.1 A Cauchy functional equation is the functional equation

Eq (10) (from which also we deduce f(1) = 0). There exist noncontinuous - satisfied by an homomorphism f between two groups G and F, i.e.

solutions of both Eq (10) and Eq (1). We postpone to Chapter VII (M £ GoF f(x*Gy) - f(x)*Ff(y)

the study of derivations. Let us just notice here that a change of

We shall then speak of a Cauchy solution for an f satisfying some
sign in Eq (9) leads to a completely different answer. _ . - }
Cauchy functional equation related to two groups. Sometimes, we shall
Proposition 1.1 Let f: R +R be a solution of both equations

use the word additive (when F, G are abelian groups) or multiplicative.
We shall keep the word homomorphism when dealing with semi-groups,

monoids, algebras, etc.



suradditive functions

1.6 Cauchy inequality:

Along the line of Theorem 1.2, we might be tempted to replace

the Cauchy functional equation by just an inequality, for example

an fix+y) = f(x) + f(y).

Such an ineguality, or its converse, appears quite naturally in

analysis. Take for example g: R -+ R, a uniformly continuous function

and define

f(y) = sup [Sup |g{x+t) - g(x)|]
O<tzy xeR

It is not difficult to check that f: [0,»[> [0, satisfies

fx+y) < f(x) + f(y)

for all x, y 1in [0,=[.

For a nice generalization of Theorem 1.2, the Cauchy

inequality is not very convenient and we shall see later that an

]1nequa1ity of convexity, the so-called Jensen inequality, is far better

(cf. Chapter IV, §6). However, the same result holds, as in Theorem 1.1,

namely f(x) = ax, provided we say much more about the regularity of

some functional bound for an unknown function satisfying the Cauchy

inequality. A result in this direction is as follows.

Theorem 1.3 Let f: R >R be a function satisfying for all x, ¥y in R,

the functional inequality.

(11)

Suppose that in some neighbourhood of a point x., f is minimized

by a function g such that g(xo) = -f(—xo). Suppose moreover that

g fis differentiable at Xg Then there exists a real constant a and

for all x in R.

f(x) = ax
Proof The function g provides a lower bound for f, let us say on

I +xO where 1 s an open interval containing the origin.
f(x) = g(x) ¥x e T+ x4

Our first step is to translate such an inequality into an equivalent

one around the origin. Eq (11) yields with y = -x,

> g(x) + f(-x,) oYX e T 4+ X,

f(x-xo) >

or,with G(x) = g(x#xo) + f(—xo)
f(x) = G(x) VX ¢ I
Moreover G(0)} = g(xo) + f(-xo) = 0. Thus for all h -in I, we get

f(x+h) - f(x) = f(h) > G(h)

and if we too supposeA -h e 1

f(x) = f(x+h-h) = f(x+h) + f(-h) > f(x+h) + G(-h)
so that
vf(x+h) - f(x) < -G{-h)

Summarizing




With h >0 1in I, we deduce

G(=h) . flxth)-f(x) , G(h)
-h < ho C

Analogous inequa]ities occur with h < 0

G(-h) _ f(x+h)-f(x) _ G(h)
-h 7~ h T h

As Lim §%Dl.= Lim & -h) . G'(0) = g'(xo)

- = a, we deduce that f is
h+0 h~0

differentiable at every point x ih R and

f'(x) = a

Consequently f(x) = ax + b for all x in R. Eq (11) implies b <0

but f(xo) > —f(—xn) implies b = 0. Therefore b = 0.

Theorem 1.3 is false if g 1is simply supposed to be continuous at

a point Xy» Or even on a neighbourhdod of Xg* A counter-example is

as follows. We take Xg = 0, f(0) = 0 and f(x) = bx for all x >0,

f(x) = ax forall x<0 and a > b > 0.

1.21

Such a function is continuous, non-Tinear and satisfies Eq (11) for
all x,y in R. (But it cannot be minorized locally at the origin
by a differentiable function g such that g(0) = 0).

To construct functions f satisfying (15) does not appear

as difficult if we notice that x » f(x) = Inf (f,(x)) still satisfies

iel !

Eq (11) as soon as all f; are solutions of Eq (11), where I is a non-
empty set of indexes.
Taking the Tower bound of a family of affine functions

X > X + bi with bi < 0, we are then led to various solutions of

Eq (11).




2.1

CHAPTER II

Some examples leading to conditional functional equations

Programme  On several occasions, in the investigation of functional
equdtions or in applications to other mathemat%cal domains,
it has been observed that the fﬁmily of solutions of the
equation in question depends quite essentially on the. domain
in which the validity of the equation is postulated.
In traditional studies of functional equations the authors have
kusuaZZy assumed that the equation if fulfilled for all values
of the variables from a certain set which appears natural for
the equation. The Cauchy equation (V)Y flaery) = flz) + fly)
is usually postulated for all (x,y) e B xR or more generally
for all (z,y) e G x G, if we wish to work on a group.
However, in the recent decade, many investigations have been
carried out, in which Eq (1) is postulated only on a certain
non empty subset 7 of G %X G.
This can oceur for two main reasons: either the function f
need not be defined on the whole of G, or, although the function
f is defined on G, the equation need not hold for some pairs
(x,y) in é X G, In this chapter, we describe some problems,
which originate from other branches of mathematics or from
specific traditional functional equations and lead to equations |
like Cauchy equdations; but on restricted domains. A name has .
been coined for such equations, which we shall study in Chapter III:

Conditional Cauchy Equations




" Other examples could be provided which lead to various kinds

of conditional functional equations, but we shall mainly

be concerned with conditional Cauchy equations.

2.1 Gauss' functional equation

In probability theory, it is interesting to determine all

functions f: R > C such that f(/X%+yZ) = f(x)f(y) for all x, y
in R. As xoy = /X%+yZ is associative, f dis a homomorphism

R,0) (C,.). A general treatment

of such homomorphisms is possible. At 1easf,in the special case where

of the semi-group into the semi-group

we restrict f to take its values only in R, there exists an easy way

to solve the so-called Gauss' functional equation.

Theorem 2.1 A function f:

R + R, which is not identically zero for

X # 0, which is continuous on a non-empty open subset of R and which

satisfies, for all x, y in R, the Gauss functional equation

(2) f(/AXZ+y7)= F(x)f(y)

is of the form f(x) = exp(axz) for some a in R.

Proof Eq (2) yields (£(0))2 = £(0). If £(0) = 0, we deduce that
f(|x]) = 0 for all x and so f(x) =0 for all x = 0. But
(f(-x))2 = f(vV2|x|),implying f = 0 which we reject. We may thus
suppose f(0) = 1.
Let us first prove that f remains strictly positive. AFirst,
f is an even function (f(|y|) = f(O)f(y) = f(y)). But f(v/2|x]) = (f(x))2

which is positive or zero. We have thus proved f(x) = 0 for all xeR.

2.3

Suppose now that x, = Inflx|[x = 0; f(x) = 0] exists. Then f(x,) = (f(——'))2
X .
and so F(-2) = 0.

In other words, if f has a zero, X, exists and
N 0

must be equal to zero. However, if f(x;) = 0 with x; >0, then
f(x) = 0 for all x =2 Xy as f(x) = f(/x%+y2) with y = /xz_x% and
fix) = f(x])f(y) = 0. As xq =0, if it exists, we get f(x) = 0 for

all x # 0, which we rejected. (It should here be mentioned that

0 if x#0 and f(0) =1 ids.a solution of the functional
equation (2)).

We may suppose ~f(x) > 0 for all x in R. MWe then take

the logarithm of f and define 'g(x) = log f(x)a to get a functional

equation
(3) g(Vx7+y%)= g(x) + gly)
where g(0) = 0, and g 1is an even function g: R >R,
By induction, we prove g(nx) = nzg(x) for all x. We start
from
g(v2x) = 2g(x) for all x =0

and suppose g(v/nx) = ng{x). Then

g(V(/nx)? + x?) =

= ng(x) + g(x) =

g(/n+T x) = g(/nx) + g{x)
(n+1)g(x)

With a change of variable, we have proved that for all x 2 0

g(nx) = nzg(X)

is even, the same result holds for all x and for both positive

As g




2.5

@ AT = FOE)

and negative integers n.

2
X

Z W2 ;
We prove now that g(rx) = r“g(x) fOT all x in R and all for some a ¢ R.

is of the form f(x) = e

rational numbers r.

Let us sketch the proof which is analogous to the one used in Theorem 1.2,

We start from g(mx) written as g(n mn :
' the notations of which we maintain here. Due to the evenness of g, we

g(n ™

n may suppose that 6 n [0, «[ # @ and in fact we shall only work on

which yields [0, »[1.e. 6 # 8 c.[O,w[. ' Without loss of generality we may suppose f

that @ s bounded and [g(x)| <A for all x in 6. Define then

g(3 x)

Xg = Sup t and put h(x) = g(x) - ng(1). Clearly h(0) = 0; h(1) = 0
' teb _ ‘ .
and h too satisfies Eq (3). Moreover h 1is bounded by a certain B

2

Using x =1, we get g(r) = r"g(1) for all rationals.

) ) in 8. With h(1) = 0, we deduce that h(r) = 0 for every
Let © be the non-empty open subset of R on which f

) ) rational number r. For such a rational r, we get
(and consequently g) was supposedly continuous. By continuity, we

deduce that g(x) = ng(1) for all x in 6. However, let x be any

h{(/xZ+r%) = h{x) + h{r) = h{x)

non zero real number. As xQ s dense in R, Qx n & # 0. Then there

For a given x = 0, as r runs through Q, /X“*rZ 1is dense in [x, =[.

exists t € & and a rational r such that x = rt.

Thus, if 0 < x < XO’ for some v, v/XxZ+rZ belongs to 6 and so

2 2

g(x) = g(rt) = rzg(t3 = vl g(1) = x

g(1) [h(x)] < B. Now, for x > Xy» there exists t e 0 and r e Q such that

) VtZr? = x. Thus |h(x)| = |h(t)| < B. Summarizing, we have proved
Such -a result still holds for x = 0. We now define a = g(1)

that for all x
(a e R), and going back to f, get

9 (4) [h(x)] < B
f(x) = e for all x in R. 1

But we obtained h{rx) = rzh(x) for all rational “r, which yields

Theorem 2.1 remains valid if, instead of the assumption of h(x) = 0 due to (4)'; This ends the proof of Theorem 2.2. e could

e ontinuit‘, we use a boundedness assumption on f. . . R . . .
the c J a boundedn umption on NameTy . Improve the conditions given in Theorem 2.2, in the same fashion as

Theorem 2.2 A function f: R »»R,‘which is not identically 0 for x # 0

3

Theorem 1.2 will be improved (See Chapter IV, §4).

bounded on a ndn empty open subset 6 of R and satisfying for all x, y

in R ‘the‘Gauss'equation



We may ask now what happens when f 1is allowed to take on

complex values. During the proof, we shall see the appearance of a

conditional Cauchy equation.

Theorem 2.3 Let f: R~ C be a continuous function, not identically

0 and satisfying
(2) f(/xZy%) = f(x)f(y)

Then there exists a e C such that f(x) = e®* .

Proof As in the real-valued case, f 1is nowhere equal to zero. Thus,

by continuity, we may choose two continuous functions

h: [0, <[+ ]0, «f

-g: [0: w[—’]R~

such that f(¥x) = h(x)exp ig(x) ¥xe [0, of

Eq (2) becomes, using new variables x2 =5, y2 =t where s, te [0, «[,

h(s+t)exp(ig(s+t)) = h(s)h(t)exp i(g(s) + g(t))

which yields

(5) . h(s+t) = h(s)h(t) s, t e [0, of

g(s) + g(t) (mod 2m); s, t e [0, «[

(6) C g(stt)

As h >0, taking the Togarithms of both members in Eq (5), we obtain

a conditional Cauchy equation for H(s) = log h(s) (as the equation is only

defined for non-negative numbers and not on the whole additive group of

real numbers).

2.7

(7) | H(s+t) = H(s) + H(t) ¥s, t e [0, «[
H: [0, o[+ R ‘

‘we shall prove later that due to‘the continuity of H, there exists

beR and H(s) =bs for all s e [0, [ (cf Chapter IV, §1). Eq (6)
.

is too a conditional Cauchy equation with G: R+ = [0, <[>T = VT

that is taking its values in the torus“?, which is an abelian group.

{8) G(s+t) = G(s) + G(t) Vs, t ¢ [0, =
G =[0, o[> T o

* Continuity of G provides the tool for solving such an equation. In fact

we shall write Eq (6) in the form

g(s+t) = g(s) + g(t) + 2mh(s,t)

where h(s,t) belongs to Z. However h: [0, «[ x [0, »[+Z 1is also

continuous and thus must be constant; i.e. h(s,t) = h.

We then use ‘
J(s) = g(s) + 2hr
“to obtain
(9) J(s+t) = J(s) + J(t)
J[0, «[+R

As already explained, there exists ¢ in R and

Returning to f we get that for all x 2 0

£(/X) = eDXgiex+eihm

- e(b+1'c)x




We define a =b + ic where a ¢ C and

2
e for all x =2 0

f(x) =

Such a result holds for all x in R due to the'evenness of f. It

ends the proof of Theorem 2.3.

It is possible to improve Theorem 2.3 but our aim was only

The samevkind

to explain the occurrence of conditional Cauchy equations.

of conditional Cauchy equations would occur if we were to generalize

Gauss' functional equation. Let o denote a binary and associative law

on R. We are led to find all f: R -+ C such that for all x and y

in R, we get

f(xoy) = f(x)f(y)

(See bibliography).

2.9

2.2 Mikusinski's functional equation

A problem encountered in geometrical optics and a fundamental one

2

in affine geometry is that of finding all bijective mappings T: RZ + R

which map straight Tines into straight Tines. The same classical problem
can be asked with affine spaces of dimension n on fields different
from R. For the sake of notational simplicity only, we shall restrict
ourse]ves to the two dimensional case. Clearly as T is surjective,

T maps paraliel lines fnto parallel Tines and so transforms a parallelo-
gram into another one. We write T(x,y) as (F(x,y), G{x,y)), and without
loss of generality we may suppose that G(0,0) = F(0,0) = O. 7

Recall that the colinearity of three points of the euclidean

plane: M](x1,y1); MZ(XZ’yZ) and M3(x3,y3), can‘be expressed by the

vanishing of the determinant.

X1 X X3
" 2 Yy =0
1 1 1
As (0,0); (1,0) and (x,0) are colinear, we get
G(0,0) 6(1,0) G(x,0) G(1,0) G{x,0)
F(0,0)  F(1,0) -~ F(x,0) | = ' = 0
1 1 1 F(1,0) F{x,0)
or a first functional equation
(1 aF(x,0) = bG(x,0)




preceding equation are not simultaneously equal to zero. But if one is

with 6(1,0) = a, F(1,0) =b and [a] + |b| # 0. As (0,0), (0,1) and
(0,y)

(2)

equal to zero, we get either F(0,x) = 0, which is impossible due to

are colinear, we get in the same way

(), or F(x,0) =0 and as b # 0, also G(x,0) = 0, which contradicts

cF(0,y) = d6(0.y) with [c[ + |d] #0 the bijectivity of T. Thus we may write F(0,x) = eF(x,0) with e # 0.

As the four points (0,0), (x,O), (0,y) and (x,y) 'form a parallelogram, We def1n¢ a hiew fgnct1on f(x) = F(x,0), which we shall try to determine

through a uniqué functional equation.

we get a system of two functional equations

o As  (x+y,N), (x,y) and (0,x+y) are colinear, we get
F(x,y) = F(x,0) + F(0,y)

(3)

60xy) = 6(x,0) + G(0.¥) F(x+y,0) F(x,y) F(0,x+y)
Combining (1), (2) and (3), we deduce that 0= G(x+y,0) G(x,y) G(0,x+y)
K 1 1 1
(4) dlbG(x,y) - aF(x,y)] = d(bG(0,y) - aF(0,y)) = (bc-ad)F(0,y)
' i.e.
We shall suppose for concreteness b# 0 and d # 0. Due to Eq (4), as :
e . ) fx+y) f(x) + ef(y) ef (x+y)
T 14s bijective, bc - ad # 0. Other functional equations are needed. ’
_ a a c c
As x runs through R, (X,x) determines a line and so (F(x,x), G(x,x)) 0 = p Y] p FX) +eg fy) g eflxty)
does as well. Hence there exist real constants o,8 with 1 1 T
la] + |B] # 0, such that
fx+y) f(x) + ef(y) (e-1) f(x+y)
af(x,x} + 8G(x,x) = 0 .
0= ad f(x+y) ad f(x) + ebc f(y) {ebc-ad) f(x+y)
Then oF(x,0) + aF(0,x) + BG(x,0) + 8G(0,x) = O. 1 : 0
Eq (1) and Eq (2) yield A
| | f(xty) Fx) + ef(y) - fx+y) (e-1)
oF (x,0) + 8 & F(x,0) + aF(0,x) + 8 G F(0,x) = 0 v
' 0 = f(xty) ad f(x+y) ad f(x) - ad f(x+y) + ebcf(y) ebc - ad

1 | 0 ‘ 0

d(ob+Ba)F(x,0) + (ad+Bc)b F(0,x) =0

As b#0,d#0,ad - bc # 0, and |a| + |B] # 0 both coefficients of the




0 =f(x+y)[{(ebc-ad) (f(x) + ef(y) - f(x+y)) - (e-1)(adf(x) - adf(x+y) + Ebcf(y) ,
2.3 ‘A conditional Cauchy equation

= f(x+y)[f(x)(ebc-ad-ead+ad) + f(y)(e(ebc—ad)—(e—1)ebc)+f(x+y)[(e-1)ad—ebc+ ]
' A Let L'(R) be the Banach space of all equivalence classes of

Finally, we get Lebesgue integrable functions f: R -+ C equipped with the norm

0 = f(x+y)[-F(x+y) + F(x) + f(y)Jle(bc-ad)
€11y = [19001dx

Thus R

(5) fxty)[f(x+y) - f(x) - f(y)] =0 ~ As is well known, the function f*g, for f and g in L'(R), defined

This equation (5) amounts to a conditional Cauchy equation, the so-called o as

Mikusinski equation (6), as this author was the first to propose this f*g(x) = [f(t)g(x-t)dt
. ; R

method for solving in a quick way the fundamental theorem of affine

: is an element of L](R). Moreover, * transforms L]GR) into a
geometry

_complex Banach algebra.

f:
fxty) = f(x) + f(y) if f(x+y) # 0

R~+R An important feature of such an algebra is the set of all

(6) .

Jinear non-zero multiplicative functionals on L], j.e. the spectrum

of the Banach algebra L]UR). It is the set of all F such that F z g

3

We shall solve Tater such a functional equation- (cf Theorem 5.1) and
F: L'(R) > ¢ and F(Af+ug) = AF() + uF(q)

F(f*g) = F(f) F(q)

prove that in the case of R, f satisfies the Cauchy equation

everywhere. A Tonger analysis would prove that in fact f has to be

linear, i.e. f(x) = ax for some a # 0 1in R and therefore that T It turns out first that a linear and multiplicative functional on

is a nonsingular Tinear transformation (In the case of affine spaces, f L](R) is bounded (See bib]iogfaphy for a proof of this classical

would only be semi-Tinear). We shall here merely point oqt that some result). Therefore, by a duality theorem, there exists an h: R +VC

mild regularity assumption over T shortens the proof so that we

where h is essentially bounded (h ¢ L”(R) and h is not 0 a.e)

can state such that

Theorem 2.4 Let T: ‘RZ »—Rz be a bijection keeping colinearity and

F(F) = ff(x)h(x)dx

contjnuous at a point. Then T 1is the composition of a translation and R

of a non singular linear transformation. Turning back to the multiplicative condition, we get




If a function h: R~ C satisfies (1) a.e. in R%,

Jh(x)[Jf(t)g(x-t)dt]dx - [Jh(t)f(t)dt][Jh(u)g(u)du]
R R R R

there exists a unique function H: R -~ C satisfying theequation (1)

everywhere and H = f a.e.

It is now required to solve the equation

which we may write in a different way

[reor[#e)gx-tpatex = [re)t[nxgix-t)axdat o Hixet) = HOOH(E) R

R R

=

under the conditions that H e L(R) and H is not in the equivalence

class of the zero function. We clearly get H{0) =1 (as H is not

- jf(t)[fh(u+t)g(u)du]dt
R R

and so, using a double integral

First, take the modulus of H, writing G{x) = |H(x)|. The function G s

fj F(t)g(u)[h(u+t) - h(u)h(t)]du dt = 0' strictly positive and so log G satisfies the conditions of Theorem 1.1,

RR ax

as H is in LT(R). We then get [H(x)] = e for some a e R. However

From the fact that the space of all linear combinations of functions He L'(R) implies that.a'= 0 and so [H(x)[ = 1. We may now find

of the form f(t)g(u) is dense in L](Rz) [generalized Stone-Weierstrass a measurable function a: R >R such that

theorem for LZ(RZ)), we deduce that

h(u)h(t) “in the sense of L“KRZ)

h(u+t)

In fact, function o satisfies a Cauchy equation, but from R into the

group R/2w Z as

(1 h(u+t)

H

h(u)h(t) almost everywhere in Rr? ' .
‘ (3) a(x+t) = a(x) + aft) {mod 2m)

Eq (1) is in fact a conditional Cauchy equation h: R -+ C/[0], where

We write

R is the usual additive group and- C/[0] 1is the complex multiplicative

a{x+t) = a(x) + a(t) + 2nh(s,t)

+o0
where h(s,t) ¢ Z. 'As h 1dis a measurable function and u An =R

n=-w

group. (If h, satisfying (1), is equal to zero on a set of strictly

2 with

positive Lebesgue measure,then h = 0 a.e., which we reject. Thus

An = [s,t|s e R, t ¢ R, h(s,t) = n], there exists a ng such that An'
' 0
is of strictly positive Lebesgue measure. Thus the function g, where

we may modify h on a set of measure zero so that h keeps its values
.
).

in C/[0], and still satisfies (1) almost everywhere in R In

Chapter V, §5, we shall prove the following result.

identically equal to 0 a.e.) and H(x) # 0 for any x e R (as 1 = H(x)H(-x)).




gt) = olt) + 2mn,, satisfies both equation (3) and (4)

B(x+t) = B(x) + B(t) = for (x,t) e Z

()

where 7 is of strictly positive lebesgue measure. Eq (4) is typically

a conditional Cauchy equation which shall be dealt with in Chapter V.

We sha]] then deduce that there exists a constant, which we take for

convenience to be 2wa, such that

a(x) = 2max + 2ngm

[We could avoid Eq (4) by reasoning directly on H. Using-Eq (2),

as He LmOR) is Tocally integrable, and dealing in exactly the same

way as in the proof of Corollary 1.3, we deduce that H is in fact

continuous. Then we can choose a continuous o such that

- e1%X) and as in Theorem 2.3, we obtain that

H(x)

a(x) = 2max + Znno]

Going back to F, we have obtained that

F(f) = Jf(x)e21ﬂaxdx = %(a)
R

It is-clear that for a, # P there exists f ¢ L1GR) such that

%(a]) # %(32)' Therefore, we have proved the following theorem.

Theorem 2.5 The spectrum of L]GR), as a convolution algebra, can be

identified with the set of real numbers via

£ > Fly)

L'®) > ¢

Theorem 2.5 can be generalized to any locally compact ébe]ian group

and is a way of introducing the dual group 6" of such a group

G (For R, R® =R). It is a fundamental result in abstract harmonic
analysis. Therefore the generalized conditional Cauchy equation (1)

has to be sd1ved in the case of any locally compact abelian group

(cf Chapter V, §6). When we take_the set of all real numbers, equipped
with the discrete topology R, then the dual group R* is a compact

and abelian topological group, the so-called Bohr group of R. We shall
study this Bohr group Tater and shall use a different way, with the help

of Bohr almost periodic functions and the set of all solutions of some

Cauchy equation (cf Chapter III §5).
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2.4 Jensen functional equation

, (2) F(x) = v + x(&-v)
Let [a,b] be a given interval of R.  We look for the ‘

]
Let us check (2) for —%173 and for this we consider two cases .—2N_

2n+1
2h+1
2n+1~

functions f: [a,b] R which preserve midpoints, i.e.

aﬁd
M | Fyy = FRE) ¥x.y e [a,b]

' 2h h h ' 2h
. . . F = F —_) = + — (§- = + S-
Theorem 2.6 Let f: [a,b] R be a continuous function satisfying Eq (1). (2n+]) (Zn) Y o (8-y) = v 2n+1 (8-v)
Then, there exists o, B, real numbers, such that
2h+1 1, h | h+l 1 h 1+h
fx) = ox + 8 (2n+1) (2(2n 2")] 7L (2”) ( 2n)]

Proof Let us define F: [0,1] >R by ‘F(y) = f[(b-a)y+a]. Then F h]

o+ hoy) v+ B (o))

also satisfies Eq (1):

+
- v S o)

F(E)

=t f[(b_a)(§%¥)+a] ='f((b—a)x+az(b-a)y+a)

Eq (2) is then vé]id for all dyadic numbers, that is for all numbers of

the form x = —33 where h isvan integer such that 0 < h < 2" and

2
where n is a positive integer. Such dyadic numbers form a dense

= f((b-a)X+a%+f((b-a)y+a) ) F(x);F(y)

We define F(0) = v and F(1) = §.

Then subset of [0,1]. As F is continuous over [0,1], Eq (2) is valid for

1, Yt o, 8-y all x in [0,1]. Going back to f, we get
F(‘Z‘) = 2 =Y 2 "
1 F(0)+F(%0 Y+Y+§%l 5-y f(x) = F(523) = v + £25 (6-y) = ax + B with o, 8 ¢ R
F(I) = 2 = 5 =yt 0 . .
5 which ends the proof of Theorem 2.6.
5 FGIF() vk 3 . . |
F(ﬁ) = 5 = 5 =y + Z—1-(<3-Y) We could have tried to prove theorem 2.6 in a more lazy way. Let us

h suppose, to begin with, that 0 ¢ [a,b]. Such an assumption can always _

, where h
on

More generally, it may be shown by induction that for x =

n be made without loss of generality, using a convenient change of
is an integer such that 0 < h < 27, we get i

variables Tike the one we did to go from f to F. Let y =0 1in




Eq (1). We get

f(%q = 5f(x) + 5 where o= (0)

pam—

Thus Eq (1) becomes for x +y e [a,b], x € [a,b] and y e [a,b]

riegh - g g2 £ 1

fxty) = £(x) + f(y) - o

With  g(x) = f(x) - a, we get a conditional Cauchy équation
(3) glx+y) = g(x) + g(y)

valid for all x, y in [a,b] such that too x +y e [a,b]l. The general
solution of Eq (3) shall later come as a consequence of more general
results (cf Chapter IV §2)>and will provide us with another proof for
Theorem 2.6 (with even far less regularity assumptions). However,
fdcussing on the conditional Cauchy equation (3), or a slightly less
general one, we shall see how conversely Theorem 2.6 leads to its
solution-which is interesting in itself (See Corollary 4.4 for a
gehera]izafion).

Theorem 2.7 Let g: R >R be a continuous function satisfying the

Cauchy conditional equation: g(x+y) =g(x) + g(y), for all x,y in

[a,b].

If [a,b] n [2a,2b] # #, there exists a eR and g(x) = ox

for all x-e [a,b] u [2a,2b].
If [a,b] n [2a,2b] = ﬁ, there exist o, 8 in R and

gix) = ax + g for all

x e [a,b], g(x) = ax + 28 for all x e [2a,2b].
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proof Let t e [2a,2b] and x =y = %z Using Eq (3) we get

For any t e [2a,2b], such that t = x +y, with x, y < [a,b]

Xy - a(x+y)
2 2

—

9

(x)+

Thus : 5

g(ﬁgx) = giﬁl%ELXl- for all x, y 1in [a,b]

Using Theorem 2.6, we deduce that for all x in [a,b]

g(x) = ax + B a, B eR

Then g, which is defined on all of R s also determined on [2a, 2b]

via the conditional Cauchy equation.

In this case

If [2a,2b] n [a,b] # @, we have to check the constants.

there exists X e [a,b],'y ¢ [a,b] with x +y e [2a,2b] n [a,b]. Thus

alxty) + B =oax + B+ oy + B

which implies B = 0. That is g(x) = ox; ¥x e [a,b] u [2a,2b].

If [2a,2b] n [a,b] = P, then g(x) = ax + B

¥x « [a,b] and

g(x) = ox + 28; ¥x ¢ [2a,2b].

Clearly, a solution of the Cauchy equation, flx+y) = f(x) + fly), |

or with the addition of a constant = f(x) + vy, satisfies the Jensen

equation as we have proved that for additive function flax) = uf(x)b

for every rational o and so for a = %—(Coro]]aryll.l).
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2.5 A generalized Cauchy equation

If we look at inequalities, more convenient than the Cauchy
inequality dealt with in 1.6,1s the inequality as deduced from Jensen Let us begin with a result which will Tead us afterwards to

equation a conditional Cauchy equation.

Theorem 2.8 Let S be a semi-group and H be an inner product space

Y o P+
(4) £ < TRY)

(either real or complex). Suppose f: S -+ H and suppose f satisfies '

A function f: R +R, satisfying (4), is called a Jensen convex function,

m ) || = [1FG0 + £ for all s,y _in s

the properties of which will be studied in Chapter IV, §6.

Then f: S+ H satisfies f(x+y) = f(x) + f(y) f

The main interest of this theorem is that no topology is involved and i
no regularity assumption is being made on f.

Proof We shall first prove that f(2x) = 2f(x} for all "x in S. We

start from the obvious ||f(2x)|| = 2|[f(x)|| and proceed to estimate
[1(3x)]]

(2) RG] = [HF(2ex) [| = [[F(2x) + FO)[] < [[F2)]] + [[FO)]] < 3] [F(x)]]

Now, f(4x) can be estimated in two different ways

IA

3IIFON] + [IF()]]

(3) @[] = [1FGx) + FO] < [IFEO]] + [[F(x)]]
' 41 1F(x)]|

IA

and

HIF@x) ] = [1F(2x) + F(2)]] = 2[[F(2x)]] = 4] |F(x)]]
-Thus the inequalities in (3) are in fact egualities, which yields
[EG) ] = 3[]F(x)]]
In the same way, inequalities in (2) are in fact equalities

CF@x) + FO]] = 1RO+ RO



As H 1is an inner product space, we have Apollonius' identity

(Parallelogram Law), namely

[latb] 12 + [la-b] % = 2(]]al %] Ib]]?)s

Such an identity characterizes inner product spaces (either real or

complex)among all normed spaces. (See Chapter VI, §3). With a = f(2x)

and b = f(x), and noting that ||al| = 2||b||, we get

(QIFE01+ 601D + (180 - f0117 = 2011£@011% + 1150011)

which yields

[1£(2x) - F(x)]] = [1F]]

‘Applying Apollonius' identity once more with a = f(2x) - 2f(x) and

b = f(2x) we get

21172001 1% + [17(2x) - 2800 1F)= 4l 15(20) - £00]1% + 4] 1£00]1°

112

811£00) |2 + 2] [F(2x) - 2£00)]12 = 8] F(x)

F(2x) = 2f(x).

We shall now prove that for all x, y in S, we get

(4) Re < f(x), f(x) + fly) - f(xty) > =10

We start by computing ||f(2x+y|| in two different ways:

IF(2xty) || = []12F(x) + £ = [IF(x) + (f{x) + Fly))|]

[1F(2x+y) || = [1F(x) + fxsy)]]

Expanding the following:
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[1£(x) + Fxty) |12 = [1F(x) + (F(x) + £(y))] ]2

yields precisely Eq (4). For reasons of symmetry on x and y, we

also get
Re < f(y), f(x) + f(y) - f(x+ty) =0

~ Now let us compute |[f(x+y)||2 as follows:

2

2
[

[ f{x+y) [[f(x) + f(y) + (f{xty) - f(x) - f(y))]]

R+ £ [P+ [1F(xky) - F(x) - £(0)] |2

+ 2Re(f(x), flxty) - f(x) - f(y))
+ 2Re(f(y), flx+ty) - f(x) - f(y))
leading to the desired result ||f(x+y) - f(x) - f(Y)||2 = 0, which ends

the proof of Theorem 2.8.
From Theorem 2.8, we immediately deduce the following

Corollary 2.1 A function f: R >R which satisfies

(5) C(Fxy))? = (F(x) + F(y))P

. in fact satisfies the Cauchy equation.

This time, Eq (5) is equivalent to a conditional Cauchy equation

(6) f(x+y) = f(x) + f(y)  for all x, y such that the following holds:
fxty) + f(x) + f(y) # 0.

It seems then natural to try to generalize Corollary 2.1, with the

conditional Cauchy equation (6), in different algebraical structures.

Among others, we shall then prove the following result.

Let S be a semi-group and F be an abelian group containing

no element of order 3. Then the conditfona] Equation (6) is equivalent
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to the ordinary equation of additivity f(x+ty) = f(x) + f(y) for all The converse inequality being true, we get the required equality (7).

X, y in S when f: S -F. _ ‘ ‘Now, using a nontrivial homomorphism g: S -+ R, we define a function

The conditions for the normed space H Vin Theorem 2.8 cannot f: S~ H according to

be weékened too much as the following theorem holds.

. _ g(x)a if g(x)| <1
Theorem 2.9 Let S be a semi-group. Suppose there exists g: S -+R _

f(x) = .
which is not identically zero and satisfies g(x+y) = g{x) + g(y) for all s{g(x))a + (g(x) - s(g(x)))b if lg(x)|‘> 1

,y in_s. A £ strict d . , .
X, ¥y in S. Let H be anotstrictly convgx normed space. Then there where s(g(x)) = +1 if g(x) >0 and s(g(x)) = _]‘ if g(x) < 0.

exists an f: S~ H such that The idea is to have the sum of the coefficients of a and b equal to
(1) HEy)] ] = [IF(x) + Fy)]] : g(x), so that using (7) we may expect (1) to hold but not the Cauchy

. . . equation. Let us first prove that ||[f(x+y)|] = |[f(x) + f(y)]|].
but such that f is not an homomorphism from S into H.

We notice that ||f(x)]| = lg(x)| using relation (7).
Recall that a normed space is strictly convex if ||x|]| = ||y|] = ||5%¥|| =] i =1 |
- . . g So ||f(x+y)|] = [glx+y)].
implies x = y. If we suppose that H 1is not strictly convex, there
' Now we compute ||f(x) + f(y)||. We have to make a distinction

exist two elements a, b in H, with |[|a]]| = ||b]| =1 and such that

among four cases according to the relationship of |[g(x)| and |g(y)| to 1.
a#b and [[atb[]| = [[a]] + [[b[]. :

If lg(x)] <1 and |g(y)| s 1, then (x) + f(y) = (3(x) + g(y))a

The elements a, b are linearly independent (If for example

= + a
a=2b, then [A] =1 and |M1] =2 sothat A =1 which is impossible). 9(x+y)
Moreover, when A and u are of the same sign (both positive or both and so |g(x+y)| = ||f(x) + f(y)|].
negative) we get f If Jg(x)] < 1 and |g{y)| > 1, then f(x) + f(y) = (g(x) +s(g(y}))a
, ‘ + (g(y) - s(gly)))b
(7) [[xa+ub|] = |(x[la]] + U[Ibll)‘ = A+“l and so both coefficients of a and b have the same sign. Thus
Indeed, if for example u > X > 0, we can write , _ [1F(x) * Fly)]] = Ja(x) + s(g(y)) + gly) - s(g(y))] = |g(x+y)]
[{Aatub|| = |[u(atb) - (u-A)al] = ju|latb]| - (u-1)]la]] . If Jg(x)] > 1 and |g(y)| <1, the same result holds by symmetry.

If |g(x)] >1 and |g(y)] > 1, then f(x) + f(y) = (s(g(x)) + s(g(y)))a

| [xa+tub]| = Al|a]] + u||b]] + (glx+y) - (s(g(x)) + s(g(y))))b

Either s(g(x)) = -s(g(y)) and then [[f(x) + f(y)|| = |g(x+y)| or both
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are the ones which satisfy the Cauchy equation from R into H.

coefficients have the same sign which also yields \lf(x) + F(y)|| = |g(x+y)|

proof . If H s not strictly convex, the counter-example given with

So, we have proved |[f(x) + f(y)|| = ||f(x+y)|].

Theorem 2.9 could be chosen as an element of B, using a continuous g.

However f 1is not an homormorphism.  For example, there exists

an xj e S such that g(xo) # 0, and changing g - into -g if necessary, If H is strictly convex, let f: R~ H such that

we may suppose o = g(xo) > 0. For n Tlarge enough, g(nxo) > 1. With

IO = [FG) + £

X = nxq and y = mx, we get g(x) > 1, gly) > 1 and g(xty) > 1. Thus

As in Theorem 2.8, we may deduce that f(2x) = 2f(x) for all x eR,

f(x) + fly) = 2a + (g{xty) - 2)b

from the strict convexity of H. The proof proceeds as follows:

[F(2x) + £0AT] = T[]+ )]

f(x+y) = a + (g{xty) - 1)b

Finally as obtained in general. Also |[f(2x)|]| = 2||f(x)|]. So we may write

IF(x) + £ly) - FOey)|] = |]a-b]l # 0.

1£(2x) + 0011 = 1EE e 2 e

The problem of determining those normed spaces characterized by the

and also

equivalence of Eq (1) and the equation of additivity, even in the case

|| f(2x) + f(x)]] < ]le%§)4| + llfﬁ%ﬁl_+ £ |

of S being some group 1ike the additive R, remains open.

However, if we assume some mild regularity on f, defined Thus

over all of R, then we may obtain a characterization of strictly convex

NEERL 4 00 1) = 1EERY )+ (e

normed spaces.

with [[f(gx)ll = |[f(x)[]. Strict convexity of H implies —5=—= = f(x).

Theorem 2.10 Let H be a normed space (real or complex) and consider

By induction, let us show that f{nx) = nf(x). We get

the class B of all f: R > H such that there exists a subset E of

R, of positive Lebesque measure and a Lebesgue measurable function [E(+1)x) [ = [ f(nx) + £(x)]]
h: E =R with [|[f(x)]| < h(x). = | [nf(x) + F(x)]]| = (n+1)]|F(x)}|]
' Then 'H 1is strictly convex if and only if the only functions But
f in B such that for every X, in R '
2t , [F((ne2)x) ] = [+ (x)) + £ < TIFCeD) L+ TGO = (ne2) [ (x) ]

f(x+ = ||f(x) + f ‘
[y ] HF(x) W] As the two extreme terms are equal, we get an equality sign everywhere.
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‘This yields the linear dependence of f(x) and f(y) for all x, y 1in

The intermediate equality yields, due to strict convexity
v RY and so in R. As f(x) # 0 if x # 0, we deduce for x 20 ;

F((n+1)x) = (n+1)F(x)

F(x) = A(x) F(1) with A(x) = 0. But for x =0 x(x) = x. ' i

This process yields also f(rx) = rf(x) for every positive rational r.
: This f(x) = xf(1) for all x = 0 and so for all x < R. Therefore

To proceed further, we need class B. Define g(x) = ||f(x)]], so that
: f satisfies the Cauchy equation, which ends the proof of Theorem 2.10.

g: R~ [0, «»[ satisfy

Note Instead of the class B, we may consider a more general class D

for every positive rational r

g{rx) = rg(x) containing B namely the class of all those f: R~ H with 3

and

g(xty) =< g(x) + g(y) [|f(x)[| <M for all x belonging to some subset E of R such that Q(E-E) ;

thus g 1is a Jensen convex function (cf §2.4) contains a subset of positive Lebesgue measure. (See Chapter IV § 3

xayy - alraly)

9(=5

for the definition of Q(E-E)). With U, in place of B, Theorem 2.10

remains valid.

Moreover g(x) < h(x) for all x e E. A classical theorem, along the

same lines as Theorem 1.2, and proved in Chapter IV (Theorem 4.13)

asserts that such a g must be continuous on R. Therefore, as

g(rx) = rg(x), we get g(x) = g(1)x for all x 2 0 and so

IO = [ [x for all x = 0

But f(0) =0 and f is odd (as ||f(x) + f(-x)|| = 0), so that g¢

is even. Therefore

HEC|] = [IF(] 1x] for all x ¢ R

| [f{x+y)]]

HEMITT Ixty

and for x, y = 0, we get

EGa) ] = [1Fx) + £ 1] = [1FGOT] + [ 1F) [




"2.6 A functional equation from information theory

Our aim in this section is only to explain how conditional
equations appear in informatibh theory. In starting with this theory,
we try to find a way of measuring the amount of information‘containéd
in the occurrence of some event A among other events. The usual
mathematical method, since Kolmogoroff in the thirties, for specifying

a family of events on which we could work, is to consider a probability

space (9, F, P) where Q is a set, F a o-algebra of subsets of Q,
the family of random evehts, and P a probability defined over F.
Our measure of information -contained in A, A ¢ F, shall to
begin with, only depend upon the probability of the random event A.
In other words, this measure of information cdn be defined using a
function f: [0,1] +R so that wfth every A we associate f{P{A)).

A convenient normalization will be to assign

(1)

We notice f(P(Q)) = (1) and f(P(P)) = f(0) so that a second axiom

of normalization for f will be

(@)

The main hypothesis will now be about the information contained in two

mutually exclusive random events A and B. Let us temporarily denote

by I(A, B) this measure of information.

On one hand, we shall assign to I(A, B) the sum of F(P(A))

and the measure of the relative information contained in B with. respect

to the complement of A. Using conditional probability, this amounts

to defining
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P(B)

I(A,B) = f(P(A)) + P(OA)f(ﬁ(ﬁﬁjﬁ '

f(P(A))).

On the other hand, we also prescribe a symmetric relation

(1f B is of probabi]ity.zero, we take I(A,B) =

I(A,B) = I(B,A)

Such relations induce a funhctional equation for the unknown function f.

let x = P(A) and y = P(B), we deduce that

X

Clearly x and y satisfy 0 <x <1 and 0 <y <71. Butas A and

B are mutually exclusive,we must add an inequality which restricts the

domain of validity of Eq (3)

X+y <1

(4)

By definition, an information function is a function f: [0,1] =R
satisfying (1), (2) and (3) for all x, y in the triangle Z where
Z=[{x,y)] 0<x=<1;0=<y=<1;0=<x+y=<1].

Thus, at the very beginning of an axiomatic treatment of information
theory, we come out with a conditional functional equation. It can
be proved (cf'Bib1iography) that.an information function is Lebesgue

measurable if and only if it is of the form

-f(x) = x 1ogzx + (1-x)1092(1—x)

= 0 X =0
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Such a function is generally known as the Shannon entropy. In fact the

CHAPTER III

functional equation (3), with the restriction as given by (4) is very

Conditional Cauchy Equations

close to a conditional Cauchy equation. The following result holds

(cf Bibliography) Programme  We shall begin with a classification of Conditional Cauchy

equations. Five types will be exhibited and the rrest of

Theorem 2.10 f: [0,17 =R is an information function if and only if there

chapter will deal with conditional Cauchy equations of the

exists ¢ 10, »[+R and

first type. We shall look at some extension theorems for

(5) g(xy) = g{x) + g(y) ¥x > 0, ¥y > 0

homomorphisms and we shall end with three applications:

one 1is the Bohr compactification of R, a second concerns a

(6)

Conditional Cauchy equation on a very "thin" set 7 and a

third one is the theory of additive functions in number theory.

(7) f(x) =

Llet G, F be two groups and f: G~ F be a function. Let

However -log,x is not the on]y solution of (5) and (6) and there

Z be a non-empty subset of the product G x G. This set Z may possibly

exist non-{lebesgue) measurable solutions (cf Chapter IV).

depend upon f. We shall say that f satisfies the conditional Cauchy

equation (relative to Z) if for all (x,y) in Z we get

fx*y) = f(x) * f(y)

For the sake of brevity, we shall sometimes say that f: G > F s

Z-multiplicative (or multiplicative if Z = G x G) and even Z-additive

(or additive if Z =G x G) if G 1is abelian.

3.1 A classification for conditional Cauchy equations

Definition 3.1. If any solution f: G ~ F of the conditional

Cauchy equation relative to 7 satisfies the Cauchy equation for all

(x,¥) in G x G, then we say that the condition (Z,G,F) is redundant.

We investigate mainiy two kinds of problems:




First problem. Under what hypotheses is the condition (Z,G,F)
redundant?
The hypotheses may be of algebraic or topological character

It may be about the inverse function £

for 6 or F. or it may

be some mild regularity assumption for f. A1l such hypotheses are

to ensure that the subset Z 1ds "Targe enough”. We shall try to avoid

regularity assumptions on- f. However, it will appear convenient to use
a generalization of Definition 3.1.

E of functions

Condition (Z,G,F) is said to be redundant for a class
f: G- F (or E-redundant)if any function f; belonging to .E, and

Z-multiplicative, is in fact multiplicative.

Second problem. Find the general solution of the conditioha]

Cauchy equation relative to Z, when (Z,G,F) is not redundant.

To facilitate our study, a classification of Conditional
" Cauchy equations 1is useful even if it should not be considered as a

definitive one. This classification is based on the geometrical shape

of Z 1in the product G x G. We always suppose 'Z # 0.

Z=6GxY(Y#0).

Type I. Z is a right cylinder:

I1. Y does not depend upon f;
12. Y depends upon f.

Type II. Z is a rectangle (Z=XxY )or a triangle.
II]. Z 1is a square, X =Y s a subsemigroup;

IIZ' z

II3. z

is a triangle:

is a rectangle

Z=(6y) e X x X xy e XD
(P#X#£6, PFYFG): Z=)

3.3

Type III. Z s an oblique cylinder.

Type V.

We begin our study of

easy lemma.

Lemma 3.1

Z belongs to a proper linearly invariant set ideal.

a11 conditional Cauchy equations with a general and

We define Z* = {(x,y) ¢ 6 x G: F(xy) = F(x)F(y)}.

I1,. 7= {(x,y) € G x G: x.y ¢ Ker f};
L. Z= {(x,y) c GxG: x-y £ X X <G, 0#X# 6.
III3. Z s a " tube".
Type IV. Z ‘1s a generalized cylinder.
IV Z={xy) e G x G f(x) - fly) #13; ‘
' IV, Z=1{(x:y) ¢ G x G: f(x.y) #1 and f(x) * f(y) # 1}. i

Then, if (XO,” e I*

is a subgroup:

GZ = {y e G: (x,y) € Z* for all

Proof. As (x0,1) € Z*, we get f(xo) =
' 1

If yeG,, then 1= f(y"

Finally, if Y12 Yo € GZ, we get Yi¥p € GZ as

Flxyy,) = Flxyg)F(y,) =

F(x)f(y)fy,)

in fact which are embeddable in groups.

for some Xq e G, the following subset GZ of G

y) = f(y_])f(y), so that
fly !y = (f(y))_1.v We notice f(x) = f(xy_]y) = f(xy-1)f(y) and

so flxy’)) = f(x)f(y'i) for all x in G, which yields y~

= F(x)f(yqy,).

It must be explained why we prefer to specify that F and G are groups.
In type II, for instance, we could deal with semi-groups only, but those

Therefore, we prefer to keep within

X in G}.
f(xo)f(1) and so
1

€ GZ.




the realm of'gfoups. There remain many open problems for conditional
equations on semi-groups in general and a good exercise would be to
first check all the results of the following chapters'in the semi-group

case, mainly when the semi-group possesses non-trivial idempotents.

3.2 Conditional Cauchy equations of type I

The first problem, for type I, is solved using the following

result.

Theorem 3.1 Let F be a group with an__element of order greater than 2.

Let G be ahy group. Then (G x Y, G, F) 1is redundant if and only if

the subgroup generated by Y 1is G.

Proof. If the subgroup generated by Y coincides with G, then since. GZ

contains Y, GZ = G follows as a consequence of Temma 3.1; this occurs with-
out the assumption on F. Conversely, suppose that Y generates a
sﬁB%ﬁoUp GO in G with GO # G. Let g: G~ F be any homomorphism
and let h, (G/GO)Z + F be a mapping such that h(w(1)) =1.

- Here (G/GO)Z denotes the set of all left cosets of G relaj
tive to Gy - The canonical surjection G - (G/GO)K is denoted by .

We define h: G - F according to h(w(x)) = h(x). In particular, we

have h(GO) = 1. Let f(x) be the product h(x}) g(x) for all x in

G. We get for all y e GO and for all x ¢ G

h(xy)g(x)g(y) = h(x)g(x)a(y)
h(x)g(x)h(y)gly) = f(x)f(y)

f(xy)

whence f: G- F s Z-multiplicative for 7 =G x G,.
' /

_our assumption on F. Take g

3.5

However, suppose first that there exists an Xq € G such‘that

n(xo) # w(xa]). We may prescribe h(xo)
h(x61) = 1. 1In this manner we get

1= f(x0x5‘) # f(xo)f(xa?) - ¢

yielding that f: G ~ F 1is not multiplicative.

= ¢ where ¢c#1 in F and

On the other hand, suppose m{(x) = w(x']) for all x in G.

As (G/GO)E is not reduced to one point, there exists x, with m(

0

Then prescribe h(xé]) = h(xo)

11

1. We get

- -1 2
1= f(xox0 Y # ¢

which ends the proof of the necessity for Theorem 3.7.
Note 1 If every element of F 1is of order at most 2, but if F ha
at least two elements, then supposing there exist Xg¥g - in G, yo'

which are not’conjugate with respect to GO

coset relative to GO’ we always may construct f: G - F, such that

is (G x GO) multiplicative but not multipiicative. We just have to

xo) f;ﬂ(]).

¢ where c2 # 1 which is possible by

S

é GO’

and not in the same left

.F

define h(n(z)) =1 forall z in G, except for those belonging to

yOGO. We define ﬁ(ﬂ(yo)) =¢ forsome ¢ in F with. c # 1. We
can use f(x) = h(x). Now Xo¥o ¢ Yoy and so ﬂ(xOyO) # n(yo) as

as ﬁ(xo) # ﬂ(yo). Therefore f(xOyO) =1 as well as f(x.) = 1.

0)
f(yO) =c so

1= f(xOyO) # f(xo)f(yo) =lc=c

Note 2 The reason why we avoided general semi-groups for F and G

well

But

can




3.7

easily be seen through the following example (due to Mark Tamthai). Flxty) = glty-£(n(x)) + h{m(x)) - as  m(x+ty) = m(x)
Let F =G be the semi-group 2 with two elements 0, 1 and 0.0 = 0.1 - 1.0 = g(x-g(n(x))) + h(w(x)) + gly) as g s additive on G, g
1.1=1. Then an f: 2 -2 which is (2 x [0])- multiplicative is in fact = f(x) + fly) as g(y) = gly-e(n(y))) + h(r(y)) :

multiplicative (as f(1.0) = f(1)f(0) implies f=0 or f=1 or
(since g(y) = g(y-£(0)) + h(0) = g(y) - g(&(0)) + h(0), we may suppose

that only g(£(0)) = nh(0) holds).

f(x) = x). Thus Condition (2 x [0], 2, 2) 1is redundant but clearly the

singleton [0] does not generate 2 a semi-group : Theorem 3.1 cannot
Conversely, let f: & > F be a (G x Y)-additive function. We

be extended to semi-groups in general. .
syppose both F and G to be abelian groups and clearly g: GO -~ F _being

The construction we gave to prove Theorem 3.1 immediately leads L .
the restriction of f to GO is additive. Let & be a 1ifting such that

to the solution of the second problem for conditional Cauchy equations (0) = 0
£(0) = 0. 1

of type I. We choose to prove it in the abelian case only. In order

1l

fx-g(m(x))) + fle(n(x))) = glx-£(n(x))) + f(&(n(x))) as x - &(n(x))

to properly state a result, we need to select arbitrarily a 11ft1ng‘

is the subgroup generated by Y for a G abelian.

£: G/G0 + G, where G belongs to GO. From a set-theoretical point of view g(G/GO) and

0
By definition, a 1ifting £ relative to G, is a mapping &: G/Gy > G ~ G/ areisomorphic. There exists h: G/G, > F, which is defined

according to

such that wot 1is the identity on the group G/GO. We denote by g the

~

restriction of function f to 6; 1in order to get h(x) = F(g(x))

for all X in 6/Gy. Thus

Theorem 3.2 Let Y be a nonempty subset of an abelian group G. Denote

by GO Athe subgroup of G generated by Y. Suppose F to be an abelian f(x) = g(x=g(m(x))) + h(m(x))

group. A mapping f: G -+ F satisfies a conditional Cauchy equation

= 0, we deduce that h(0) = f(0) = 0, which ends the proof of

('aai
—
o
~—

]

relative to G x Y if and only if f can be written in the form

Theorem 3.2. (If we were to take £(0) # 0, we should conclude that

(1) F(x) = g(x - £(n(x))) + h(r(x))

.~ Note 1 If there exists a 1ifting & which is a homomorphism, then the

where h ;G/G0 + F is a function such that h(0) = 0, g is an additive

function g: G, ~ F, £ dis a Tifting relative to G, with £{0)' =0

. _abelian G can be-identified with the direct product GO ) (G/GO).

0
and m: G > G/G0 is the canonical epimorphism.

Within this identification we may write any x in G in the form

Proof: Let f satisfy relation (2) with the stated properties. X" 8 x" where x' <Gy and x" ¢ 6/Gy. In this case the general

For ye¥,




3.9

solution f: G- F for type I can be written és £(x) = g(x*) + h(x") a necessary condition for the redundance of condition (G x Y, G, F). A

where g: G- - F is additive, where G. is the subgroup generated by' convenient counter-example comes from the Cantor ternary set. Such a
00 > 0

Y in the abelian group & and where h: 6/Gy~F is any mapping such | set is defined as the set of all x in [0,1] which can be written

that h{0) = 0. with no 1 in some expansion in base 3. It should be clear from the

Note 2 It can be checked that the general solution of a conditional definition that any number in [0,1] is the midpoint between two points

Cauchy equation of type I, in ‘the non abelian case, is of the form belonging to the Cantor set.  To prove this rigorously, let us write any.

x in [0,1] in an expansion of base 3.

£(x) = h(r(x))g((£(n(x))) ')

© X,
‘ = a

where £ s a lifting relative to (G/GO)K’ GO being the subgroup : X = 121 31

generated in G by VY, h: (G/GO)K »~ F a mapping, g: GO ~F a where X; = 0, 1 or 2.

multiplicative mapping and h(m(1)) g((EMN) = 1. ‘ : If x; =0, we define y. =2z,=0
‘ i . i i :

In order to get a redundant condition of type I, we shall , _ . o o . ..
» ‘ ~ | If X; = 1, we define ¥; = 23 Zi =0 if i 1is even, or
investigate three cases implying that Y generates the group G. We only ‘ 0.z =2 for odd i

i

get sufficient conditions. It x; = 2, we define Yy =z, = 2.

Corollary 3.1 Let G be a locally compact and connected topological Therefore

group, and F be any group. Define Z =G xY where Y 1is a subset

<

B o i B oo 2
of G. Suppose that Y has a (strictly) positive Haar measure. Then Y= Z = and z-= .Z i

(Z,6,F) is redundant. The proof is a simple generalization of lemma 1.7. +
' : Both y and 2z are in the Cantor set and are such that x = sz.

We may always suppose Y to have a (strictly) positive and finite Haar
Therefore, the subgroup generated by the Cantor set is R. However the

measure on G. Using the convolution Xy * Xy, we deduce that Y + Y
Lebesgue (i.e. Haar)measure of the Cantor set is zero. To prove this,

has a non empty interior. The subgroup generated by such an interjor
we need another construction of the Cantor set, step by step. Let

is open. It must also be closed because i x belongs to the closure

w X,
1 x e [0,1] and -—} »  Wwhere X; = 0,1 or 2, is one of its expansions
i=1 3 :

of an open subgroup, there exists vy in the subgroup such that xy '
belongs precisely to the open subgroup; therefore x also. vThe ) in pase 3. Let E] be the gubset of all x e [0,1] such that at least for
connectedness of G ends the proof. one such expansion, we get X1 # 1. More generally, let En be the

Note 3 The measure-theoretic condition provided by Coroliary 3.1 is not subset of all x in En-1 such that for at least one expansion of X,

we get Xp # 1. The sets E], E2""’En"" are closed subsets of




Let 6 be any non empty open subset of G. For n > 1, and

R. Each of these subsets has a Lebesgue measure equal to 2/3 of the

py induction, we choose Un’ non empty open subset, for which Uh s

measure of the previous one. The Cantor set is the intersection of all

such E . Therefore its Lebesgue measure is Tess than (2/3)" for all compact in U, n 6 . To begin we set Uy = 8. Our choice at the nth

4]
_step is‘possib1e as 6 is regular, and Tocally compact and Un—] n e, 0

n > 1, which means it is zero. Another completely different approach

oo

for redundancy of type I comes from topological considerations. since en is dense. Therefore U = n Uh cannot be empty by a compactness
n=1

argument. But @ # U cﬁn U yn6,c0n6. Thus 8nX#p which

Corollary 3.2 Let G be a connected topological group. Suppose G to

be locally compact or metrizable and complete for some metric generating ends the proof of the density of X in G. The sahe proof works mutatis

the topology of G. mutandis fora complete metrizable topological space. Instead of a combact

Suppose Y 1is a second category Baire subset of F for which

Uh, choose Uh to have a diameter less than 1/n and conclude with a

there exists a non-empty open subset 6 of G such that (Y6 is of completeness argument. To prove Corollary 3.8 now, we start from a sec-

first Baire category. ond category Baire subset Y of G, where G 1is a connected topological

Let F be any group and Z =G x Y the conditional set. group which is also either Tocally compact and abelian or complete and

The condition (Z,G6,F) s redundant. By definition, a first category metrizable. Let © be a non-empty subset of G such that 6 n § Y is of

Baire subset of a topological space is a countable union of subsets A first Baire category, as provided by our hypothesis (seomtime this property

for Y s called Baire property). Let xe¢6, ¥V=06-x, and Z=1Y - x.

for which ,ﬂh has no interior. A second category Baire subset is a

subset which is not of Baire first category. We shall say that a Thus V' is a neighbourhood of the origin and for any t in V (V # p)

topological space G is complete and metrizable if for some metric ~ We define

V, =V n (t-V)

generating the topological G, this space is complete. A classical result t

will be needed for the proof of Corollary 3.2. Uy fitself is not empty as t e U, and open. Moreover from

Baire Theorem 3.3 A non-empty open subset of a regular locally compact

Vin€GZcvnbz=(6n(Y) - x and from vy n ((t-2) « (tV¥) nt -0z =1t - (vn2),

space or of a complete metrizable space, is of second Baire category.

we deduce that Vt nfz and Vt n §(t-z) are of first Baire category. So is the

Proof It is required to prove that U An does not cover any non empty
n=1

__union of the two subsets, i.e. Vt n G(Zn(t-2)). But v
open subset of the topological space G whenever ﬂh has no interior, '

itself, as

t
a non-empty open subset of our group G, is of second Baire category.

for all n =2 1. We use en = c(ﬁh), which is an open and necessarily
dense subset of the given topological space G. Define X = n 8, To
n=1

(It is here that we need the hypotheses made over G, so that we may

apply Baire's Theorem 3.3). Thus Vi n (Zh(t-Z)) must be of second

prove the result, it suffices to show that X s dense in G.



category, which proves that Z .n (t-2Z) 1is not empty. Therefore, for Some other interesting results are known, using other ways

every t in UV, there exists yyeZ and zje Z with of measuring the width of Y, so as to ensure that Y generates the whole

group. For example with various "thin" subsets of harmonic analysis

o=t - 7%

- (say with Hausdorff measure, for instance). We have no room here to

state precisely the results as the necessary introduction of new and more

With y0>= -Xxt+ty,ye¥ and/ 20' -X + 2z, z ¢ Y, we deduce that

complex techniques would not be in harmony with the elementary aspect

r=y+2z~-2x

of the present notes.

which yields: Y+ YoV + 2x andso Y + Y .contains a non-empty open

3.3 Conditional Cauchy equations of type I2

subset of G. The subgroup thus generated by Y is G as in Corollary 3.1

yielding the redundanéy of the condition (Z,G,F).

Note 4 The condition in Corollary 3.2 is not a necessary condition for when Y depends upon f, the unknown function. However Theorem 3.2 will.

the redundance of (6xY, G, F). We may again use the Cantor ternary set, suffice. We investigate here some special cases, such as: - [Y = Ker f

which is closed with an empty interior to illustrate this. (For any x or Y = Imf.

in the. Cantor set, we may always find y, not in the Cantor set, as close

Proposition 3.1 Let F, G be any group, and Z, G x ((Ker f). Then

as we Wish to x, for example by replacing X; by 1 for i Tlarge enough (Z;G,F) is redundant.

in aternary decimal expansion of x). The Cantor set is thus of first Proof We get f(xy) = F(x)f(y), for all x, y e G such that f(y) # 1.

{y € G: f(y) = 1}

Baire category but generates R. (RxY, R, R) is a redundant condition. to Corollary 3.3, it is enough to prove that Ker f

Note 5 ‘We shall show later that it is not possible to only suppose Y is a subgroup. In fact, f(1) = 1 as always when Z is a right

to be of second Baire category,.even in R, without assuming the Baire cylinder. Moreover, if x e Ker f, then Ve oker f since, otherwise,

property, for Corollary 3.2 to be valid (cf. Chapter IV §3). 4 we would get 1 = f(xx“]) = f(X)f(X_1) so that f(x—]) = 1 which is a

Another way of measuring the size of VY; purely algebraically is:

contradiction. In the same way, suppose y] e Ker f, Yo € Ker f and
1

Corollary 3.3 Let G be any group and suppdse that Y#9P and [Y is a

Yi¥o £ Ker f. We get f(y;

= f(y7] -
Yi¥,) = fy77) flyyy,) and so 1= f(yy,)

subgroup. Define Z = G x Y. Then (Z,G6,F) 1is redundant for any group F. which yields a contradiction.

Proof When x ¢ §Y and y e Y, then x - ¥y ¢ Y and so any x in- QY Our second case is with Y = Imf. Here we have to suppose that F is

can be written as y1y£] where y],yz e Y. This means that G. = § a subgroup of G and, without Toss of genera11ty, we suppose that G = F.

0

and we conclude this proof via Theorem 3.1. The conditional Cauchy equation relative to (GxImf, G, G) becomes

Theorem 3.1 is of Tittle use when dealing with type 12, that is

Due




the following functional equation in the abelian case

(2) fxrf(y)) = £(x) + F2(y)  for all xy e @

(Here 'fz(y) means f(f(y)).
The following theorem gives the general solution in the abelian case. We

use a 1ifting &: G/H -+ G 4.e. an application & such that

vHogonH = Ty where T is the canonical epimorhpism = G -~ G/H.

HZ

Theorem 3.4 Let f: G > G be a function on an abelian group G. f

satisfies Eq (2) if and only if there exists a subgroup H of G, an

additive g: H - H, a lifting £:G/H + G, a_mapping h: G/H >H
such that h(0) = g(g(o)) and

(3) | £(x) = hlmy(x)) + 9(x-E (m,(x))

Proof Let H be the subgroup generated by Imf. Using lemma 3.7, we

notice that f satisfies a Cauchy conditional equation relative to
G x H. With a sTight modification on the ranges of h and g, we may apply
Theorem 3.2.

| Conversely an f: G -+ G, satisfyihg Eq (3), is a solution of
Eq (2) and in fact f: G - H.We now deduce the following redundancy

result.

Theorem 3.5 Suppose that G is an abelian group which possesses a non trivia

for any x not in H. Here c is an element different from 0 in H.

 Then f s a solution of Eq (2) (or (ZG,G) additive). However, f cannot

be additive as there exists x, y in G and not in H such that

x +y toois in G but not in H (because the index of H 1is distinct

from 2 and 1) and so

Flxty) = h(mGety) = ¢ # £(x) + £(y) = h(n,()) + h(ny(y)) = ¢ + c

Note We.could also suppose that there exists a non trivial subgroup H

G/H

in G and an element x 1in such that 2x # 0. 1In such a case,

we take ¢ # 0 in H as previously and x in G . such that -nH(x) # ﬂH(X).

Prescribe g = 0, h(wH(x)) = c, h(-nH(x)) =0, h(0) = 0 in (3), and

arbitrary elsewhere. The function - f, defined via (3), is Z-additive with

Z =6 x Imf but not additive as

0= f(O).= f(x~x) # f(x) + f(-x) = c + 0= ¢.

Theorem 3.5 means that Imf is too small a size to imply redundancy for

(GxImf, G, G) in general. Regularity assumptions for f, Tike continuity,

2

would change nothing in general. For example, with G =R

(an abelian

group for the addition), define

£(x,y) = (y%,0)

“Clearly f: R2 »-Rz is  (GxImf)-additive, but not additive. However,

proper subgroup H of index different from 2. let 7= G x Imf.

In this

case, condition (Z G, G) is not redundant.

Proof 1In (3), with the subgroup H as provided by the hypothesis, we
prescribe g = 0 and h(ﬂH(X)) =0 for any x in H; h(wH(x)) =c

for the special case where G =R, we get

Proposition 3.2 Let f: R =R be a continuous function satisfying

(4) f(x+f(y)) =fU)+f%y) for all x,y in R




Then f is additive and for some o in R, f(x) = ox. The condition

f(0) = 0 is a consequence of type 12.\ If f 1is constant, we deduce

that f= 0. If f s not constant, its image has a non-empty interior.

Therefore such an image generates R as a group and Theorem 3.1 implies
the redundancy. To end our discussion of Eq (2), we may find ifs bounded

solutions. The following result is easily obtained.

Proposition 3.3 Let f: G > G be a bounded function on a Hausdorff

topological linear space G over the rationals. Then f satisfies

Eq (2) if and only if there exists a subgroup H of G such that

f: G > H, f(xtH) = f(x) for all x in G and f(H) = 0.

The given conditions are sufficient. To prove the necessity, recall that

for f to be bounded means that for every neighbourhood V of the origin
of G, there exists an integer m and f(x) belongs to mV for all x
in G. By induction, the functional equation (2) yields for all positive

integers n

Flx+nfly)) = F(x) + nf(y)

which implies that 2 = 0. Thus f(x+f(y)) = f(x) for all x,y in

G. We now define H as the set of periods of f, that is the set of all
2 in G such that f(x+z) = f(x) for all x in G. Suchan H 1is a

subgroup and f(0) = 0 yields f(H) = 0.

part of x, (i.e. the greatest integer less than or equal to x). HWe get

as a functional equation for f

(5) O R(e(y) = F(X) )

Examples a) Let G =R and for all x in R, let f(x) be the integral

But fz(y) = f(y) for all y in R and so we deduce Eq (2) for f. We
shall 1§ter solve Eq (5) in any abelian group (cf Chapter VI §5). vTo
write f according to (3) is easy by taking H = identifying R/Z

with [0,1[, at Teast on a set-theoretic point of view, and letting h = 0

3

5("H(X)) = nH(x),‘g(n) =n forall n in Z

b) Let G =R and for all x in R Jet f(x) be 0 if x is
a rational number (xeQ), 1 otherwise. Theﬁ f(x+f(y)) = f(x) and
y) =0 so that Eq (2) is valid (It is Prop 3.3 with H=Q).

Note The general solution of the non abelian version of Eq (2) on a group
F(xf(y)) = £(x)F2(y)

will be

£(x) = h(r(x))g ((£(n(x)))"'x)

where & s a lifting relative to (G/H)z » H being a subgroup of G,

h a mapping h: (G/H)K +H, g: H->H amultiplicative mapping and

(1)) = g(g(n(1))).

We leave to the reader the task of proving the following theorem where
another functional equation analogous to Eq (2) is solved on an abelian
group. ' |

Theorem 3.6, Let G be an abelian group. An f: G + G satisfies the

functional equation

(6) Fx+y-f(y)) = f(x) + fly-f(y))  forall x,y in G

if and only if there exists a subgroup H of G, two Tiftings ¢ and> r




relative to H and an additive g: H > H such that g(£(0)) =¢(0)

and

(7) f(x) = o (my(x)) + glx-g(my(x)))

Corollary 3.4 The only continuous solutions f: R R of Eq (6) are the

continuous additive functions.

-Corollary 3.5 Let G, F be ahelian groups. Llet X,Y be non empty subsets

"of G. Then if f: G~ F satisfies forall xe X;y e Y ggg_ zeh

(8) £(x) + flyr2) = Flxry) + £(2)

Then there exists £ in F, Xq in X and with the notations of Theorem 3.

f(x) = £ty + h(n(x-x4)) + g(X-xO-E(w(x-xo))'

“ Proof Let x, in X and consider J(x) = f(x+x0) - f(xo).> With x = xs

yeY and z=12z+ Xg» We deduce from the given functional equation that

fy+z+xg) - f(xo) = fxgty) - flxy) + f(Z+X0) - fxg)

jly+z) = i(y) + j(z) forall y on Y and z in G

We are back to Theorem 3.2.

3.4 An application to some extension problems for homomorphisms

We start from a subgroup H of an abelian group G and from
a given function g: H > H. We are looking for an f: G > G such that

for all x in G and all v 1in H.
)] fx+r) - f(x) = g(r) XeGyreH

Proposjtion 3.4 let g: H~->H be a mapping where H is a subgroup of an

abelian group G. A necessary and sufficienf condition for the existence

of an f:

G >~ G_satisfying Eq (1) is that g be additive. In such

a case the general solution of Eq (1)

(m fxtr) - f(x) = g(r) for all x in G, all r in H

is (2) F(x) = himy(x)) + glx-£(m,(x)))

. where h: G/H + G 1is an arbitrary function and &: 'G/H > G 1is a lifting.

The interest -in Propositfon 3.4 Ties in the fact that for a $o1ut10n

f: G6~+G of Eq (1), F(x) = f(x) - f{(0) is an extension of g to all

of G. Before proving Proposition 3.4 we may ask for conditions under
which such an extension F happens to be additive. We state :

Proposition 3.5 Let H be a divisible subgroup of an abelian group G.

let g:"H'+~H be additive. There exists an additive f: G - H satisfxfng

for all x in G, all r in H

(1) fx+r) - f(x) = g(r)

and of the form (2) for some convenient h and £.

Proof of Proposition 3.4 If a function f: G- G satisfies Eq (1);~we

may. suppose f(0) = 0 without loss of generality. Therefore with- x =0
in Eq (1), we deduce that f(r) = g(r) for every r in H. Now, for

X, v in H
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glxtr) - g(x) = g{r) . (2) Fx) = h(m(x)) + g(x-£(m,(x)))

which proves that g 1s additive. If there exists a 1ifting & which is additive, then h too has to be

Conversely, suppose that g: H - H s an additive function, additive and G 1is being split in a direct sum: G/H @ H.

and consider the following f We may now ask the same question as in Proposition 3.5 under some reguiarity

conditions.

(25 f(x) = h{my(x)) + g(x-g(m,(x)))

iti .6 L H b i i
where £: G/H > 6 1is a given 1ifting relative to H and hi G/H>H an Proposition 3.6 Let e a closed subgroup of an abelian topological

. ~ . rou G. Suppose g: H -+ H is a bicontinuous bijection. Then there
arbitrary mapping except that h(0) = ¢g(£(0)). We compute for x in G ; 2Uppose g J

d i H exists a _continuous f: G~ H such that
and r in : "

fxtr) - £(x) = h(my(x)) + glx-&(m (x))) + g(r) - f(x) ; (1) 5 f(x4r) - f(x) = g(r)

g(r) ' ' for all _x in G and all r in_H if and only if the two following
Therefore f 1is a particular solution of Eq (1). It should be noticed

conditions are fulfilled.

that f takes its values in H. Now, the difference of two solutions of Eq ( (i) g is additive

fs a function f' which satisfies for all x in G and r in H (i1) there exists a continuous 1ifting relative to H.

p . ., .. . cey . .
£ (xtr) = £'(x) ; Proof From Proposition 3.4, conditions (i) and (ii) yield a continuous

: solution of Eq (1). This proves the sufficiency part of Prop. 3.6.
Canonically f' defines a function from G/H into G, i.e. some

( Conversely, let us suppose that there exists a continuous
h': G/H -~ G. This ends the proof of Proposition 3.4.

solution f: G~ H of Eq (1). Without loss of generality we may add
'Proof of Proposition 3.5 We shall prove in the next chapter (Theorem 4.1) V £(0)

= 0. Condition (i) is immediate. As g 1is a bijection, for any x

that g: H - H, for q divisible group H and an additive g, can be in IG, there exists a unique o(x) in H for which

extended into an additive f: G - H. For such an f, we easily notice that

v f(x) + g(a(x)) = 0
f(x+tr) - f(x) = f(r) = g(r) for all x in G and all r dn H. Therefore

, : .. Let us which functional i : isfy.

let £: G/H~ G be a given Tifting relative to H. As in Proposition 3.4, See which Tunctiona gquat1on 9 G H omust satisfy. e
‘ . ~ notice for a r in H and i G

there must exist an h: G/H -~ H for which the additive f: G - H € ny ¥ ‘1”

can be written as

n

fxtr) + g(a(x)-r) = f(x) + g(r) + gla(x)) - g(r)
f(x) + g(a(x))

=0
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By the uniqueness of o(x), we deduce for all x in G, r in H

a{xtr) =a(x) - r

Therefore we define &': G + G according to

g'(x) = x +a(x)

As g is bicontinuous, the mapping &' s continuous. Moreover, for

any r in H and a1l x in G

g'(x+r) = £'(x)

e x+rta(xr)=x+r+a(x)-r=x +a(x) = £'(x).

because of E'(xtr) = -
If we put on G/H the quotient topology, &' canonically defines a continuous

£: 6/H > G. Let us prove that £ is a {continuous) 1ifting.

nHOE'(x) = “H(x) - :H(a(x)) = my(x)

or ‘

This ends the proof of Propositioq 3.6.

Note Proposition 3.6 is no 1onger'valid if the range of f s not

A counter-example is as follows.

prescribed to be included in H.
in Z. There exists

Use G=R and H= Z. Use g(n) =n forany n

no continuous 1ifting from R/Z.into R. However, the identity mapping

on R is clearly a continuous solution of f(x+n) - f(x) =n for all

x in R and all n in Z.
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3.5 Bohr compactification

The construction to be studied in this section is to be used
to show how non singular solutions of Cauchy functional equations arise
naturally and play a serious role in some classical problems in analysis.

Some results from functional analysis will be required as well

as a result from number theory.

3.5.1 Bohr almost periodic functions

Let P be the set of all functions f: R +C which can be
written in the form
: : Py iag
(1) f(x) = ] cpe
h=n]
where Nys N, are integers with ny < Nys the ch's are complex numbers
and the Ah's real numbers.

P is clearly i complex linear space of infinite dimension.

We may define on P a norm, specifically the uniform norm, according to

[IF]] = Sup[f(x)]
xeR
; n2
||f]] is finite for any f in P as [|f]|] s " ) |ch|; |If]] = 0 if and
. =n
1

only if f =0, that is ¢, =0 for all -h's; |[|Af|]| = |A] ||f]] for all
Ae € all fep and [|f+g|| < |[f]] + [[g][, for all f, g in P.

P is thus a normed space, but not a complete space. In order to deal

with a Banach space, we define A to be the closure of P in the Banach
algebra Cb(R), of all bounded and complex-valued continuous functions over
R equipped with the uniform norm. In other words, an element f of A

is a function f: R > C which is the uniform 1imit of some sequence

Rt

O e e

e
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ME)] < 1IF

a Cauchy sequence in P, and so converging towards f in A,

+
then E—-J f(x) dx 1is the uniform limit for T >0 of §l-f
-7 v

Tim [Supf(x) - £, (x)]] el

n+o  xeR

. fn(x)dx.

A then appears as a Banach subalgebra of C, (R) as P itself is a We easily deduce the existence, for all f in A, of

subalgebra. . An element of A is usually called a Bohr‘a1m05t periodic

.
(3) ‘w=uWirfmu

2T
Such a function is both cont™ n~us and bounded. It is easy Tooo -T

function.

to find examples of Bohr almost perio({55’ ;“tions. Every continuous Mf is called the mean of f. Such a tool may lead to a generalized

and periodic function f: R > C, for aw) .1, is a Bohr almost periodic harmonic analysis of Bohralmost periodic functions by looking at all

1
r‘" J—ocn\
function. This comes from Fejér's Theorem, wi. Oniczserts that every

M(fex).This will not be our purpose here. We aim at a global study of A.

~

continuous and perjodic f: R - C, of period T 7 \],15 the uniform Timit . . _
! 3.5.3 The Bohr group We Took for the set B of all functionals x acting

of (finite) trigonometric polynomials f, namely
‘ on A

~

Xx: A-C

n 2imh¥
b = T 0= dihe e T

where X is both linear and multiplicative, i.e.

where ch(f) is the h-th Fourier coefficient of f (a) ;(Af+ug) = A;(f) + u;(g) for all x’ﬁ e C and for all f,q ¢ A

(b) x(fg) = X(f) x(g) for all f, g c A .
{c) ;(eo) = 4

+T/2 -2imh
(2) cw)=lf flx)e T dx
- -1/2

An element 2 of B is necessarily a bounded functional, of norm

3.5.2 .Mean of a Bohr almost periodic function precisely one. For the proof, we start from any f 1in A for which

[|f]] <1. Let aeC with |a| > 1. Then ey - g— is an element of

We notice that MFf = Tim =+
1 1
00

+T
f f(x)dx exists for any f in

-T A, which is nowhere equal to zero. As A is a Banach algebra, and as

][£1| < 1, we verify in a classical way that (e, - 50'1 = e 4 £-+ - (g)n o

P since for e%:

=1 if A =0.

x » exp(iAx), A R, M(ek) =0 if A#0 and 0 0

is. too an element of A. Therefore, if X ¢ B

(e

X

Moreover the application Mr [ C 1is linear, bounded and

of norm one as




1= X(eg) = xleg - Dxlle, - D).

- g) # 0 which amounts to saying that x(f) #
|X(f)] < 1.

We deduce that >A((e0
which then proves As Q(eo) = 1, we thus have |[|x|] =1,
where the norm is the usual one on the Tinear space of all bounded Tinear

functionals on A. B 1is not an empty set and moreover, it even contains’

a copy of the set of all real numbers. To see this,take any x in R

in A.

and define X as iA(f) = f(x) for all f Both (a), (b) and (c)

are clearly satisfied. Moreover, the application x - YA, from R into B,

is one to one as for X # Xo s there exists a A ¢ R and so e for which

e, (x;) # e,(x,), so that X] # X5. However, there are more elements in

B than just those induced from the elements of R. To see this, we

~shall characterize B. Let X' ¢B and consider the action of X" over

all ey for A e R; introducing  x.

x(2) = <e,, x>

e =e,, , we deduce for y: R~ .C

AT T

Using e A

x(a+) = x(A)x(w)

(5) Ix(A)] =1

In particular x(0) = 1.

vConverse]y, let x: R~ C satisfy both (4) and‘(5). We define X on

the space P according to
.h=n2
A(f) yoc.x(A) where f= Jce
X = =
h=n] h™"h h=n] h n .

h=n2

Theorem 3.7

-3.27

Clearly x" is a well defined linear functional on P. We notice a

multiplicative property

h=n2 h=n2
A . . A A
X (fe,) = h=§1chX(Xh+X) = h=§] Cpx (A ))x (2} = X2 (F)x"(e)

By linearity on P, we deduce that for all f, g in P :

X (Fg) = X" (£)X (g)

If we can prove that X" is a bounded linear functional over P, then we

can extend it to a complex linear functional over A satisfying (a), (b)

and (c). To show that X" is bounded, we make use of a result from

number theory.

,Z_ be n_complex numbers of modulus one.

Z-I,ZZ,... n

A1,A2,...,Xn be n real and distinct values. Suppose’

Let

let e > 0.  Let

that for any relation

D "h
'\Tlh =

n
) dhkh = 0, with integers dh’ we get the equation
h=1

d ;
1. Then there exists at least some real number x such that

h=1

.,n. Such a theorem is a classical

}éx (x) - zh] < h for all h =1,2,..
h .
one in the theory oaniophantine approxim%tion (see bibliography).
2 2 '
Now let xA(f) = 7 cox() for f= 7 ce, . Weapply Theorem 3.7 to
h:n h h =n h )\h
1 1 '

o
that § oA =0
h=n

z) = X(xh) and A We notice hh implies that
1
n2 o n2 %y | .
5 (X(Xh)) = HH z, = = ¥(0) = 1. Therefore,for any e > 0, we can
=N =n -
'l .

find % ¢ R such that |ex (x) - X(Ah)l < €.
h
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In other words commutative Taw in B. Moreover, if X disin B and 0 is the element

A A~

coming from x =0 in R, weget X *0=0% x = x as (e,,0) = 1 for

i)

n
2
()] < ( I lephet hzg]cheth

1

all x. In the same way for any X in B, the mappingka(%cﬁ) givesrise

to an element x? in B such that x?*x = x*x? = 0. Clearly (B,*) is an

0 abelian group. Moreover, if x and y are in R, then X" * j" = (x#y)"

2
MO e (] e 1) + [ IF]]
h=n1

and so * extends + to all of B.

(B,*) s called the Bohr group of R. To generalize the process

As € is arbitrary, we deduce that leA]] <1 and in fact that |[|x]|]| = we have developed to go from R to B, we define a character of an abelian

and xA(eO) = 1. »We‘thus have obtained a characterization of B. topological group G to be a function x: G ~ C such that both (4) and

A Tinear and complex valued functional x on A belong to B (5) are true for all. A, u in G. We have seen how non-continuous

‘(1.e. satisfies (a), (b) and (c)) if and only if x satisfies (4) and

characters of R, elements of the Bohr group, can be used.

(5) where x(A) = <e,, x> forall A in R. Some topology is needed here. B is included in the unit ball

If now X 1is an element of B, deduced from an element x of of the topological dual A* of A. Therefore, as the unit ball is Hausdorff

~

R, we notice that yx 1is continuous over R as (1) = <ek’ X> = e

there too exist non continuous so6lutions of both Eq (4) and (5) (see

1AX. But ‘ compact in the weak star topology (Alaoglu-Bourbaki Theorem, see bibTiography)

and as B is a weak-star closed subset of the unitAba11, we conclude that

Chapter IV, §3) and those non continuous solutions still lead to an

~

B s equipped with a Hausdorff compact topology.

element of B. It can even be proved (Gelfand's theorem, see b1b1iogfaphy)

Now we shall prove that B can be equipped with an additive * for

that A is isomorphically isometric to C(B), the Bamach algebra of all

which B is an abelian group and * restricted to the injected image of R continuoustand complex-valued functions over the compact B, equipped

in'B amounts to a copy of the ordinary additive operation on R. Let

with the uniform norm:the mapping being f -~ f* where f ¢A and

~

2

~

~ ) ) ~
X4 and Xo 1N B, we define X X

according to f e C(B) according to f(x*) = (f,x").

A A A simple verification shows that the Bohr group of R s a
Cps XTI X T e X o<eys Xp2

compact topological (abelian) group. With the topology involved, the

Clearly X - <e, ,xJ * x§> satisfies both (4) and (5), thus leading to

P .
an element x? * ig in B. We notice that * 1is an associative and

mapping x > X s a continuous, one-to-one mapping, from R into its

compact Bohr group B. The image of such a mapping is dense in B as can
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be proved without difficulty. However the mapping is not bicontinuous. - only the continuous ones for the usual topology on R. This is still a

Another way to Took at the compact topology on B is to notice that a net locally compact group, the dual group of which is precisely the Bohr

x;, in Bconverges to x if and only if for all A in R, (ex,x;) group, which is compact as the original group is discrete. Consequently

converges towards (eA,x). . R” is the set of all real numbers.

Any f in A can be extended to all of B as a continuous If we were to start with R, with the usual topology, we would

complex-valued function. As a consequence,.if ¢ C +C s a continuous get R" =R as its dual group.

function, then ¢of ¢ A for any f in A.

let f ¢ A. Consider the set [ Tx(f)] of all translates

of f for x ¢eR (with rx(f)(y) = f(y-x)). This subset of functions

is relativelycompact in the uniform norm, as is easy to show using the

Bohr group and the Banach algebra C(B). Such a result can be proved to

be a characterization of almost periodic Bohr functions.

The mean M(f) of an almost periodic function is translation

invariant. It yields a linear form on C(B) which 1is also translation

invariant. Such a Tinear form defines the normalized Haar measure of

the compact Bohr group B.

In any locally compact abelian group G, the set of all

continuous characters can be equipped with an addition just by multi-

plying two characters. Such a set is a group and classically called the

dual group G" of G. There exists some topology on G" for which ¢t
gual group v

A deep rooted theorem of

is too a locally compact abelian group.

(¢M"

Pontryagin asserts that is isomorphic, as a topological group,

to G.

What we have done then, was to start with R, but equipped with

the discrete topology, so that we may- consider all characters and not
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3.6 Another conditional Cauchy equation on a “thin" set.

(3) G(y) = a(y) G(H(y)) + (T-a(y)) G(y-H(y))

Up to now, we have been dealing with rather "large" sets. 7

The following consequences should be noticed for H and «a.

With some additional regularity assumption over f, we may proceed to

If F(z) > 0, then from our hypothesis, we get 0 < g(z) < F(z)

far smaller 7. A typical result can be obtained in the plane by using

for 7 some curve. which yields 0 < H{y) <y for all y > 0.

In the same way, we deduce y < H{y) < 0 for all y < O.

let g: R+-R and h: R -»~R be two continuous functions
such that h(0) = g(0) = 0, h and g are not zero and have the same sign hen 0 <aly) <1 fof y # 0. We may use for o(0) any number in

10,10, so that Eq (3) remains true for all values of y. (The case y =0

at any other point.of R and h + g is a bijection from R onto R.

For 7, we take the curve C yields H(0) = 0, the case H(y) =y yields h(x) =0 with y = F(x)

g.h defined using g and h, that is

and so F(x) = 0, which reduces to the first case: y = 0). Our choice

Cqpy = L(a(x), h(x))5 x ¢RI,

g, of G(0) 1s such that G 1is continuous at 0. (Notice that f(0) = 0).

Therefore, Theorem 3.8 appears as a consequence of the following Temma:

Theorem 3.8 Under the previous hypothesis for . g, h, (Cg he R, R)

Lemma 3.2 let G: R »-R be continuous at 0. let o: R +~R be such that

is a redundant condition for the class of all functions which afe

0<al(y) <1. Let H: R-+R be continuous and satisfy

differentiable at 0.

Proof The functional equation of a conditional Cauchy equation relative to for y>0: 0 <H(y) <y

Cg pe can be written as and for y < 0: 0> Hy) > vy

Then if G satisfies Eq (3), G.is a constant function.

(1) flg(x) + h(x)) = f(g(x)) + F(h(x)) for all x in R.

Using F(x) = g(x) + h(x) where F: R >R is a bijection and The proof of this lemma is a nice and easy interplay between continuity

and the kind of convexity exhibited through Eq (3). Eq (3) precisely shows

y = F(X), Eq (1) is transformed into

-1 -1 that G(H(y)) and G{y-H(y)) cannot simultaneously be strictly greater
(2) fly) = f(g(F "(y))) + f(y - g(F {y))) for all y in R.

than G(y) or cannot simultaneously be strictly smaller than G(y).

It is nicer to transform (2) into a functional equation with some

Thus, we start from a yo, an arbitrarily chosen positive number. We

convex appearance. We define H(y) = g(F'](y)) and G(y) = f§¥l for

construct a sequence [yn]nzo as follows. If Vyn is known, ¥, .4 is one

y # 0, but G(0) = f'(0) (The derivative of f at 0, which existence

of the two possible values H(yn) and y, - H(y,) ; the choice being made in

is assumed in Theorem 3.8). Eq (2) becomes, at least for y # 0 and

y # H(y), through the introduction of afy) = H§¥l

such a way that G(y,,;) < 6(y ).
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We also construct a sequenée [y'n]

=0 as follows. We start frgm 2 yO

(4) - f(2k) = f{x+sin x) + f(xfsin.x)

If v,

,yé - H(yé) such that G(y6+]) > G(yﬁ). The sequence [yn]nzo is non-

is known,

Ype1 s that one of the two possible values H(y ) or Corollary 3.6 Let Z be the graph of a strictly increasing continuous

function h: R >R with h(0) = 0. The condition (Z, R, R} is redundant

increasing and bounded below by zero.

for the class of all functions differentiable at 0.

Otherwise stated, when f'(0) exists, the only solution f: R >R of

< Ypap < Max(Hly,)s vy, - Hly)) <y

(5) , f(xth(x)) = f(x) + f(h(x))

Similarly we find that [yé] is non-increasing and bounded below.

n=0

the reqular ones (f{x) = ax for some a din R) when h: R ->R 1is a
The sequence [y, ] then possesses a Timit, y_, which satisfies th are 9 (f(x) )

n=0

strictly increasing and continuous function, zero at the origin. (With

" following inequalities

g(x) = x, conditions for Theorem 3.8 are fulfilled as "x + h(x) is a
¥, < Max(H(y_), vy - H(y_))

In
<
8

continuous bijection from R onto R, Lim {x+h(x)) = -= and
X>=00

using the continuity of H.. This yields either Y,=0 or y = H(ym).

Lim (x+h(x)) = +e, x + h(x} 1is strictly increasing, continuous and
X+

we already noticed that the last case implies 1im Y = Vo = 0. The same
. . [ atd X

are not very oscillatory and we should Tike

h(O) = 0). Curves like Cg,h

to obtain at least the regular solutions of Eq (5) for rather general

result applies to the sequence [yg]n>

n
<
i
o
g}
o
i
=]
«Q

9> SO that Tim y!

n-rco

back to Yy and yﬁ, we may write continuous h, and not only for the continuous and strictly increasing ones.

Let us define the cone C] = [(x.y); x=y =0 and 0 <y < -x and

n n

- Gly,) < Glyy) < G(y}) ‘
. 0>y >-x] in the plane

i

Thus with the continuity of G at O, G(yo) = Lim G(yn) Lim G(yh) = G(9)

Nn—>co n-o

J/rA

proving G vis constant, at Teast on R, as Yy was arbitrarily chosen

on this set. But the same argument works for Yo < 0, using an inequality

of the form Yy < Min(H(yn), y_ - H(ly)) < Yos1 < 0. This ends the proof

n n

of the lemma 3.2.

Example f(x) = ax (a arbitrary) is the only solution, which is differentiabl

at 9, for the functional equation
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Theorem 3.9 If 7 is the graph of a continuous h: R ~+R with h(0) =0 ; and f(0) = 0. The function f as constructed above is continuous on

and if Z is included in the cone C], then (Z, R, R) 1is redundant for [0, and satisfies Eq (6) there. For example at point x = 1 we get

the class of odd functions having a derivative at 0. ‘ , 1imf(x) = ¢(1) = Tim f(x) = lim 2¢(%J = Tim 2¢{x) = 2¢(%); and at point
v x>1 X1 X1 x>
With H{x) = -h(x), wé may write Eq (5) as x<1 : x>1 x>1 X>%s

F(x) = Fle-H()) - F(-H() ' £ 7 00 Lim £x) = Vim 2%(Cg) < 0= £(0) as ¢ is bounded on [,11).

= f{x-H{x)) + f(H(x))
With the help of another ¢ on [-1, -%[, we may construct a continuous

In the same way, as with Theorem 3.8,under the same kind of conditions, solution of (6) depending upon almost arbitrarily chosen ¢ and .

“we can reduce such an equation to Eq (3),using our hypothesis concerning the (However if we require f to be differentiable at 0, it is casy to see

inclusion of 7 1n C1' lemma 3.2 yields the conclusion. Clearly, the or a consequence of Theorem 3.8,that both ¢ and ¢ must be of the form

curve C] can be replaced by its reflection through the line y =X vithout ax for some - a in R). It is still an open problem to solve Eq (5), with

changing the conclusion of Theorem 3.9. ' It should be interesting to find just a continuity assumption, when h is precisely the unknown function

a possible generalization of Theorem 3.9 in the case R2 for example and Foviz:

we have tried to state theorem 3.8 or theorem 3.9 using as little as

‘ (7) fx+f(x)) = f(x) + f(f(x))

possible from the particular case R. The existence of a derivative at 0

for f s essential for the validity of Theorem 3.8 or 3.9. If we just _ There are solutions of the form x > Sup(0,ax) or x > Inf(D,ax). More generally all
: . ' - 5 . o .

request that f be continuous, then the general solution of an equation continuous indempotent <f( )zf) solutions of Eq (7) are known (cf Chapter VI)

Tike (1) or (5) depends upon an arbitrary (continuous) function and since in this case it amounts to solving
(Z, R, R) s no longer redundant for the class of continuous functions. (8) | fx+f(x)) = 2f(x)

This can be shown through a very simple example where h(x) = x in Eq (5). To end this section, we just notice that Lemma 3.2 provides the following

(6) £(2x) = 2f(x) x <R characterization of the exponential function.

Theorem 3.10 let g, h be two continuous functions satisfying the same

Let ¢ be a continuous real valued function on [%31] such that 2¢(%) = ¢(1 .
conditions as in Theorem 3.8. Suppose f: R +R is differentiable at 0

We define
and f{0) is strictly positive. If f satisfies

~for X e ]%3 1]
and - for x € 12", 2", n ez (9) fg(x) + h(x)) = £(g(x)) F(h(x))

for all x in R, then there exists an a ¢ R such that

f{x) = exp(ax)
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by the so-called Hamel basis in order to get the general solution of the

3.7 Additive functions in number theory

In this section, we intend to play with two different binary - Cauchy equation). We shall still restrain the set of solutions by Tooking

“laws, for simp]fcity addition and multiplication on the set of real numbers. at functions f: [1, «[+R sUch that

Arithmeticians for example, have for a long time considered functions

(3) f(xn) = f(x) + f(n) for all x in [1,~[and a1l n 1in N.

.

f: N+-R (N=1,2,...) such that for all relatively prime numbers m, n

Eq (3) amounts to a conditional Cauchy equation with G.= R: =

10,o[ an abelian

in N we get

group for multiplication and F =R, the usual abelian group for addition. j

(1 f{mn) = f(m) + f(n) {mon) =1

Indeed, Eq (3) can be intepreted as a conditional Cauchy equation of type I.

A classical example is the Euler function which associates with any integer To see this, we extend f to  J0,o[ according to

n .the number of its prime divisors. In particular, the Euler function is

F(x) = f(nx) - f(n) for some integer n such that nx = 1

equal to 1 on any prime number. More generally,let the values of a function

f: N -~R be arbitrarily given on the subset of all prime numbers. We

To see that the definition of F makes sense, we notice that if nx = 1

use the unique representation of an arbitrary positive integer n as a

and mx = 1, then

product of powers of prime numbers

f(nx) + f(m) = f(mx) + f(n) = f(nmx)

h h
n = p]] ot

Moreover, as f(1) = 0, F(x) = f(x) for all x =1. But F: J0,o[+ R

to define f everywhere on N: satisfies

f(n) = hyflpy) + .o+ Fpp) (4) F(xn) = F(x) + F(n) for all x in 10,=[and all n in N.

Then f: N >R clearly satisfies Eq (T) and in fact satisfies more: For the proof, suppose m is an integer such that mx = 1. Then

F(x) + F(n)

u

(2) f(mn) = f(m) + f(n) for all m,  in N. Flmx) - £(m) + £(n)

The example of the Euler function shows that Eq (2) has fe. r solutions than and

F(xn) = f(mnx) - f(m)

"Eq (1). The set of all solutions of Eqg (2) for f: N ~+>R cuiﬁcides with

the set of all real-valued functions defined on the subset of all prime But f(mnx). = f(mx) + f(n) by Eq (3).

numbers (In Chapter IV, we shall replace the subset of all prime numbers



Eq (3) 15 of type I. Therefore, Temma 3.1 shows that Eq (4) holds for all
x in ]0,~[and all n in QI, the set of strictly positive rational numbers,
With the help of Hamel bases and of the general solution of Eq (2), we may
show that Eq (4) still has plenty of solutions. Now we shall make a '

regularity assumption on f to avoid the existence of so many solutions.

Theorem 3.11 A monotonic function f: [1,o[-R 1is a so]ution of the

conditional Cauchy equation

(3) F(xn) = F(x) + f(n). for all x in [1,=[and all n in N

if and only if there exists'a real constant o and

for all x in [1,=[.

(4) f(x) = o log x

The function o log x is clearly a monotonic solution of Eq (3). To

prove the converse,we may suppose f to be non decreasing without Tloss

of generality (replace f with -f). Ue first notice that the extension

F of f, as previously devised, is monotonic like f. (If 0 <xc<

finx) - f{n) < f{nx') - f(n) =

x', there

exists n and nx = 1. Therefore F(x) =

if f is nondecreasing). As F satisfies a conditional Cauchy equation

of type I, we apply Theorem 3.2 to get

(5) + h(m(x))

F(x) = Q(ETE%§779

. . . . + + .t
where 1w is the canonical epimorphism from R, onto R,/Q,, and where
* Kl Kk

g: R:/QI a»RI a 1ifting relative to QI, g: Qi +R a homomorphism

(g(xy) = g{x) + g(y), for all x, y in Q:) and h = RI/QI +~R some
hin(1)).
We notice that

function with g(&(m(1))) = Take X = By where B 1is a rational

number 0 < B < 1. x <y implies that F(x)

But w(x) = w(y). Therefore

. + . A
- let x#y 1in Ry, and consider positive rational numbers vy, § such

.We may choose a sequence of +vy's such that Tim ;%—= 1 and a sequence.
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Q(ETE%§yy) = g(grg%yyy)

which yields, as g 1is a homomorphism, and for a rational p, o pgl

g(B) <0

In the same way g(8) = 0 for a rational 8 = 1. The function g being a
homomorphism, we deduce that g 1is non-decreasing. We extend g to all

of RI according to

+
x cRE but x ¢QF G(x) = Sup g(y)

Yex, i
YEQ*

+ ¥ - '
If x eRy and y e Ry, with a Timit argument,we obtain

G(xy) = G(x) + G(y)

‘ X\ . . . '
so that G(e”) dis a non~decreas1ng additive function from R onto R.

Theorem 1.1 yields G(e*) = ax for all x ¢ R and some o = 0. Going
back to (5)
F(x) = a Tog x + (h(n(x)) - « Tog £(n(x))) = a log x + z(n(x))

that yx >y and 68x <y
Flyx) > Fly) ylelds t(n(x)) - c(n(y)) = o log
F(6x) < F(y) yields t(n(x) - gln(y)) < o Tog 5

Tim =L = 1.

) 5x We obtain

of .&'s such that




Since x and y were arbitrary, we deduce that z(n(x)) = c(n(1)) for

all x in R:. But z(mn(1)) = 0 by hypothesis. Fina]iy

R,

F(x) = o Tog x for all x in

which ends the proof of Theorem 3.11. Theorem 3.11 has the possibility -

of being extended at least for monotonic functions. ‘he cylindrical,

condition Z = RI x N can be replaced by a totally discrete square

condition Z = N x N according to

Theorem 3.12 A monotonic function f: N ~+R 1is a solution of the functiona]
equation
(2) f(nm) = f(n) + f(m) for all n, m din N

if and only if there exists a constant o and f(n) = a log n for all n _in

As previously, there is no loss of generality in supposing f to be non-

decreasing. Llet p > 1 be a given integer. We notice by induction that

f(p")__ hf(p)  _ _f(p)
Togp log p

Tog ph

£(n) _ £(p)

Therefore  1im
' »o logn = log p

n

We shall prove the opposite inequality and shall only suppose for f

%%g-(f(n+1) - f(n)) = 0 instead of plain monotonicity. Let e be a

given  (strictly) positive number. For h Tlarge enough and for all

n = ph, we get

F(n#1) - () > -

He may write n = a0‘4 ap + ...
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m .
+ t
a P o # 0, where the a;'s are

integers between 0 and (p-1),and shall use Eq (2) to minimize f(n)

m—1))

f(n) = 0o + f(p(a]+..

.t
Ome

v

-age + f(p) - aje+ f(p(q2+,.‘+umpm'2))

m~2)

[\

=2(p-T)e + 2f(p) + f(u2+...+amp
h-1
)

[\

-(m-h+1)(p-1)e + (m-h+1)F(p) + f(am_h+]+...+amp

Therefore
h-1
f(am_h+]+...+amp )

Tog n

m-ht1
lTog n

f(n) m=-h+1
Tog n *"Tog n

f(p) +

(p-Te +

But 1log n behaves at infinity like mblog p+log o, i.e. Lim Jog n _ 10
m m gp.

N->roo

h-1
f(o +...+
We deduce that Tim T'h+] = and Lim ( m-h+1 “nP ) =0
v noe 109 N Tlog p oo Tog n
by considering the values of f on all integers less than ph. As a
consequence
) p-1 f(p)

Lim > - +

T Tog 7 Tog p © " Tog p
¢ being arbitrary, we may conclude Lim f(n) > p) The Timi i

___-logn—-logp . e Imit exists

N->oo

and is  pin £ o 2 FP) £l 11 int _
oo Tog n Tog p integers  p > 1. In other .
words f(p) = o Tog p for all integers p =1 (as f(1) = 0) which

ends the proof of Theorem 3.12. (Another proof shall be given as a
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consequence of Theorem 4.14). In fact, we may replace Eq (2) by Eq (1) CHAPTER 4

in Theorem 3.12 (see bibliography for the proof).

Conditional Cauchy Equation of Type II

¥

Theorém 3.13. A function f: N >R such that Lim (f(n+1) - f(n))} = 0
n-»co

.

Programme In this chapter, we shall investigate conditional Cauchy

is a solution of the functional equation:

equations of type II. We shall mainly be confronted with

extension problems for additive functions and shall restrict

(1) f(mn) = f(m) + f(n) as soon as  {m,n) =1
: ourselves to the abelian case. We shall deal with the '

if and only if there exists some constant a and f(n) = o log n

geometry of divisible abelian groups, that is linear spaces

for all n = 1.

|
over the field of rational numbers. Therefore bases for ' i
such spaces, the so-called Hamel bases, will occur. We shall
thus obtain the general solution of Cauchy equations and
will be able to imvestigate the converses of those theorems
given in Chapter I. The chapter will end with a look at
additive functions in number theory and at Jensen convex

functions.

4.1 Z _is a square; X =Y is a subsemi-group of an abelian groyp G.

Theorem 4.1 Let G and F be abelian groups and suppose that F is

divisible. Let f: G+ F satisfy a conditional Cauchy equation relative

to Z =X x X where X is a subsemi group of G. Then there exists

at least one additive function» g: G~ F such that f=g on X.

Proof Let us consider all pairs (Y,q) such that Y is a subsemi-group
of G and g: G-+ F is a Z-additive functionon Z =Y x Y. We

prescribe a partial order on this family of pairs in a natural way:




if Y1 c Y2 and 9, restricted to Y1 is equal to 9q- Let us now

consider the non empty family F of all these pairs (Y,g) which

dominate the given pair (X,f). This family is partially ordered.

Hausdorff's maximality theorem states that every non empty partially .
ordered set contains a maximal totally ordered subset (See bibliography

for Hausdorff's maximality theorem. But it must be added that from

“an analytic point of view such a theorem has a strong natural

fragrance. In fact, it can be deduced from a specific axiom of set

theory, the so-called Axiom of Choice, which simply authorizes the choice
of an arbitrary e]ementvfrom each member of an infinite family of non
empty sets). |

So let F' be a maximal totally ordered subset of the family
Y>F

F. Define Y = Uy according to g(y') =

Y'eF'

and g: g'(y") »fdr

all y' e Y' where (Y',g') e F'. Clearly g is a well-defined

and Y

Z-additive function where Z =Y % Y is a subsemi-group of

(Y,9)

a maximal totally ordered subset of F.

G. Moreover is a maximal element of F' as F' itself is

G. Suppose, by way of contradiction, the existence of an Xq in G\Y.
Any element of the semi-group YO’ generated by Y and Xg> will be
written in the form y * nxg for some y in Y and some positive (= 0)

integer n. We then define g on Y0

g(y+nxy) = gly) + nyq

where Yo is some element of F to be carefully chosen later on.

However,yfor this definitidn of g to make sense, it is necessary that

To end this proof it is enough to show that Y coincides with

4.3

But when (a) holds, assuming for instance that Ny > Ny, We get

(nz'-nl)xO =Yy - Yoo If the set {xo, 2x0,...,nx0,...} does not

intersect Y - Y, we may choose Yo freely. If this set intersects Y - Y

only once, then we have to take

_9lyg) - 9lyy)

Y Z
0 n2 n]

which is possible as F s divisible. However, if there are more

1 ti s = - 1 - 1oyl
intersections, we get for example NXg = ¥y = Y and n Xy T Yy yz.

for some y],yz,yi,yé in Y and some st?ict]y positive integers n

and n'. This yields n'y] - n'y2 ='nyi - nyé. We now make use of the

additivity of function g on Y to get

n'g(y{) + ngly,) = nglyq) + n'gly,).

9(y;) - aly,) - aly1) - gly.
This yields 1 - 2’ . 1 m ’ 2)

and we may choose without

ambiguity Yo to be this common value.
It is easy to check that (Yo,ﬁ) strictly dominates (Y,g)
(Y,9). and the proof

contradicting the maximality of Therefore Y =G

is complete.

Note 1 We cannot omit the divisibility assumption relative to F in

Theorem 4.1 if for instance, we wish the extension ¢ to keep its

values in F. (Take G =F=Z and X = 2N,;usé f: X ->Z where

f(2h) = h).

whenever (&) y, + nyx, =y, + n,x, it follows that (b) g(y;) + nyy, = +n.v..
17 M%7 Y2 T % ] Yo T 92 2Y0




Note 2 The use of a Hamel basis (cf this chapter §3) will help us to

visualize how to extend the identity f: Q - Q .into a non-trivial

additive g: R - Q. Such an additive ¢ _1s very irregular. (cf Theorem 1.1
Note 3 When F and G are not abelian groups, there is no general result

~ Tike Theorem 4.1 but results depending upon the way X generates G

as a group. We shall therefore restrict ourselves to the abelian case

throughout this chapter.

G >~ F, which is a solution of a conditional

Clearly, any f:

Cauchy equation relative to Z = X x X where X 1is a subsemi-group of

G, has a restriction to -X which is an homomorphism from X into F.
The conditional Cauchy equation tells nothing about the values of f

outside X. Therefore, when @ # X # G and when FF is not reduced

to one element only, it is not difficult to check that condition

(X x X, G, F) is not redundant. Theorem 4.1 proves the possibility of

anrexﬁension of the restriction of f to X into an additive function
on G, taking its va]ueé in F. We could say (X x X, G, F) is gquasi-
redundant (see also Theorem 4.5). It is interesting to state a uniqueness
result for such an extension.

Corollary 4.1 Let F and G be divisible abelian groups and let X

be a divisible subsemi-group of 6. Take Z =X x X. For any Z-

additive f: G - F, there exists a unique additive g: G -+ F, with

g=f X, if and only if the subgroup generated by X in G

coincides with G.

Proof The sufficiency of Corollary 4.1 is evident and does not require

either F or G to be divisible groups.

4.5

For the necessity, let Y be the subgroup generated by X in

G. It is also a divisible subgroup of G. If an element x, in G does

0
not belong to Y, then from the divisibility of Y, a construction similar
to the one used while proving Theorem 4.1 leads to an arbitrary choice

for Yo the value of some extension at X This contradicts the

0"
uniqueness of the additive extension to the whole of G of the
restriction of f to X. |

Note Corollary 4.1 is no longer valid if we do not specify
that X 1is also divisible. For examp}e, let 6G=Q, F=R and X =7. i
Clearly Z does not generate Q as a subgroup. HoWever, any additive
function Z >R can be extended in a unique fashion into an additive
function Q »R.

A way of generalizing Theorem 4.1 is to impose some conditions
on an extension of an additive functibn. Such generalization will prove
to be crucial in §4. We have to introduce some nétations and definftions.
For any subset Z in G x G, t(Z) 1is the subset of all z = x + y where

(x,y) € Z. Let C denote some class of functions f: G = F. A 5

condiFion (Z,G,F) shall be called C—quasi—réduhdant if for any Z-additive

f: G~ F belonging to C, there exists an additive g: G~F, g

belonging to C and g =f in t(Z). We omit C if C is the class

of all functions f: G + F. For a first example we need some tools.

Definition 4.1‘ Let G be a divisible abelian group. A subset E of

G_is Q-convex if for any x, y in E, ax + (1-a)lye E for all o in

'Q such that 0 <a < 1.




Definition 4.2 lLet G be a divisible abelian group. A subset E of G

is Q-radial at a point Vxn (of E) if for any x in G  there exists an

in Q, o, > 0, such that for every a e Q, 0 <a < Ons Xo + ox belongs

g &

E. Clearly an interval in R, [a,b], a < b, is both a Q-convex and

Q-radial subset of R. (Q-radial at any point of Ja,b[). A set Tike

[a,b] n Q@ is Q-convex in R but is not Q-radial in R at anyof its

‘point. We shall see later (Proposition 4.2) that there exist very

pétho]ogica] Q-radial and Q-convex subsets of R. However, the following

extension results hold.

Theorem 4.2 Let G be a divisible abelian group. Let E be a Q-convex

éubset of G which is Q-radial at 0. Let C(E) be the subset of all

f: G -+R such that f(x) <1 for all x 1in E. let H be a divisible

Condition (H % H, G, R) is C(E)- quasi-redundant.

subgroup of - G.

A bilateral inequality works as well.

and f be as in Theorem 4.2. Suppose

Corollary 4.2 Let G, E, H

moreover that E = -E. Then if [f(x)] < 1 for all- x _in HnE,

there exists an additive g: 6 + R, extending f and |g(x)| < 1

for all x in E.

Corollary 4.2 can be immediately deduced from Theorem 4.2 as the extension

g provided by Theorem 4.2, when E s symmetric with respect to the

origin (E = -E), must satisfy both g(x) < 1 and g(-x) < 1; thus

lg(x)| < 1.
Proof of Theorem 4.2 The proof begins as in Theorem 4.1 with the family

is a divisible subgroup of G,

F of all pairs (H', g') such that H'

for all x in H' n E:

g': H' >R is an additive function and g¢'(x) <1

“where Yo is a real number to be chosen later on. Function »5 is well

: (GO, 5), strictly dominating (G', g), which provides the contradiction

4.7

Such a family F is not empty ((H,f) ¢ F) and can be partially ordered
in the same way as in Theorem 4.1 for the same kind of order:

(H', g') < (H", g") if H' < H" and g" restricted to H' 1is equal
Let

to g').Let F' be a maximal totally ordered subset of F.

G' = UH'; where (H',g') ¢ F', and define g: G' >R according to

g(y') = g'(y') for all y' eH' where (H', g') eF'. Clearly g
is an additive function on the divisible subgroup G'. In the same way, 7
g{(x) <1 for all- x 1in G' n E. Moreover (G', g) is a maximal

element of F'. To end the proéf, it is enough to show that G' |
coincides with G. : . ‘

By contradiction, suppose there exists an Xq € G, not belonging
to G'. The divisible subgroup GO generated by G' and X0 is the
set of all x + Xy where x ¢ G and. a e Q. Né define 5: GO - R
according to

g(x+axy) = g(x) + ay,

defined, additive on GO and it extends g. "If we were able to choose

Yo so that g(y) <1 for all Yy e GO n E, we should then have a pair

we are seeking.

The inequality g(y) <1 means: Yo < ]_a X) if o >0 and

1- . .
1-9(x) if o < 0. Therefore we introduce two elements A

Y92 % and B
(and shall have to prove they are (finite) real numbers): A = Inf llgiﬁl

where the g.2.b is taken over all x, o, such that x ¢ G', a > 0 in



and x + axy e E; B = Sup &%%Lil where the L.u.b "is taken over all
X, o such that x ¢ G', >0 in Q and x - axg € E. As E s
Q-radial at 0, for any x 1in G', there exists B, B >0, B e« Q and
B(x+x0) e E; so with y=8xe G', y+ By € E. We deduce at least
that A dis not +». In the same way, we can prove that B is not
-0, Qur cheoice of Yo must now be such that B < Yo S A. Therefore,

it only remains to prove that B<A. This amounts to showing that for

all Xq € G', g € Q,Aa1 >0 and Xq = OqXg € E; Xy € G', a, € Q, a, > 0.

and X5 + aXq € E:

g(x-l)'.l P 1'g(xz)
< OLZ

.OL-I

which, using the additivity of g on G', can be written as

o] 62

2 1
o] o

17%

Xq + ——— X,) =1
1 a1+a2 ~2

But as both X1 = 0% and X, + X belong to E, and from the‘

Q-convexity of E, we notice that

% %2 ( “1 (
Xq + X, = Xq=0qXn) + ——— (X,t0,X.) € E
1 u]+a2 2 a1+a2 T 7170 u]+a2 2 7270

%2
a]+a2

o

a
2 : .
&;;ag-x] + ¥y X5) < 1 by our construction of g. This

Therefore g(
ends the proof of Theorem 4.2.

Note The identity of g: Q = Q is bounded above by 1 on [-1,+1] n Q..
It can also be extended (Theorem 4.1) into an additive f: R~ Q.

The extension can never be bounded above by 1 on [-1,+1] as this would

k.9

imply the continuity of the extension, so that the range would no longer

be Q. Therefore we have .to choose R, and not Q only, for the .range

of values of .f for Theorem 4.2 and Corollary 4.2. During the proof, we
explicitly used Inf and Sup which are not always defined within Q.

It could be. interesting to generalfze Theorem 4.2 to groups F other
than R and with other conditions than f(x) (1.

Let us now come back to some conditional Cauchy equations of type 11,

precisely of type llj.




4.2 7 ds a triangle: Z = [(x,y)] (X,¥) ¢ X x X, x +y e X] in_the

abelian case.

Definition 4.3 A non empty subset X of a divisible abelian group G is

*Fu11"  in, G when the two following conditions are satisfied :

1, ax € X

(a) for all x e X, and’a11 aeQ,0 <ax=x
(b) for any pair (x,y) e X x X, there exists an integer n,
which may depend upon x and ¥y, such that -%

or [_0,1] are full in R.

(x+y) € X.

The intervals_]O,l:] A Q-convex subset containingi

0, is full on a divisible abelian group G. The following result holds:

Theorem 4.3 Let F and G be abelian divisible groups and let X be

a full subset of G. Take the triangle

7= {(X,Y)|(X',Y) e X x Xy x+ye X}

G > F to be Z-additive. Then there exists an additive

and suppose f:

g: G- F such that f =g on_ X. Moreover, g'is unique if and only if

the subgroup generated by X is G. .

Proof Let nX be the set of all

feel

where X; € X for

+ ...+ X
X1 ‘ n

and take Y = nX to be the subsemi-group generated by X.

n=1
X # 9.

First we prove that if y = Xy oo b X,
X € X, there exists an integer N such that any multiple p of N

T1,...,0

We obviously assume

n

yields y/p ¢ X with

The proof is by induction on n. For n =1 Tlet us prove that N can

be .chosen as 1. For any integer p, due to (a), k %-e X for 1 <k <op.
%—e X and E%l-y e X.

Therefore, f being Z-additive, we first obtain the following equation

Moreover, for 1 < k < p, we see that Kk %—e X,

This proves that f: Y > F is well defined.

K1y - gk y
(5 y) = foy) + 703,
and so, by induction,
fly) = p £5). ‘
Suppose our lemma to be true up to (n-1), which gives an N] for :
X _ |
z =X + + X 1 Since ﬁ—-e X and 2 e X, there exists N, and
1 ) N] 2 ;
5 X Z+X ‘ ?
i, e X, o, e X, W, e X. Let now p be any multiple of N;N,. We ,
_ XpbooodX 0 Xqhoodx g X
may write  f( 5 ) = f( 5 + —g) and so we compute that i
Xot. .. X X1+, . .+X X '
1 ny _ 1 n-1 n 1 ]
f - —_— = — —
(———) = fl 5 ) g = g (Pl 4 D) + 5 Fxg)
=1
o (FOxq) + o flx))
We now turn to the proof of Theorem 4.3. For y e Y, that is for
y=xy*+ ... +x  for example, we define fy) = f(g]) + ... f(xn).
For this definition to make sense, let us suppose that
y =vx1 + ..+ X, = xi S x&,
X xj e X for i=1,...,n and Jj=1,...,m. There exists an integer
p for which our intermediate result can be used for both X + ... * Xp
and xi + ...t x&. Therefore
Yy o f(x])+. +f(xn) ) f(xi)+. +(x')
) -
p p p

Moreover, via our




definition, ¥ is additive on the subsemi-group Y. Ve may extend T

arbitrarily to the whole of G as Theorem 4.1 yields an additive function

6 which coincide with ¥ on VY. Therefore g: G+ F coincides

g on

with f on X. This ends the proof of Theorem 4.3 as the uniqueness
result is a consequence of Corollary 4.1. We maywish to extend Theorem 4.3

to some subset . Z of G x G which can be squeezed between two conveniently 1

chosen sets. We now escape from strict type II for our conditional

Cauchy equations. Some notations are helpful. Let X be a subset of G.

By T(X) we define the triangle

[(x,y)l(x,y) ceGxGyxeX,yeX and x+ye X].

T(X)

Let Z be a subset of G x G. We take t{Z) to be

t(Z) = [z|z € G z = x +y where (x,y) e Z].

We keep the notation nX = [z|z €.G; z = xq ¥ " Xn] where X e X for

i=1,2,...,n.

Theofem 4.4 Llet F and G be divisible abelian groups. Let Z be a

subset of G x G such that there exists a full subset X of G for which

T(X) < Z c X x X

Condition (Z,G,F) is quasi-redundant. Moreover the additive extension ¢

is unique if and only if the divisible subgroup of G generated by X

G.

is

Proof Clearly, f: G > F is. T(X)-additive and Theorem 4.3 yields an

additive g: G- F with g=f on X. By definition t(T(X)) < X.

But if x e X, then x/2 ¢ X and from x = x/2 + x/2, we deduce

t(T(X)) = X. Thus t{Z) > X.. In fact, f and g are equal on

t(Z). To see this, take now =z =x+y in t(Z) where (X,y) ¢ Z.
As x and y are in X (Z ¢ X x X), we get
g(z) =-g(x+y) = g(x) + g(y) !
= £(x) + Fly) = Flxty) i
= f(z) ‘ , |
yielding f(z) = g(z) for all z in t(Z). |
If the divisible subgroup generated by X 1is G, then g is unique.

Conversely, g 1is uniquely defined on the divisible subgroup GO which 1is

generated by t(Z). But this subgroup G, is also the divisible sub-

0

group generated by X as X is full. If GO # X, Corollary 4.1 proves

that g is not unique. As a consequence of Theorem 4.4 and Theorem 1.2,

we deduce the following :

Corollary 4.3 Let f: R >R be a Z-additive function where

2

0, x + y2

<

>

Z = [(x0)] () e R% x =0, y

IA

for some r > 0.

Suppose f is bounded above on a subset of positive Lebesque meésure’of
[0,/2 r] (or [0,2r]).
[0,/2 r] (or x e [0, 2r]).

Then f(x)

ax for some a in R and for all

X in

Note 1 There does not exist a converse result for Theorem 4.4. How
can one characterize those Z c G x G for which any Z-conditional
G+ F t(Z)?

Cauchy solution f: is equal to a Cauchy solution on




Conditions given in Theorem 4.4 should not be very far from a necessary

condition.A good setting for such a question will be given with Theorem 4.5,

Note 2 1In a divisible abelian group, a full subset is not necessarily a

Q-convex subset. For example, in G =R, let X = [z[z eRy z=a + B/2,
aeQ, Bel, Va] + /Rl = 1].: It is a full subset of R but not a
Q-convex subset (as 1 and Y2 are in X, but then ]ZVQ}éX)

Note 3 In both Theorems 4.3 and 4.4, the identity of the group G plays

an important part, even if 0 does not necessarily belong to a full subset.

If we now suppose 0 ¢ X, we may translate without change the properties

of 0 to any point in G. With the notion of quasi-extension to be defined,

we shall obtain a characterization of solutions of Cauchy conditional

equations under fairly general conditions. First let us introduce some

notations. We denote by p ‘and p, the following projections
1 2

- Py GXG > G py(xsy) = x

Py: G xG>6 Py(xsy) =y

Definition 4.4 Let G, F be abelian groups. Let Z be a non.empty subsét

of G x G. An additive mapping g: G > F s a quasi extension relative

to Z of a mapping f: G~ F if there exists (xg>¥y) € Z and

f(x) - flxy) - flyy) = g(x) - g(xy) - 9lyg) for all x e t(Z)

f(x) = f(x g(x) - g(xo) for all x e pj(Z)

0

fy) - flyg) = 9ly) - glyy) for all y e p,(2)

of the proof, of properties of Z, G or F).

If f(xg) = flyg) = 9lxg) = g(yy) = 0, a quasi-extension g of f
(relative to Z) coincides with f on p](Z), pZ(Z) and t(Z).
(cf also Note 4 to come). With such a notion, we get

Theorem 4.5 Let X be a full subset containing the origin in a

divisible abelian group G. Let F be a divisible abelian group. Let

7' be in G x G such that T(X) ¢ Z' < X x X. Let xb, yd two elements

of 6. Let 7= (xgyp) +Z'. | |

A mapping f: G- F 1is a solution of a conditional Cauchy

equation relative to Z if and only if there exists an additive

g: G- F which is a quasi-extension of f relative to Z.

Proof Suppose f: G - F possesses a quasi-extension g¢g: G~ F

relative to Z. Let (x,y) in Z. Then x +y e t(Z) so that for some
(x1,y1) € 1. |
fxty) - Flxq) - flyy) = glxty) - g(xq) - gly;)
But x is in p](Z) and so
f(x) - f(x;) = g(x) - g(x;)

In the same way as y 1is in pZ(Z)

fly) - Flyq) = aly) - aly))

We deduce by substituting the last two equations to the first one

fixty) - f(x) - f(y) = g(x+y) - g(x) - g{y) =0

Therefore f: G - F 1is Z-additive. (We made no use in this part’ ) ,




+~ F be a Z-conditional Cauchy equation.

Conversely let f: G

and

If x =0 (or Z' =17Z) we deduce f(xo) = f(yo) =0

0o~ Yo
Theorem 4.4 yields an additive g:

G~ F such that g=f on t(Z).

But p](Z).c X, p2(Z) c X and we already noticed (Theorem 4.4) t(Z) - X.

Therefore g is a quasi-extension of f relative to Z.

In the general case, let us define f: G~ F

(M F(x) = flaxghyg) - Flxg) - Flyg)

The mapping f can be shown to be Z'-additive. We proceed as follows

with (x', y') e 7!

f(x'+y'+x0+y0) = f(x'+x0) + f(y’+y0) as f s Z-additive.

(2)

Flxy') = flx'+xg) - flxg) + fly'+yy) - flyy)

But (x',y') e Z' yields (x',0) ¢ Z' and (0,y') ¢ Z' as for example,

x' e X(Z' < X x X) aswellas 0e X and so (x',0) ¢ T(X) which proves

(x',0) ¢ Z' because of T(X) < Z'.

Eq (2) with y' = 0 (or with x' = 0) yields for x' e p](Z')

{or y' e py(2'))

(3) f(x') = ) - f{x,) and

Fx"+x o) (4) Fly') = fly'+vyy) - flyy)

0

Eq (2) now becomes for all (x', y') e Z'

‘?<Xl+yl) -

As we have seen in the case Xg =Yg = 0, there exists an additive

g: G-+ F forwhich g=F on t(Z'). For z' e t(Z')

(5) Fz'xgtyg) - flxy) - fly,) = 9(z')

Let z be in t(Z). There exists z' in t(Z') with z = z' + Xg * Yg .

and §
flz) = fxg) - flyg) = 9(z-x4=yo) = 9(z) - 9(x;) - 9(y,) :

Llet X e p](Z). There exists x' in ‘pj(Z') and x = x' + xOQ But

x' e t(Z') and so T(x') =

g(x'). Eq (3) yields = ' }

fix) - flxg) = 90x) - 9(xp)
In a similar way, for y e pZ(Z), we get

Fly) - flyg) = 9(y) - aly,)
This ends the proof of Theorem 4.5.
Note 4 It should be noticed that if we have a quasi-extension ¢
relative to Z and using (XO’yO) e Z, then g 1is as well a quasi-
extension relative to Z for any (x1,y1) € Z.-
Note 5 Within the conditions of Theorem 4.5, there exists a unique
quasi-extension relative to Z for a Z-additive function if and only
if the divisible subgroup generated by X in G cofncides with G.

Corollary 4.4 Let Z be a non empty, open and connected subset of RZ.

Suppose f is Z-additive and bounded above on a subset of positive

Lebesque measure of t(Z). There exist constants a, b in R such that for

all x t(Z):




flx) = ax+b 4.3 Hamel bases

Proof "As Z s non empty and open, for each (x4,¥,) in Z, there Let G be a non trivial divisible abelian group and consider

exists an r > 0 and the disc C(xy.yp.r), centered at (x..yy).and  ° all non empty subsets H of G\[0] such that for all n =1 an

on
of radius r, is included in Z. We apply Theorem 4.5 with equation Tike 7 nihi = 0, where n; e Z and hi e H, implies n, = 0
i=1
7= C(xo,yo,r) and X = [0,r[. Therefore f(x+y) = g(x+y) for all

~for all i =1,2,...,n. (Independence property of H over Z).

(x,y) e C(xo;yo,r) where g: R~ R is additive.

We order the non empty family F of all such H by inclusion.
Suppose now t(C(xO,yO,z)) and t(C(x1,y],z') have a non

. Applying Hausdorff's maximality theorem, there exists a maximal
empty intersection, which is an open interval I or R. UWe get for =z

] o totally ordered subset F' of F. Define H to be the union of all
in I: f(z) '. Therefore g - g' 1is an additive

. . H' in F'. It is easy to check that H 1is a maximal element of F'.
function, bounded on I. Theorem 1.1 yields that a(z) - g'(z) = Bz

. Let us prove that the set of all x for which there exists an
and the equation provides us with g = 0. We deduce that o = a'.

n=1 such that (1) x = oc]h1 + ... +ah for some Gy s0pseves0 € Q

Now using the connectedness of Z, we conclude that nn

and h], h2""’hn e H, is in fact the whole of G. We first notice that

for all z in t(Z) a decomposition as in (1), if it exists for some x, is unique due to

the independence property of H over Z . (Reduce to the same denominator).
where b is some real constant. As f is bounded above on a subset

So, suppose that (1) is not possible for some Xg in G and all possible

of positive lLebesgue measure of t(Z), g{(z) = az for some a in R.

. . choices of n, a., h;. Then Hu [xO] has the independence property
In general, it must be noticed that f 1is not necessarily , ; LA '

. . over Z as a non trivial equation like
an affine function on E = t(Z) v p](Z) u pZ(Z). Even if we surcpose
. n
f continuous, f will only be a piecewise affine function on E in nox * ) nihi =0 .
i=1
general.
cannot be true for o # 0 by our hypothesis and cannot be true for
Ny = 0 by the independence of H over Z. Thus H u [xo] dominates H
which is impossible. Let us state what we have proved in the form of a

Definition.

Definition 4.5 Let G ‘be a non trivial divisible abelian group. A subset

H of G such that every x in G can be written in a unique way in

the form
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n
L

i=1

—
~N

~—
x
i

n L(x)h; (X , h. ¢ H
x = T ah, a;(x)h, o (x) € Q, hy e
i=1 '

for some integer n = 1, some o in Q and hi in H, is called a

! n
O (3 = I oy (OF(hy)

Hamel basis for - G. Such a G always possesses a Hamel basis. i=1

‘Note A divisible abelian group is another aspect of a linear space

Clearly T: G~ F is additive, as (2) is unique, whereby T extends f

over the field of rational:-numbers. A Hamel basis is just a basis for

to all of G. For the sake of convenience, we shall write (2) in the

such a linear space over Q. However, to avoid confusion, we shall not

use here the terminology of linear spaces because generally one is form Jeoh (where J. indicates a finite sum). We immediately deduce

accustomed to working in linear spaces over real or complex numbers. from Theorem 4.6 that there exist very pathological solutions for the

A good example comes with R, the field of all real numbers. It is a Cauchy equation, even inthe case G = F =R. Consider an additive and

Tinear space over R of dimension 1 but it is also a linear space of continuous f: R +R. It has the form f(x) = ax for some a in R.

~ infinite dimension over Q. A Hamel basis for R 1is a subset of Let H be a’Hamel basis for R. For h, h' in H, we deduce

non-zero real elements such that for every real number x there exists

hf(h') = h'f(h)

an integer n (n > 1), n rational numbers Qg 58 se e sl and n

Therefore the value of a continuous and additive function at a given

elements h]""’hn of H such that

element of H completely determines £, By arbitrary choices of f on

H, we have much freedom to build up non continuous additive Cauchy

(1)

solutions on R.

This decomposition is unique. Clearly, a Hamel basis leads to the general

It should not be thought that pathological solutions, of which there

- solution of the Cauchy equation.

are many, are irrelevant in analysis. In Chapter III, §5, with almost

Theorem 4.6 Let G, F be divisible abelian groups and H be a Hamel

) . periodic functions and the Bohr group B, we already pointed out their
basis for G. The set of restrictions of all solutions of the Cauchy C— .

. , “importance.
equation f: G~ F coincides with the set of all functions from H

By the way, cardinality provides a nice way to measure the size

into F.

of the set of all regular additive functions from R into R as compared

Take any f: H - F. We define T by additivity on all of &

: to the size of the set of all additive functions from R into R.
according to ‘
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the whole of R. f: R ~>R is a bijection, is additive, but is not

A Hamel basis of R has the samecardinality as R itself. To see this.

we notice that the set of all x 1in R, written in the form continuous if there exists no a in R such that f(h) = ah for all

h in H). For the sake of completeness, let us give an opposite result

(4) ' X = Zfah . '
to Corollary 1.2. Let f: R =R be an additive, discontinuous

but not one-to-one function. Let x be in the range of f. Then

for a given finite subset h]’hZ""’hn of H s countable Tike Q .

fJ(x) is dense in R. (For the proof; it suffices to show the density

is not countable. But the set

cannot be finite as R

Therefore H

of all finite subsets of H has the same cardinality as 'H because it of ker f,the kernel of f. It is a divisible subgroup of R. Therefore '

is a countable union of sets of the same cardinality as H (The fami]y Inf[xlx eR, x » 0, x ¢ Ker f] = 0. For any open interval Jla,b[, a < b, :

of all subsets of one element, which is H, the family of all subsets of there .exists h e Ker f and 0 < h <b - a. Let Ny be an integer such

two elements, which is included in Hz, etc...). We deduce that the set ‘that nOh < b < (ny+T)h. We get nOh in Ker f and a <b -h<« noh

0

of all x which can be written in the form (1) has the cardinality of ' so that nOh e Ja,b[. Thus H 1is dense in R). One may easily guess,

H. It coincides with R, which ends the proof after Theorem 1.7 or 1.2, that a Hamel basis possesses "unsuspected"

behaviour and for that reason may lead easily to counterexamples.

Card H = Car R =N]

' One way to Took at such pathological properties is to consider
Regularadditive functions from R into R (continuous ones for instance)

the set of all positive elements H+ of a given Hamel basis H of R.

are determined by specifying one value on some element of H. The set

It 'may happen that H+ = H since for any Hamel basis H of R, the set

of all such functions has the cardinality )(] of R. On the contrary

H' = [|h]; h e H] 1is also a Hamel basis. However, if we consider the

the set of all additive functions from R into R is isomorphic to the

n

set E of all x = 7§ u{hi’ for any n =1, oy € Q+ (positive rational
: i=1 -

numbers and zero) and hi € H+, then E never coincides with the set

product R or the set of all numerical functions over H(Th. 4.6). The
LS
2 =X

strictly greatér than )(] through the famous theorem of Cantor.

cardinality of R, which coincides with that of R is )

R' = [x|x e R; x > 0]. For example, et hy, h, in H' with h, > h.

: n
Then h2 - h] € R+, but cannot be written in the form Z “ihi for
i=1

With the help of Theorem 4.6, we see that there exist additive

and discontinuous bijections from R onto R. (As two Hamel bases for

)

o, € Q+ and hi e . Otherwise 0 = (u] + 1)h] + (oa2—1)h2 + aihi where

i

3

R have the same cardinal, there exist between two such bases H and H'

oy +1>0 (o, >0), which contradicts the independence property of H.

a bijection f. Such a bijection can be extended (f) by addftivity to 1
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Since every real

a. = 1, Xps XoseewsXy € E and for all n = 1.

Another property of Hamel bases is striking. ;
1

W~

1

number can be written as a finite rational combination of elements of the

Proposition 4.2 The Q-convex hull of a Hamel basis in R contains no

Hamel basis, the number of elements of a given Hamel basis which are

subset of positive Lebesgue measure.

necessary (i.e. with a non zero coefficient) for the writing of all

Suppose Q(H) o E, where E is of positive Lebesgue measure and H a Hamel

elements of a given open interval (Ja,b[, a < b) is infinite. We can
' basis. Then Q(H) + Q(H) contains an open interval (Lemma 1.1). Let

get more.

£(H) =1 and extend f by additivity to all of R (Theorem 4.6). 1

Proposition 4.1 Let H be a Hamel basis of R. Let n be a given integ

Olearly f remains bounded from above on Q(H) and on Q(H) + Q(H).

The subset En of all oc]hj1 + ... +a h., for all possible choices of

iy Theorem 1.1 yields the continuity of f which contradicts f(H) = 1.

On the other hand, instead of looking at subsets which are not included 1n

n _elements Cpsee ety in Q and n_ elements hi ""’hi of H,
1 n

contains no subset of positive Lebesgue measure.

a Hamel basis, let us look at those subsets including a Hamel basis.

Any interval [a,b], a < b, contains some Hamel basis. Just notice that

Let En be the subset as described in the Proposition 4.1

and suppose En contains F, a subset of positive Lebesgue measure. for any o, o #0 and in Q, if H is a Hamel basis for R, and hO

Clearly E, o F + F and by Lemma 1.1, F + F, therefore E contains some element of H, then (H\[hoj) U [aho] is also a Hamel basis. To
2n ; . 3 3 2n’ N

N Tude, ti ’ , ists o, a
an open interval Ja,b[, a < b. If x is given in Ja, b[ and conclude, we notice that for any h ¢ H there exists non zero

K=o b ... +tanh. .o, cQ, we get with any h., h ¢ H and rational number, with oh ¢ [a,b] as .Qh 1is dense in R. We may state
1 iy fagl by’ 0 ‘O
hy # hy > j=1.2,....2n, that x + ahy e Ja,b[ for some sufficiently

a consequence as a Corollary.

Corollary 4.5 Two solutions of the Cauchy functional equation, from R

small rational o. If all a, 7 0, then x +ahy e E, which contradicts

into R, which are equal on an interval [a,b}, a < b, are equal
its belonging to Ja,b[. If some of the a; are zero, just add enough )

everywhere.

terms like aho with other elements of H to get the contradiction.
’ Clearly Corollary 4.5 can also be proved as a consequence of Theorem 1.1,

. Therefore, Proposition 4.1 proves that a Hamel basis contains no subset

should we notice that the difference of two additive functions is also

of positive Lebesgue measure. We can even go further, but first need

an additive function. In dcing so, we may immediately state another

a definition.

result.

Definition 4.6 The Q-convex hull Q(E) of a subset E of R 1is the

smallest Q-convex subset_of' R containing E.

Q(E) is the set of all x = aq%y oot X, where a; = 0, ay € 0,




Corollary 4.6 Any subset E of R, of positive Lebesgue measure,

contains a Hamel basis.

However, it may be noticed that a subset of zero Lebesgue measure, such

as the Cantor set, (cf Chapter III, sequel of Corollary 3.1) may very

well contain a Hamel basis. To prove this, and to prove Corollary 4.6,

it suffices to show the validity of the following proposition.

Proposition 4.3 A subset E of R contains a Hamel basis if and only

if any f: R~ R, additive and equal to zero on E, is identically

equal to 0.

" Once Proposition 4.3 is proved, Corollary 4.6 is easy.

Let E be

a subset of positive Lebesgue measure in R and let f: R~+R be an

Due to Theorem 1.2, f s necessarily

additive function, edua] to zero on E.

continuous and therefore identically equal to zero on all of R. Thus

E contajns a Hamel basis by Proposition 4.3. In the same way, if E

is the Cantor set and f: R »R an additive function, zero on E,

then E%E= [0,1] 1implies that f 1is zero on

[0,17], therefore continuous

(Theorem 1.1} and zero everywhere. Proposition 4.3 shows that the Cantor

set contains a Hamel basis.

If E contains a Hamel basis, and if f: R +R

Proof of Proposition 4.3

then, from Theorem 4.6, f

is additive on R, and zero on E,

is identically zero.

Conversely, let us prove that a subset E of R, such that any

additive function) zero on E, is necessarily identically zero, must contain

a Hamel basis. Start then from a Hamel basis H for which there

exists an h0 e H and hO ¢ E. If it were possible to write any x ¢ E

_basis for R. Now let us consider the family F of all HE
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as a finite rational combination of elements of H distinct from hO’ i.e.

. ,
x = 1§1u1~h1 a; € Q; hy e H, hy #hg , 1=1.2,...,m

then we might define an additive function, f: R -+~ R; by its values on

H according to f(ho) =1 and f(h) = 0 for all h in H distinct

from hO. Clearly f(E) = 0 but a contradiction arises with the

definition of E as f is not identically zero.

there exists an x., in E with

Therefore 0

n
Xg = dOhO + 1Z]aihi whefe hi # h0

for i=1,2,...,n and a; € Q\[0] for i=20,1,...,n. We deduce an

expansion for hy in terms of Xy and H\[hoj
X n oo
_ 0 i

hy = —+ ) (~—)h,

0 oy 42 %

It turns out (and is easily shown) that H1 = (H\[hb]) u [xo] is a Hamel
where

0 # HE =HnE for some Hamel basis H 1in R. We put, as a partial
order on F, the inclusion order HE p Hé if H' nEcHnkE. What.we
have already proved shows that F s not empty. By Hausdorff's
maximality theorem,there exists a maximal totally ordered subset F'. of
F, Define‘ H as the union of all Hp for H in F'. It clearly
possesses the fndependence property over Z, for the verification of

such a property only concerns a finite number of elements each time.

Such a finite family belongs to some Hé in H'. Clearly too H < E.
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It only remains to prove that every x ¢ R can be written as ) oh for ~ Here €(E) 1is the set of all x. in R which can be written as
: f

heH and o e Q, as then H will be a Hamel basis ’ ‘ aq Xy + ...t Xy where Upslys. e et are in Q and X oXgpaeeenX

included in E. Suppose by way of contradiction that there exists an ‘ are in E. (It is the Q-linear span of E). Property 5 is a necessary

hg in R which cannot be written as Zfan. Using, once more, Hausdorff's and sufficient condition for E to contain a Hamel basis. (It is

maximality theorem, we may construct a Hamel basis H, containing obviously a necessary condition as seen from the definition of a Hamel

both H and hy- Due to ﬁhe First part of our proof, we can then build basis. Sufficiency is a simple conseduence of Proposition 4.3).

a Hamel basis H1,‘coincid1ng with HO\[hO], except for one additional Corollary 4.7 Let E be a subset of R such that e(E) contains a

element from E. Therefore H1 n E strictly contains H0 n E > H. ‘ subset of positive lLebesque measure. Then E contains a Hamel basis.

But then, by maximality, H; n E must belong to F' which is a : e(E) is a (divisible) abelian subgroup of R. Due to Lemma 1.1,

contradiction as then we should have H] nkEc H.’ and using the connectedness of R, if e(E) contains a subset of positive
In order to generalize Corollary 4.6, so as to include subsets Lebesgue measure, then it coincides with R and so ‘E contains a Hamel

like the Cantor set, we investigate subsets E with appropriate basis which proves Corollary 4.7. We now think of Propertiés 1, 2",

properties so as to appear as natural candidates for containing a ’ 3', 4" or 5', replacing the expression “coinc{de wifh R" by the expression

Hamel basis. Let E be a subset of R. By nE, we denote the sef of all ~ "contains a subset of positive Lebesgue measure" in the definition of

* =Xyt X o Xy where x. ¢ E for i=1,2,...,n. The union of Properties 1, 2, 3, 4 or 5. Corollary 4.7 asserts that

all nE is F(E) = ngﬁ (nE). | g _ Property 5' is a necessary and sufficient condition for E +to contain

a Hamel basis. Corollary 4.7 a fortiori proves that Properties 1', 2!

>

Property 1 The subset F(E) coincides with R..

3' or 4"are sufficient conditions for E to contain a Hamel basis as

Property 2 The subgroup - RE generated by E in R coincides with R.

well as Properties 1, 2,-3 or 4. However, Properties 1, 2, 3 or 4 as

Property 3 The subset M(E) coincides with R.

well as Properties 1', 2', 3' or 4', are not necessary conditions for

Here M(E) denotes the following set. Let E] be the set of all midpoints
‘ XqtX ;
1

‘ . E E to contain a Hamel basis.
of E (xekEy, if x=—5 where x;, X, are in E) and more generally |

let En, for n = 1, be the set of all midpoints of En;1 with EO = E.
Counterexample to the necessity of Property 1. Let E = [0,1]. It

Then M(E) s the union of all E for n = 0. -
, contains a Hamel basis but F = o
Property 4 The subset Q(E), the convex hull of E, coincides with R. (E) [0, #R.

. Counterexample to the necessit !
Property 5 The subset e(E) coincides with R. P cessity of Pnoperty 1' See counterexample to

the necessity of Property 2'.




Counterexample’ tgo the necessity of Property 2 or Property 2' Llet H

counterexample to the necessity of Property 4' Let H be-a Hamel

be a Hamel basis for R and let R, be the subgroup generated by H ‘

H

pasis. Proposition 4.2 asserts that Q(H) contains no subset of
in R. Such a subgroup does not coincide with R and even does not

positive Lebesgue measure.
contain a subset of positive Lebesgue measure. If it were, then using

We are now ready for a study of some converses to

Lemma 1.1 and the connectedness of R, we should get R =R. But for
H such results as Theorems 1.1 or 1.2. We already characterized those

any h in H, h/2 does not belong to RH. To see this, suppose

subsets E of R for which any additive f: R ~R zero on E, is

hy/2 e R, for some h

H 1
h
with —%a= n]h] + ...+ "khk where hi e H. Due to the independence

of H over Z,'it follows that 2n

e H. There would exist Nyshose. N in Z . :
k ’ zero everywhere. We shall now characterize those subsets E of R for

‘ which any additive f: R -+ R, bounded above on E (or bilaterally

1° 1, which is impossible.

: bounded on E) is continuous everywhere.
Counterexample to the necessity of Property 3 Let E = [0,1]. It

Note Using the vocabulary from measure theory, we could replace the

contains a Hamel basis, but M(E) = [0,=[ # R.
e ‘ expression
Another construction is perhaps more striking. Let H
"The subset E of R contains a subset of strictly positive Lebesgue
be a Hamel basis of R and consider M(H). Such a subset does not ~
: measure"

coincide with R as it does not contain h/p for any h in H and
by the following equivalent expression

any prime number . p with p > 2. (If h]/p' were to belong to M(H),
: - "The subset E hqs a strictly positive inner Lebesgue measure".

h, € H, there would exist positive integers n],nz,...,nk such that

1
ngton, ..

“h
] = _].
- 2n(n1h1+...+nkhk) where he e H

From the independence of H over 7 , we deduce that o = PNy which

is impossible).

Counterexample to the necessity of Property 3' See counterexample to’

the hecessity of Property 4'.

Counterexample to the necessity of Property 4 Let E = [0,1]. It contains

a Hamel basis but 0Q(E) = [0,1] # R.
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Now let us'suppose that E 1is a convex subset of R (i.e.

4.4 Converse theorems

Let f: R+R be an additive function and consider for an ax + (1-a)y ¢ E for all x,y in E, and all a in R such 0 <a =<1).

Convex subsets of R are R itself or intervals, unbounded, closed or

M in R, the subset

open. Therefore, in all cases E o [x|x ¢ R,N < x < M] for some constants

1 E = [xix e Ry f(x) < M]
() xfx e (x) ! M, N ‘with M > N. With f(x) = x, we get E o [x|x e Ry N < f(x) < M].

We may now suppose that E .is not a convex subset of R. As

E possesses some intéresting.properties. We suppose f not identically zer

If x,y arein E and ocQ, with 0 <a <1, then 0 ¢ E, we either have 0 < X] <€ Xy X FEs XxpeE or 0>x > Xy,

ax+ (1-a)y  dis also in E. A subset.of R possessing such a property

Xy ¢ E; Xy € E. There is no loss of generality (change E in -E) 1in dealing

with the first case 6n1y.

was called Q-convex. (Definition 4.1)

Clearly X1 and Xo have to be independent over 7. Indeed,

Let Xg € E such that f(xo) <M and x be a point in

R. We may find a, > 0 1in Q such that f(xo) + ax|f(x)1 < M. Therefore

nX + NoXy = 0 with 0 < X] < X leads to X1 =(fn2/n1)x2 and

0 < —nz/n1 < 1. By Q—convexjty,(—nz/n%x] has to beTong to E which

for any o in (, 0 <a < @ > Xyt ax e E. A subset E of R possessing

such a property at a point Xq Wwas called Q-radial at Xq (Definition 4.2).

is a contradiction.

Qur first aim is to construct an additive function over

Clearly too, E s not bounded (using f(ax) = af(x) for all

a e Q and the existence of an x ¢ R such that f(x) <0} e(x1,x2), the subset of R of all x such that x = Xy +oanX, where

These three properties almost characterize those subsets of R which are

g, @, are in Q,-and bounded .over E n e(x],xz). For additivity,

of the form (1) for some additive f: R » R. The precise answer is as follo

first choose g(x1) =r, and g(xz) =Ty This choice should be such
(

Proposition 4.4 Let E be O-radial at some point x, in E and that .g vremains bounded on E n ¢ x],xz), that 1is Sup(a]r]+u2r2)

0

E to be Q-convex and non empty. Then there exists an

let us suppose should be finite for all Qg 50 in’ Q whenever 0qXq F anX, Ties in E.

additive f: R >R and constants M, N (M > N) such that either f is To show that such a choice is possible, let us first try to

continuous and E > [x[x e R; N < f(x) <'M) or f is discontinuous and write x;, which is not in. E, as a Q-convex combination of a;x; + a,x,

E < [x|x e Ry f(x) < M]. and some rational multiple of Xo- We easily get

. Proof Suppose first that 0O is the point x, where E is Q-radial. O X O X o
o 0 xy =22y 1y 2
Note that this implies that 0 ¢ E and the Q-convexity of E yields 1 R & a]-1 2

ax e E for all o with 0 <o <1; ae¢Q and x ¢ E.




There arises a contradiction as soon as we really have Xy as a Q-convex

combination of elements in E. That is for ay > 1, o X, + QApXo

o .
belonging to E, as well as _&—%T'XZ' In other words, if ap > 1 and
o 1
04X, + a,X, € E, then 2 should not be too small because if it is
171 2”2 a]-l

small enough, due to the Q-radiality of E at the point 0, we obtain that

e E (If a, > 0, apply Q-radiality to ~Xo and to Xo for

We thus define a strictly positive B

%2
B = Inf (a _1) > 0
a]x1+a2x25E 1
a]>] u]eQ

a2>0‘ aZeQ

We immediately get for ay > 1 and 0y > 0, Gy O in Q, and

ot]x1 + uzxz e E

o
_ 2
(?) ‘ o -5 <1

If we were to take g(x]) =r = 1 and g(xz) =r, = —%3 it only remains
to verify that such an inequality (2) still holds for ay < 1,{or
a, < 0),and 0y Xy + UpXy € E.

For oy = 0, (2) is obviously true with ag < 1 and ay 2 1 s

impossible as Xy € E implies by Q-convexity, Xy € E which is contrary

to our hypothesis.

For aq < 1 and a, > 0, the inequality (2) is obvious.

For ay < 1 and a, < 0, we shall prove the inequality (2) by
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way of contradiction. So we suppose there exist ays Gy in Q, where
o
2 \ . .
aq < 1, Oy < 0, 0%y + Xy € E but - g 1. We try in this new

case, to express X, as some convenient Q-convex combination of X and
Y 1in E. We naturally wish to keep X as aXq + UoXo and try for some
Y of the form uix] + o Xos where ai, aé shall have to be determined

2
é E. To get more freedom, we should work

in Q so that aix] +agX, €
. ] ] 1 1
thh E—(a]x]+u2x2) and B—(a]x]+u2x2) for some b e Q, b = 1. Therefore,
we ook for some a, a ¢ Q, 0 <a <1 such that
Ol X H0i,X ol X Folx
S 4 I 2
X, = a 5 + {1-a) b
We get the necessary values for a and b
Sl QAL =Cln0l
a = ._2 and b= -2 1 2]
Gp7% %27%

To obtain 0 <a <1, as o < 0, it is enough to ask for aé > 0. The

condition on the lower bound for b, can now be transformed into

ué(a1—1) > az(ai-1) which, if we suppose ai > 1, amounts to

(3) ai-] =
. OLZ
Our hypothesis was ST B. Therefore, due to the definition of 8
. 1
as a g.£.b, we may find ai, ué in Q, ui > 1, ué > 0, satisfying
uix1 + uéxz\e E, for which (3) is satisfied. There is a contradiction

as X, appears as a Q-convex combination of elements of E. Hence

1
(2) is true in this case as well.
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gor a, > 1 and a, < 0, clearly inequality (2) is not satisfied where we have used N' = N+ f(XO); M' o= M+ f(xo) and f is
and oy —.EZ~> 1. He progeed in the same Way a; in the case ap < 1. and continuous

a, < 0. But this time our hypothesis is B > ?1 and we look for

or Ecxyt [x|x e Ry, f(x) = M] ¢ [x|x ¢ R, f(x) < M'] with

%

aq > 1, ué > 0, ui e Q, ué e Q, oc]'x1 + aéxz ¢ E for which we have an

M' =M+ f(xo) and f is discontinuous.

inequality opposite to (3). It must be noted that in Proposition 4.4, the two possible

cases are mutually exclusive. A set Tike [x|x e R; f(x) < M] for a

(4)

discontinuous and additive f: R + R cannot contain an open and non

empty set Tike [x|x e R; N« g(x) < M] for a continuous and additive g

[ 07
'21 =8> 21
% %1

As

, we may find ai, ué as required and get a ‘ With N<M (cf Theorem 1.1). ‘ ’ ﬁ

contradiction, so that the case Gy > 1, o, < 0 s not possible, We use Definition 4.6 of the Q-convex hull of a set in order to ;

Finally, we have completed our construction of a g: e(x],xz) +R attack our first converse theorem.

which is additive on g(x],xz) and bounded above by 1 on e(x1,x2) n E.

Theorem 4.7 Let E be a nbn empty subset of R. The two following

By Theorem 4.2, there exists an addftive extension f of g to all of R,

properties for E are equivalent. i

which is still bounded above by 1T on E.

(i) Every f: R ~R, additive and bounded above on E 1is continuous. !

In other words (i) For every subset F of R, containing a Hamel basis, the set

E < [x]x e Ry f(x) < i] ' Q((E+F) u (E-F)) contains a sub;et of'positive Lebesgue measure.

, 1 Proof To prove that (i) dimplies (ii) we shall show that if (i) is
For 0 < Xq < X5, We get f(x]) =1 and f(xz) =-g < 0. Therefore f

cannot be of the form f(x) = ax for some a on R and so cannot be

not satisfied, then (i) is not satisfied. We thus suppose that there

exists a subset F of R, containing a Hamel basis and such that

continuous {Theorem 1.1).

Q((E+F) u (E-F)) contains no subset of positive Lebesque measure.

This ends the broof of Proposition 4.4 as we can now deduce

We first notice that Q((E+F) u (E-F)) is Q-radial at any

the general case when Xs # 0. In fact, when Xg # 0, the set [ - X0

is Q—rad1a1‘at 0, Q-convex and non empty. Therefore we may apply what

point t of E (and E < Q((E+F) u (E-F)). For that, we start from

an x in R, x # 0, and can write

has already been proved and so

either E > Xg * [x|x e R; N < f(x) <M] =[x|x eR, N* < f(x) < M']

where a; > 0 and o e Q; X oXgseoeoX € F.u (-F). Such a representation




is always possible as F contains some Hamel basis for R. Therefore,
n
for ay =.2

0., O > 0, we get for t in E
iz 0 '

04
- 4 on
a

Q l__.Q

X
Tt t (xn+t)

(x]+t) + ..
0

0
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already noted that (H\[hO]) u [uho] is another Hamel basis. As in

the proof of Proposition 4.3, wé deduce the existence of a Hamel basis
H with HcF. |

Moreover f s bounded above by M+ 1 on (E+F) u (E-F)

[

|

proving that éa-+ t e Q((E+F) v (E-F)). But t e E c Q((E+F) v (E-F)):

and from the Q-convexity of Q((E+F) u (E-F)) we deduce that

u(§—+t) + (1-a)t = ag—-+ t e Q((E+F) u (E-F))
0 0

for all a, 0<a<1,0eQ and x eR, t ¢ E. This is the Q-radiality

of Q((E+F) u (E-F)) at any t{of E). Therefore Q((E+F) u (E-F))

is a non empty, Q-convex and Q-radial subset of R. Proposition 4.4

yields the form of -such a set. As it cannot contain, by our hypothesis,
a subset of positive iebesgue measure,vit cannot include some subset
Tike _[xfx e Ry N < f(x) < M] for a continuous additive f: R-+R.
R -R, and an

Therefore there exists a discontinuous additive f: M

such that

E c QUE+F) u (E-F)) < [x|x e Ry f(x) < M]

Thus property (i) is not satisfied.
We now prove in a direct way that Property (ii) implies
Property (i). Let f: R >R be an additive fuhction, bounded above
on E by some M. Let F = [x|x ¢R; rf(x)l < 1]. Such a set F
contains a Hamel basis for R. To see this, let h0 be an e]emenf of
H. But we

a Hamel basis For some convenient o in Q, ]f(uho)l < 1.

as is easily seen. Thus f is bounded above by M + 1

which means that f 1is bounded above on a set of positive Lebesque
meaéure. Theorem 1.2 yields the continuity of f and ends the proof
of Theorem 4.7. » '

Note 1 We could easily replace Property (ii)in Theorem 4.7 by the

following analogous property.

(iii) For every subset F  of R,'Q—radia1 at some point, the Q-convex

hull of ‘E - F contains an open and non empty convex subset.

al boundedness condition. In fact, we thus eliminate the intervention

of all subsets F containing a Hamel basis .for R.

Theorem 4.8 A non empty subset E of R has the property that any

additive f: R -~ R, bounded in absolute value on E, is confinuous on R,

if and only if the Q-convex hull of E -'F contains a subset of positive

Lebesaue measure.

Proof To prove the sufficiency, let us start with an f: R - R, additive

and such that [f(x)[ <M for all x in E. Clearly [f(x)| <2M

on E-E and by f(ax) = af(x) for o e Q, the same bound occurs for

Q(E-E) and so for f on a set of positive Lebesgue measure. Theorem 1.2

yields the continuity of f on R.

on Q((E+F) u (E-F))

A simpler result would be expected if we were to ask for a bilater-
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We shall prove the necessity by way of contradiction. We thus suppose Q(E-E) contains a subset of positive Lebesgue measure does not imply

that Q(E-E) contains no subset of positive lebesgue measure but that the same thing for Q((E+F) u (E-F)) where F is a subset of R

any additive f: R - R, bounded‘in absolute value on E(# D), is containing a Hamel basis.

Note 3 For a given Hamel basis H and an element h of H,>the

continuous. Clearly E does not reduce to a singleton. Moreover, an

additive f: R =+ R, equal to zero on E - E 1is constant on E and so projection along h ¢ H s the application x - o where o is the

continuous everywhere, which implies that f 1is zero everywhere, as rational coefficient (possibly 0) of h in the unique decomposition of x as

a finite rational combination of elements of H. When “E 1is of positive

E is not simply a singleton. Proposition 4.3 yields that E - E

‘contains a Hamel basis H and so by symmetry contains -H. The same Lebesgue measure, for any Hamel basis H, and any giveh element h of H,

argument as in Theorem 4.7 proves that Q(E-E) 1is Q-radjal at 0. But the projection along this element cannot remain bounded in absolute value 1

Q(E-E), which is Q-convex, contains no subset of positive Lebesque {(or even bounded above). This is an easy.consequence of Theorem 4.8

(or Theorem 4.7).

measure. Proposition 4.4 yields a discontinuous additive f: R »R,

bounded above on Q(E-E) by some constant M, and M can be chosen to Note 4 It is convenient to state a theorem, Tess strong than Theorem 4.7

or 4.8,but easier to handle.

be positive. But Q(E-E) = -Q(E-E) and $0 as f(-x) = -f(x), we deduce

that |f(x)] <M on Q(E-E). Therefore |[f(x)| <M + |f(x0)| where x, Theorem 4.9 Let f: R -+R be an additive function and E a non empty

subset of R on which f 1s bounded above. Then f(x) = xf(1) for all

is any given point of E. This is in contradiction with our hypothesis

x_in R if one of the following conditions(i), (ii) or (iii) is

and ends the proof.

Note 2 A subset E having property (i) of Theorem 4.7 is such that any - satisfied.

(i) For some n > 1, nE contains a set of positive Lebesque measure.

additive f: R =R, bounded in absolute value on E, is continuous.

(1j) E is of second Bairelcategory and there exists'a non empty open

The converse is not true. Let us consider the following example. Take

subset 6 such that 6ngE is of first Baire category.

E = [xfx e R; f(x) < M] for some constant M and some discontinuous

(ii1) The subset Q(E), or even M(E), as defined in Chapter IV §3

additive f: ]R—*]R.v The subset E is not empty. By definition E does

not possess property (i) of Theorem 4.7. However let g: R >R be (Properties 3 and 4) contains a subset of positive Lebesque measure.

additive and bounded in absolute value on E. As g(ax) = ag{x) and Then, if f -is bounded in absolute value on E, the following condition

ax ¢ E for all o in some unbounded subset of 0, g is necessarily (iv) is enough-to imply f(x) = xf(1).

(iv) M(E) - M(E) contains a subset of positive Lebééque measure.

zero on E and so is continuous on R. In other words, the fact that




4.43

_ 1 iy ] ‘
X = — (29x;h,+...429x h ) = L= (r, hy+...4r. h
2J 11 n n) od ( i 1 i n)

Conditions (i), (ii), (§ii) and (iv) are not necessary conditions.

Proof We shall prove the sufficiency of .each condition and show by

As ry= 0, we may add enough zeroes so that x e lT(ZJE) < M(E).

4--- . 2
By (iii), which shall be proved soon, any function bounded above on E

counterexamples, or uses of Theorems 4.7, 4.8,that each is not a necessary

condition.

Condition (i) An additive f, bounded above gn E, is also bounded above

and additive,is continuous. This ends our counterexample.

on nE, for a given n. Therefore, the sufficiency of (1) comes from

Condition (i1i) This 15 a consequence of Corollary 3.2 along with (i) in

Theorem 1.2 or by a direct application of Theorem 4.7. case nh = 2.

However, it is interesting to construct an example of a subset

The Cantor set shows that (ii) is not a nécessary condition.

E in which, for all integers n,nE contains no subset of positive However, it should be noticed here that we cannot take E in (ii) to be

Lebesque measure, but such that every Cauchy solution, bounded from above just a second Baire category subset. The following is a counterexample ‘

on E is continuous. In other words that Q((E+F) u (E-F)) contains a Let 'H be a Hamel basis and H' a non empty, at most countable subset

subset of positive Lebesgue measure, for all Hamel bases F, does not of H. We have noticed that H\H' # #. Let E be c{H\H'), the set

imply that for some integer n, nE contains a subset of positive Lebesgue of all finite rational combinations of elements in H\H'. Such an E

measure (Theorem 4.7). We start from a Hamel basis H * and a given is a proper sub-group of R and we may easily find an additive pyt

ordering of all rational numbers Q = ~? discontinuous function, bounded above on E (Use Theorem 4.6). However

[r ] with g =.0. Take
n=1 "

E is of second Baire category as we get R = u (rhte(H\H')), which is
heH' :

reQ

a countable union of subsets rh + e(H\H'), the Baire category of which

E= Urh. Wefirst notice that for all n= 1,nE contains no.subset
n=1 . :
heH

of’positive’Lebesgue measure, due to Proposition 4.1.. .We may prove

is the same as €(H\H'). But a countable union of first Baire category

F(E) = U nE =R but this result is not enough as shall be seen later
n=1] '

in Note 5. However we may also prove M(E) =R. The first result

subsets is of first Baire category and on the contrary (Theorem 3.3),

R 1is of second Baire category. This ends our counterexample.

F(E) =R is easy by definition of a Hamel basis. For the second,

Condition (iii) Recall that M(E) 1is the union of all E>n=0,

E L+E
_ - n-1 "n-1 : . ; :
where E0 = E, En R E— for n=1. We may immediately notice-

M(E) = R, we write any x fin R as x = x]h1 o+ thn where

X € Q, h < H. Taking an integer j such that 27T g < 23, we get

that
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be an additive function, bounded above by M on E. Let us consider
h, h'* in H with h < h'. We must have f(ah+h') = af(h) + f(h') <M

for all o in Q as aoh + h' ¢ E and so déduce that f(h) = 0. As

a, dyadic and a:; = 1]. ) . .
1 : h' is arbitrary, f(H) =0 and consequently f = 0 (Theorem 4.6), which

proves that f is necessarily continuous and ends the discussion of

Dyadic numbers are numbers of the form k2" for k and n in Z. Clearly

our counterexample.

Condition (iv) As in Condition (iii), we notice that M(E) - M(E) < Q(E) - Q(E)
c Q(Q(E) - Q(E)). Then we apply Theorem 4.8 to Q(E) as f, bounded in

then Q(E) > M(E). For any non empty subset F of R, we deduce that

Q((E+F) v (E-F)) = M(E)

T 4.7 vields the co g]usion absolute value on E, is also bounded in absolute value in Q(E).
eorem 4.7 yields the con . : ,

~To see that (iv) is not a necessary condition, we exhibit an E

Let us construct a Q-convex subset E of R (and therefore

for which Q(E-E) contains a subset of positive Lebesque measure but

E = M(E) = Q(E)), containing no subset of positive Lebesgue measure but
M(E) - M(E) contains no such subset, Let H be a Hamel basis and E

such that any additive function, bounded above on E, is in fact continuous.

be the set of all real x which can be written as a finite Tinear

Let H be a Hamel basis. As a consequence of Hausdorff's maximality

dyadic combination of elements of . f:

theorem, there exists a total (even well-) ordering of H. For such an

n.

n :
order we define E  to be the set of all x = a1hi L anhi where X = Z'aihi; n=1;h eH a, = miz T with ms g e 7.
i=1 '

1 n

05005 -+ 50 e.Q, with o, > 0, and where h1.1 < h].2 < .. < hin. Clearly
E s Q-convex and contains H. Let.us prove by way of contradiction that

As H s a Hamel basis, it is not difficult to prove that Q(E-E) = R.

However M(E) = E and E - E=E so that M(E) - M(E) = E. Let us show

E contains no subset of positive Lebesque measure. If E > F, where

that the situation E = F, with F of positive Lebesgue measure, is

F is of pdsitive Lebesgue measure,then E+ E>F +F and so E+E

impossible. As E+E=E>F+F, E would contain a non empty open subset

contains an open interval due to Lemma 1.1. But E =E + E. Take now

8. Let Xg be in & ‘and h a given element of the Hamel basis H.

h#h' on H with h < h' and consider the subset G of all ah - h'

Let p be a sufficiently small non dyadic number so that Xo + ph too

where o runs through Q. By definition, GnE = . However, G is dense belongs to 6. Therefore (x0+ph) - Xge0-08c E-E-= E. Because of the

in R, being the translate of an homothetic image of Q. As E contains

uniqueness of the decomposition of ph e E, this is a contradiction as p

an open interval we have the contradiction: GnE # p. Now, let f: R-R is not a dyadic number.

Note 5 A necessary condition for a subset E to imply that all additive
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functions f: R -~ R, bounded above on E, are continuous is e(E) = R.

implies |< f(x), x*>|<e for all x* in the unitball (||x*|| < 1)

(If (E) # R, there exists a Hamel basis H' for e(E), because of Definig of the dual B* of B. The discontinuity of  would then imply its

We just have to add elements in R\e(E) to H', to get a Hamel basis on discontinuity at the point 0. Such a discontinuity would mean the

R. Setting f(H') = 0 and f(H\H') =1 and extending by additivity existence of an e > 0 such that for an n, n > 0, there exists an

(Theorem 4.6), we get an additive and discontinuous f, equal to 0 on E x, |x| <n and ||f(x)]]

v

€. There should exist an x* in the dual,

and so bounded above on E). However ¢(E) =R 1is not a sufficient

depending upon x, ||x*|| =1 and |< f(x), x* >| = ||f(x)||. This last

condition. Even F(E) =R is not sufficient. For example we can result yields a contradiction and so (i) is also true. Conversely, suppose

take a Hamel basis H and E to be the union of all oh where o ¢ Q,

(1) to be true. Let Xq be a non zero element of B. Let f: R-+R

la] <1 and heH. Clearly F(E) =R but just take f(H) =1, and be any additive function, bounded in absolute value on E. Define

extend it by additivity to get a counterexample. g: R~ B according to g(x) = f(x)XO' Property (i) implies the

Note 6 For Theorems 4.7, 4.8, we made use of Theorem 4.2 so that we continuity of g and thus the continuity of f. Theorem 4.8 yields (ii).

cannot easily genera]izé to a divisible abelian group G. However it is As C s a (2-dimensional) real normed space, we get the same

easy to obtain results for f: R+ B where B 1is a real (or complex) result for C and then for any complex normed space

normed space.

Corollary 4.8 Let B be a real (or complex) non trivial normed space.

Let E be a subset of R. We have the equivalent properties

(i) Any additive f: R - B, such that Sup||f(x)|| is finite, is
xek
continuous

(ii) Q(E-E) contains a subset of positive Lebesque measure.

Proof UWe first suppose B to be a real normed space. Suppose (ii)

is true. Let x* be an element of the topological dual of B. The
_ function x - < f(x), x* >, fron R into R, is additive and bounded
in absolute value on E. With the help of Theorem 4.8, using (ii),

such a function is continuous, and so has the form < f(1), x* > x. As

a consequence,for-any € > 0, there existsa n, n>0 and |x| <n
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4.5 Numerical additive functions on R"

Converse theorems as proved in 54 can easily be generalized to any real
We begin with a simple generalization of Theorem 1.2 to R" linear space of dimension n, using Definitions 4.1, 4.2 and 4.6. First,

we have to generalize Proposition 4.4.

Theorem 4.10 Let f: R" + R be a solution of the Cauchy equation

Proposition 4.5 Let E be a non empty subset of a real linear space X

fx+y) = f(x) + f(y)- for all x, y <« R",

of dimension n. Suppose n is Q-convex, Q-radial at some point and

bounded above on a subset E of pdsitive Lebesque measure. There exists an

contains no subset of positive Lebesgue measure. There exists an additive

. n
a-= (a],az,...,an) in R’ such that

f_and some constant M such that f: X +R, E c [x|x ¢ X; f(x) < M].
As in Proposition 4.4, we may suppose without loss of geherd]ity that

E 1is Q-radial at the point 0. Let (ei), i=1,2,...,n be a basis for

Proof We may apply the proof of Corollary 3.1 to show that E + E contains X and Tet Eif be the non empty intersection of . E with the real linear !

a non empty open subset of Rn, on which f is bounded above. We may

space denerated by e;. Every Ei is Q-convex and Q-radial at 0. We

distinguish between two cases:

. n
suppose © >

(]ai’bi[) where a1'< bi' By additivity, we deduce that
1. .

1 _

- Either fbr alt Ei’ i=1,...,n, there exists a continuous

f(x],xz,...,xn) = f](x]) R fn(xn) where fi(xi) = f(O,...,xi,...,Q)

and additive. f(x), f,(x) = ¢;X> ¢; e R such that E; > [xe;|x e R;

with X; appearing at the i-th place. As fi: R +R 1is additive and

. Ni < fi(X) < M1~] where N;, M; are real constants (Ni<Mi)'
bounded above on ]ai’bi[’ a; < bi’ Theorem 1.1 proves the existence

- Or, for some 1, Ei c’[xeilx e R; fi(x) < M] for some dis-

i x,) = a.,x, for all x, in R.- This »
of an a; R such that f1(X1) 2% 1 continuous and additive fi: R - R and some contant M.

| ‘ , using Corollary 1.1,
ends the proof of Theorem 4.10. As a consequence g y In the first case, Ei § [xe1|x RS bi cx<a bi ) ai]'
b.e

a.e. .
(]“%rla —%Tl[), where n is the dimension of

we get

n
Then let us prove E o 7

Corollary 4.9 Let X be a convex cone in R" containing a non empty open i=1

subset 6. Let f: R" >R be such that for all X, ¥y in X e, + ... + x e

1 nn’

X. To see this last point, Tet ay < nx; < bi and set x = X1
We write

fxty) = f(x) + f(y) 1 |
‘ X = n[nx]e]+...+nxnen] ‘
n .

and suppose f s bounded above on . Then there exists a ¢ R' such

and so x ¢ E due to the Q-convexity of E. Therefore E contains a

that fof all x _in_ X, we get

subset of positive Lebesgue measure but this is contrary to our hypothesis.
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Therefore we only have to consider the second case for which, by Theorem 4, 4.6 An application to Jensen convex functions

there exists an additive f: X -~ R, extending to all of R the function In Chapter I, 86, we introduced functions f: R >R satisfying

fit E; >R in such a way that a Cauchy inequality (1), expecting close relations with Cauchy solutions.

;
CE < [x]x e X, f(x) < M]. (M fix+y) = f(x) + f(y) - for all x, y in R.

By construction, such a function is discontinuous, which ends the proof Such functions appeared not to have such a close relationship with Cauchy !

of Proposition 4.5. solutions and we Took in fact for "nicer" inequalities. f

We now deduce easily Theorems 4.11 and 4.12 as was done for It should be noted that an odd f, satisfying (1), is additive.

\
|
(fx-y) 2 f(x) - f(y) and therefore f(x) = f(x-y+y) = f(x-y) + fly) = f(x). %

Theorem 4.7 and 4.8 from Proposition 4.4.

Theorem 4.11 Let. E be a non empty subset of a real linear space X of This implies for all x, y, f(x-y) = f(x) - f(y) which gives us the Cauchy

equation).

dimension n. Every additive function f: X » R, bounded in absolute

value on E, is continuous if and only if Q(E-E) contains a subset of If we restrict the domain of f to the subset RT - [0,=[, an

positive L ebesque measure. algebraic way to find f: [0,»[ -~ R satisfying (1) (different from the

Using Corollary 4.8, we may replace the range R by a real (or complex) one given in Chapter I, §6) is to consider all f: [0,=[~R such that

normed space B for a f: X - B, bounded in norm, without modifying f(0) =0 and

the result of Theorem 4.11. :
(2) f(ax) = Af(x) for all A, A e R

Theorem 4.12 Let E be a non empty subset of a real linear spade X of

Such a f i i isfi :
dimension n. Every additive function f: X +R, bounded above on E, unction f necessarily satisfies (1) as for x, y strictly

positive, we deduce with X = }é}“ f(x) < Af(x+y) and similarly,

fly) = (-0 f(xty), yielding f(x) + f(y) < f(x+ty). As £(0) = 0, (1) is

is continuous, if and only if for any subset F containing a Hamel basis

“H for X, Q((E+F) u (E-F)) contains a subset of positive Lebesgue measure

It is possible to generalize such theorems to additive functions from a

true for all x, y in [0,=[. Clearly (2),and so (1),will be satisfied

by a functi : oo ' -
divisible abelian group into certain types of ordered groups. To Y nction f: [0,=[>R such that f(0) = 0 and for every A, A <R,
0<aAc<1, in T0.o '
introduce the required properties of such groups would take us outside and for all x, y in [0,

our intended scope. The same can be said for a generalization of (3) ' F(Ax + (1-2)y) < Af(x) + (1-2)f(y) 7 ,

Proposition 4.5 to a Banach space X (replacing subsets of positive Eq (3) is the functional inequality of convexity. Namely.let I be a

Lebesgue measure by non empty open subsets). convex subset of a real linear space (i.e. a subset for which x, y in I



implies Ax + (1-A)y e i for all A eR, 0 <X < 1). A function -

f: I +R 1is called convex if for all X eR, 0 <x <1 and all x,y

in 1.

Fax + (T-A)y) < Af(x) + (1-2)f(y)

If I=[a,b] <R where -w < a < b < +w, a convex function is

bounded from above since any x in [a,b] can be written as

x=xa+ (1-2A)b, A e R and 0 < X < 1. Thus we may compute that
f(x) < Af(a) + (1-A)f(b) < Sup(f(a), f(b)).

- [a,b] <R

From this, it is possible

to deduce that a convex function on is necessarily continuous

but this will be later easily deduced from our results (Proposition 4.7).

As a consequénce an additive and discontinuous function f: R -+ R is

never corivex. Thus (3) cannot be used as a replacement for the Cauchy

equation. However, if f: R -~R is additive, we notice that

AF(x) + (1-2)F(y)

(4) f(ax + (T-A)y) =

for all rational A, with 0 <A <1, and for all x, y in R. (This

comes from f{ix) = Af(x) for additive functions). We could therefore

think of considering those f: R +R for which

(5) FOx + (1-1)y) < Af(x) + (1-2)F(y)

for all x, y in R, and all rational X with 0 < X < 1. With

2]
A=

(5) becomes for all x, y in R

FERY) < S(F(x) + F(y))

We shall prove that (6) implies (5) (Lemma 4.2). We better state a

definition.

- (i1)
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Definition 4.7 A function f: I >R dis called a Jensen convex function

on I (where I is a convex subset of Rn), if for all x,y in I,

relation (6) holds.

Jensen functions on R", and additive functions are intimately related

as the following Proposition shows:

Proposition 4.6 Let E be a non empty subset of R". The following

two properties are equivalent. }

(i) Every additive f: R" + R, bounded above on E, is continuous. i

n . .
Every Jensen convex f: R - R, bounded above on E, is continuous.

ii) implies (i) Let f be an additive function. Ue have

Proof (i \
f(%? = %f(x) and so f(ﬁ;X? = f(%? + f(%) = f(x);f(y . Therefore an

additive function f: R >R 1is a Jensen convex one.

(i) implies (ii) We shall prove that if (ii) is not satisfied,
then (i) cannot be satisfied. Thus let f: R" >R be a discontinuous
Jensen convex function (that is not continuous at some point of Rn) and

bounded above by a constant M on E. (It should be noticed here that

if a Jensen convex f s discontinuous at some point, it is discontinuous
everywhere, due to the following lemma.

Lemma 4.1 A Jensen convex function f: R" + R, continuous at a point

. n . .
of R, is continuous everywhere.

A continuous function at a point beﬁng bounded above on an open
neighbourhood of this point, Lemma 4.1 is a direct consequence of
Proposition 4.7, to be proved very soon). Turning back to our proof

of Proposition 4.6, we consider the following subset of R":

k= [x]x ¢« Ry f(x) < M]




Clearly

k> E # D.

from the following lemma.

The proof that

(7)

for all x, y in R" and all rational numbers o such that 0 <o <1.

Eq (7) is true for a = %n

(8)

where x1,x2,-.

. ,Xn

flax + (1-a)y)

<

k 1is -a Q-convex subset follows

Lemma 4.2 A Jensen convex function f: R" >R satisfies

uf(xf + (1-a)f(y)

Let us now prove that for any integer

. . n
are n points in R .

Relation (8) is true for n =

true for n =

Now, let n be.any integer. There exists an integer h such théﬁ ,

2h—1 h

<n<?2.

Zh, where h ié an integer. Tosimplify notations, we use

1

Xqt. . +x,h-1

2
2h—1

2.

By induction, it.can be proved to be

and B, =

Xoh=1, . +X,h

2

#1072

h

CnChy

1

2

2h-1

(F(A,) + F(B))

n+1

We use Eq (8) with Zh and set x = ...
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2

< lﬁ(f(x]) v

Therefore, we get the desired result (8).

e may now write any a, a0 ¢ Q, 0 < o <

pel0,1,2,..]=Nu[0]yqgeN and q =

and X

*q

p.
=y yje]dé_precise]y (7)

Eq (8) with x

1, in the form o = g— where

1 ,VX2=”'=

flx) + (1-0)F(y)

Returning to the proof of Proposition 4.6, we now show that the set «

is Q-radial at any point Xg such that f(xo) < M,

arbitrary non zero element of R". If x + Xg € K then oax

Let x be an

0" (T-a) (x+x

also belongs to « for 0<a <71, 0eQ. Thus X0 + (T-a)x € k.

by f(xo) =M - ¢ and choose some o, e Q, 0 < o

If y=x+ Xq £k, that is if f(y) > M, we define an ¢ > 0

by

f(otxO + (1-a)y)< uf(xo) + (1-a)f(y) = a(M-e) + (1-a)f(y) |

In

in

be noted that it may happen that no «x

Fy) - ale + f(y) - W)

M

0

In such a case, f(x) =M for all x in

exists for which {x

<

the two cases, we have provéd the Q-radiality of « at x

fly) - (fly)-m)

Therefore, axy + (1-a)y = Xg * {(1-a)x e «. With the consideration of

o- (It should

O) < M.

in which case we may enlarge

o)

_—M' For all o ¢ Q; lz2zaz2 ag, We get the following inequalities



4.57

M in the definition of « to bring us into the situation considered Xty (x+x0) + (y+XO)
' = f(———s—) - f(x
above). Let us now prove that x cannot contain a non empty open subset 9l 2 ) ( 2‘ ) ( 0)
n . . . ‘ . . + +
of R". For this purpose, we just make use of the following generalization 1., %%g PRAR
, | < o (0 + 5 (2) - F(x,) |
of Theorem 1.2. ;
‘s n .
Proposition 4.7 Let f: R R be a Jensen convex function. If f <1 - :
= g+ g(y)) j

is bounded above on a subset -E of positive lebesque measure of Rn, then

To prove the continuity of f at Xqs We just. have to prove
f 1is everywhere continuous.

that of g at 0. Let us now write x %V as a Q-convex combination

To begin with, we suppose that E contains some non empty open subset
: of 0 and nx ¢

of R". Let x be any point in R", and Tet © be a non-empty open .

)0+ 1(nx)

X=(]— h—

subset of R" on which f is bounded above by M. Let Yo be a given

element of 6. For o e Q, 0 <o <1, the set x + a(e-yo) is an open Eq (8) yields, as nx e ¢,

neighbourhood of x. We then write for all y in #6:

X-ay
1-a

x + aly-yy) = (1-a) + ay

To obtain a minorizing inequality,we first write 0 as a Q-convex
combination of x and -nx

X=-0y
0y 4 at(y)

A

fxtaly-yq)). < (1-a)f(

1
T 0 = —q{-nx) + EETX

(1-a)F (ol

T-o

Eq (8) yields

IA

) + aM

i, 1,
] 9(0) = 0 = o g(-nx) + o g(x) < = + - g(x)

We thus obtain that for any x in R f 1is bounded above on some open

v

neighbourhood of x. Let x, be any given point of R" for which which yields: g(x) "

we consider x) = f{x+x,) - f(x,). The function is such that . ) '
g () ( O) ( 0) g To summarize, for all x in %V, lg(x)] = Nor converges to 0,

n

g(0) = 0 -and is bounded above by N 1in some open neighbourhood V of 0. We

we may let n go to infinity and so g(x) goes to zero, proving the

may even suppose U to be symmetric. Moreover, is also-a Jensen .
y pp sy 9 continuity of g at zero.

function as . : _ .
In general, E being of positive Lebesgue measure, E + E contains

a non empty open subset of R" (Corollary 3.1) and so- E%E-: 8 with 6
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{
open anq non empty. Clearly, f being bounded above on E and Jensen There exist dfscontinuous Jensen convex functions which are
convex, is bounded above on E%Ea that is on 6. This ends the proof of BOUnded below on a set of positive Lebesgue measure (see bibliography).
Proposition 4.7. : , 4.7 Other additive functions linked with number theory
We are now ready to end the proof of Proposition 4.6. Dueto Proposition An easy but weak generalization of resu]fs obtafned in §2
4.7 and 4.5, and the fact that Kk is non empty, Q-radial at some point, reads as fo]Tows for the general rectangular type of conditional Cauchy
Q-convex and confains no subset of positive lebesgue measure, we conclude 4 equations: . \
that « > E must be included in some subset of R on which some disconti Proposition 4.8 Let F be a divisib]é abelian group and G an abelian §
additive function is bounded from above. We have thﬁs obtained that ' ~group. Suppose X _is a subset of G containing a subgroup H and 'Y
(i) s not satisfied. ‘ . is a subset of - G, generating H as a group. let f: G->F be a j
Theorems 4.9, 4.7 and Proposition 4.5 Tead to the following theorem. _ I-additive function where 7 = X x Y. There exists an additive g: G~ F
Theorem 4.13 Let f: R" +R be a Jensen convex function and E a non such that g =f on H.
empty subset of R" on which f s bounded above. Suppose E _satisfies Motivated by Erdos’s result (Theorem 3.12), we shall invesfigaté along
ene of the  following properties (i), (ii), (iii) or (iv). the Tine of Proposition 4.8 but looking for M-quasi redundant conditions,
(i) E_contains a subset of positive lLebesgue measure . , _where M stands for the class of all monotonic f: R > R. ‘Recall
(i1) E s a set of second Baire category and there exists a non empty (Chapter f) that a monotonic additive function f: R 5 R 1is of the
open subset 6 of R such that 6nfE 1is of first Béire category. form f(x) = ax \for some a ¢ R.
(iii) M(E) contains a subset of positive [ebesque measure. Theorem 4.14 Let T be a subsemi-group of R. Condition (I'xT ,R,R)
(iv) For every subset F of Rn containing a Hamel basis for Rn, the is M-quasi redundant.
set Q({E+F) u (E-F)) contains é subset of positive | ebesgue measure. ‘ let A=T-T= {z|lz=x-y,xeTl,yecT} and define g: A >R
Then f is continuous on all of R" and satisfies the convexity condition frém a monotonic‘(F#F)—additive function f according to:

Flox + (1-0)y) < af(x) + (1-a)f(y) | (M) 9(z) = £(x) - f(y) z=x-y

for all o cR, 0<a<l, and all x, y in Rn-. For this definition to make sense, we must prove that two different

; representations of =z as difference of elements of I provide t
Note When dealing with Jensen convex functions, then contrary to what provide the

: , same value for ¢g. If z=x-y=x'"-y', x,y, x', ¥y in T
happened with Cauchy solutions, we cannot replace the upper hound for f ! ! ! o

then x + y' =y + x' and so f(x) + f(y')=f(x+y') = Y = '
on E by a lower bound. Y (x) (y') =flxty") = flyrx') = fly) + £(x")

which yields g(x-y) = g(k'-y')

Let z, z' be in A and let us compute g(z+z').



If z=x-y;2'=x"-y',z+z" = (xtx') - (yty') then

g(z+z') = Flx+x') - Fly+y') = £(x) + f(x') - fly) - fly') = g(2) + a(z").
Therefore g s (AxA)-additive.
Suppose z > z', z, z' in A. Weget z=x-y>z'=x'-y

or x+y'>y+x'. Thus f(x+y') = f(y+x') as we may suppose f

to be non-decreasing, without loss of generality. Thus we get

g(z) = f(x) - fly) = g(z') = f(x"') - f(y') and the function g is

»a]so non-decreasing.

A is a subgroup of R, precisely the subgroup generated by
I'. . Suppose fikst that A = Zxo for some Xq in R. Then g(nxo) = ng{
If Xg = 0, g(0) = £(0) = 0 and an additive extension for f is the

%

function identically e?ua; to 0. If x, # 0, then .g(x) = ax for all
g(x : ,
X in A (with o = < 0 }. Therefore, for some Xy in T, and for
0
all x in T, f(x) = a(x-x]) + f(x]) = ox + B. But f {is (IxT')-additive,

which implies 28 = f or g = 0. Then, on T, and on T+T & fortiori, f
coincides with the restriction of an additive, monotonic function. We
have proved the M-quasi-redundancy of this simple case. Suppose now

A =1Zx +Zy0, where Xg» ¥ are strictly positive numbers, independent

0
over Z. For g to be (AxA)-additive we must have:

g(nx0+my0) = nag + mBO for all n, m in Z

with o = g(xo) and By = g(yo). It only remains to use the fact

that g 1is non-decreasing, which amounts»to:

nxq + myg = 0 implies nay + mBO >0

4.61 ' |

As Xq-¥g are strictly positive, then ag = 0 and BO = 0. But it is
easy to check that either oy = BO =0 and so g=0 on A or ay > 0 and

By ~ 0. The first case reaches the conclusion of Theorem 4.14. In

. . Bn .
the second case,let o = oao/x0 >0 and B = 7§-> 0. We get

(2) nxq +myg = 0 impTies nxg + ms >0

First we prove that for any a > 0, there exists an n ¢ Z and an ' m e N |

such that 0 < NXy = Mg < a. By way of contradiction, Tet 0 < b = Inf(nxo—myo)
where the infimum is taken over all n in Z, m in. N, such that

nXg = myg > 0. The set of aH'n'xO + m‘yo, n', m'" din Z, is a subgroup

of R, which is not reduced to ‘de, as Xg and Yo are independent

over - Z. Its closure must then coincide with all of R. Let us choose

e with 0 < 2e < b. There exists n eZ, me N such that we get

b < nXy - my0 <b+e and n' eZ, m' €Z 'such that e < n'x

+ m'x, < 2e.

0 0
But due to our hypothesis m' -must belong to N. Thus the number 2z, where

z= (nxo-myo) - (n‘x0+m'y0) = (n-n')xb - (m+m‘)yo, is such that
0<z<b and (mm') € N. This contradicts the definition of b and
proves our result. Clearly the role played by iXO and iyo is symmetric

and in the same way we get n <Z, m e N such that 0 < nxg tmy, < a.

Let us now prove that Eq (2) yields B = Yo Suppose by way of

contradiction that B > Yor There exist n eZ, me N such that

3 : - -
(3) 0< NXy - Myg < B g

which implies

0 < nxq - (m-])yO < B
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Using Eq (2), and the first inequality in (3) we get nxq - mg = 0, ' _ (Definition 4.5). Using the second step, with a subgroup generated by
therefore we deduce that ' o two elements of the Hamel basis, we deduce the existence of an o ¢ R

(4) | : (n-1)8 < (n-1)y such that h(x;) = ox; for all 1 in the index set I. Therefore, for

any x in A, h(x) = ax. As a consequence f(x) = ox + 8 for all x

We have supposed m = 1 and cannot have m =1 because of the strict . in T. But (TxT)<additivity yields 8 = 0 and therefore the M -

inequality in (4). Thus we obtain a contradiction with B> y,. An quasi-redundancy of (I'xI', R, R)- which ends the proof of Theorem 4.14.

analogous contradiction arises if we were to suppose B < yg, using Note 1 Theorem 3.12, and even Theorem 3.13, appears as a special case !

this time nxg +myg, ne Z but me N. For all x in A, we have of Theorem 4.14. Just use T = log N = [0, Tog 2, Tog 3,...] which is

obtained g(x) = ax . and SO for all x in T and some g in R ‘a subsemigroup of - R. It'is certainly possible to generalize Theorem 3.12

- in the setting of an ordered archimedean group. An important generalization

f(x) = ax + B
v 2

‘ ' ’ would be to replace the class M by something applicable to R~ for
le easily deduce from the (IxT')-additivity of f that g =0 and also : ‘ :
, ) : example, in order to get rid of the use of order properties. To achieve
in this second case we have proved the M-quasi-redundancy of (IxT', R, R).
' X : such a goal, a still open problem, would be, starting from any subsemi-
In the general case of a subgroup A, we first define A = {z\z=ﬁ3 Xeh, neN}.
. ' ‘ ' group I' of R, to determine the maximal class C of functions such
Clearly, A is the divisible subgroup generated by T. We also define .
: ' 3 ' C ‘ that (IxT, R, R) 1is C-quasi redundant. Another generalization would

“h: A =>R according to h(z) = %éﬁl . S be an investigation along the 1line of Proposition 4.8. In this case
_ ' ) ) : the subgroup H establishes an algebraic kind of dependence between
h is well-defined as z = n T %3 X, ¥ € Ay, ny, me N implies mx = ny .
. ‘ ' ) X X and Y. . To study this more thoroughly, it is best to suppose X
and so mg{x) = ng{y). Moreover g is (axa)-additive since with z = : »
‘ (X = x

to be a semigroup generated by an element x N) and Y a

0 0
semigroup also generated by another element Yo (Y =y

z' = %ﬁ and X,y € &, ny me N, we get
N). We shall

| 0

mx+nyy _ g{mxtny) _ mg(x)+ng(y) : suppose "Xy > 0, ¥y > 0. An XxY-additive function f: R -+R thus
M=) = “m mn ' ° ° '

h(z+z') =
’ satisfies

h(z) ¥ h(z') (5) f(nx0+my0) = f(nxo) + f(myo) for all n, m in N
In the same way, h is non decreasing as g is, and extends g to Such an  XxY-condition is not quasi-redundant. Let for example

o: R >R be a periodic function of period X, such that ¢(0) =0

0

all of a. Let |:x1.]1.EI a Hamel basis for the divisible subgroup A
' and let y: R +R be a periodic function of period Yo such that

Y(0) = 0. Define f = ¢ + . We verify for all n, m in N



= d(nxgtmy,) + wnxgtmy,) = ¢(myq) + v(nx,)

1

o(myg) + wmyy) + ¢(nxy) + v(nx,)

f(nxy) + f(myy)

With convenient choices of ¢ and ¢, f dis not additive on xON + yON

and thus. ({XxY), R, R) is not quasi-redundant. Quasi-redundancy will

not be satisfied even for the class of continuous functions, neither for

monotonic functions. In this last case, we may find all monotonic

(XxY)-additive functions. Let'us begin with a simpler result.

Proposition 4.9 Let Xq2 Yy be positive numbers which are supposed to

be independent over Z. Let X = XON and Y = yON. Suppose f: R -+ R

is d monotonic function which_is (XxY)-additive. Then there exist a real

constant - o and two periodic functions

¢: R->R , ¢ of period x0
y R->R , y of period Yo

and for all x _in t{XxY):

(5) f(x) = ax + o(x). + w(x)

Proof The crucial step is to prove that for such an f, Tim fgf) exists
LSA AR . yoo

.and is finite, where the 1imit is taken over those x in XON + yON.

Therefore for all positive integers n
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Xy + mxq < nxy + m‘yo < nxg (m+])x0

Without loss of generality, we may suppose f to be non-decreasing

f(nx,+mx

0 O) <vf(nx0) + f(m'yo) < f(nxo) +f((m+1)x0)

f(nxo) + f(mxo) < f(nxo) + f(m’yo) = f(nx0+m'y0) < f((n+m+1)x

o)
which yields | %
flnxg) + F((m=1)x,) < F((mm)x;) < Flnxg) + F((m+1)x,) |
We now apply this inequality with n+m,...,n+(h-1)m  instead of n
f((n+m)x0) + f((m-])xo) <'f((n+2m)x0) < f((n+m)x0) + f((m+1)x0)

f((n+(h—1)m)x0) + f((m-l)xo) < f((n+hm)x0) < f((n+(h-1)m}x0) + f((m+])x0)

Thus by successive cancellations, if we add all inequalities,

f(nxo) + hf((m—])xO) < f((n+hm)x0) < f(nxo) + hf((m+{)x0)

Let N be any positive integer and first fix m. There exists by

euc]idian‘division h and n, 0 <n <m, such that N = hm + n.

Therefore

f{nx
N

f(NxO)
N

f(nx

)
< NO

0

< +

+ E-f((m-])x

Z|{=

f{(m+1)x

0) 0)

For each positive integer m, there exists at least one integer m' P )
p 4 & inieg Let N go to infinity. We use h1m £~= %n From the left inequality,
such that ->co .
o ' f(NxO) f((m-])xo) ,
mx~ < m'y~ < {(m+1)x we deduce Lim N = and from the right inequality, »
%0 0 0 : oo m ,
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__ f(Nx ) : ‘ _ In other words f(x) = ax + ¢(x) + ¢{x) for all x in XONV + yON,
Lim NO < . But letting now m tend to infinity, we

N->o0

that is for all x bin t(XXY) which ends the proof of Proposition 4.9.

deduce fhaf To get the general monotonic solution of (XxY)}-additivity, we now have

to look. for more properties of ¢ and ¢. In fact, let us suppose

N-roo

that f: R+ R s defined everywhere by Eq (5) where o is an arbitrary

Let now x = hx, + myq > 0. There exists an integer N ~and real number and ¢, ¢ possess the properties as described in Proposition 4.9.

We already noticed that f s (XxY)-additive. However, it need not - - |

Nxy < nxg + myy < (N+1)xO

be monotonic in general. A necessary and sufficient condition for f to E

Thus be nondecreasing (reverse the inequality for nonincreasing) is the following

inequality valid for all X, ¥y in R, x #y
f(lxg)  Flnxgrmyg)  FON+T)x,)

(N#]) = nXgtmy < N

< o(y)-0(x) | wly)-w(x)

s y-X y-X

fix) exists and is finite. We define now

Therefore o = Lim
. X~

(x=nx0+my0)

If we were to impose Inf oLy — x) - -g; Inf vy)-v(x) _ -y
x,yeR Y% x,ydR  Y7X |
X2y Xty ‘

g(x) = f(x) - ax for all x in R. Recal] that Xg and Yy are

independent over 7Z. It is possible then to define, with much freedom,’ .
: o ) and o > B + v, then Eq (5) defines a non-decreasing (XxY)-additive
a function ¢: R ~R, of period Xge $(0) = 0, ¢ coinciding with g on. ¥

function. Those are sufficient conditions. However it so happens that

and such that .Lim 9£51-= 0 (Take ¢ bounded on the subset of points of

X

such conditions are also necessary. We just have to be more precise since

¢ and ¢ are arbitrarily chosen and XxY-additivity only says somefhing

which are not equal to some nygs N e N, modulo XO)‘. In the same way,

: . R + ; i ] i -
we define a function u: R - R, of period Yor w(0) = 0, coinciding on xON yON It can be proved that if f is a monotonic (XxY)

additive function, then ¢ and ¢ are completely determined on

with g on xON and such that Lim %L%)_: . Then
' | | o ‘ XgZ + YoNg» respectively xNg + yZ, with Ny = Nu[0] and there

exist finite B, vy such that

g(nxgtmyg) = glnxg) + g(myy)

vnxg) + omyg) = blnxgtmyg) + ¢(nx y+myq)
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g = Iﬁfiv oly)-o )\; oy = Inf w(xg-igx) . 4.8 Generalized conditional Cauchy equation of type II
- x = .
X2y y : X7y Let G, F be abelian groups and for an integer h = 2, let

- ,yexOZﬂ’QNo X ,_yeXONO'+yOZ

Xi be non empty subsets of G with 1 =1,2,...,h. We look for

We refer to the bibliography for a proof. However f: G+ G such that

Moroever o 2 B + v.

following section may provide some hints. ' h h
the fo g Yy P (1) . f( Z Xi) = Z f<x1)
i=1 i=1
for all X; € Xi' ) ‘
The rectangular case is for h = 2. Redundancy of (@ Xi,G,F) is easily
- =]

defined but the most interesting definition is that of C-quasi-redundancy:

h , :

(= Xi,G,F) is C-quasi-redundant if for any f: G > F, belonging to a
i=1 .

class C of functions,and satisfying (1), there exists g: 6 -+ F

3

additive and belonging to the class C, such that for all x. ¢ Xi’ we get

i

We shall only investigate cases like Xi = X, N, where NO = Nul[0]

0,170
and for G = F = R, with monotonic functions. It can be proved that
h h

(m Xg 1-NJR,]R) or even {m Xg 11JRJR) - is not quasi-redundant.: The
j=1 O i=1 » -

following result is not difficult to achieve (see bibliography) and settle

the case of non independent Xo 1‘5 over 7 (wi%h the help of

Theorem 4.16).

Theorem 4.15 Let 7585504053y be h positive integers where h 2 2.

Suppose this set is relatively prime. Let as be the greatest common
h

divisor of (a],az,...,ai_1?a1+],...,ah). An f: R->R is 1z]a1NO

additive if and only if there exist a real number o, periodic functions
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.. R - R, each of period a., with .(0) = 0 such that for all . . . o ‘ h )
i = il {0 =€ e notice that y{I) - 2{9) - Xo.iti- Applying (2) with x = x, + J y{)

e 1Z1aiN° h () -
h and y = } z3 we get
f(x) = ox + } ¢:(x) o ~ i=2 !
4 i=1 : . )
( , | . ' Xq) + (3)y _ (3)
However, if h = 3, in opposition to Proposition 4.9, monotonic solutions (3) at ]) 1zg(g(y1 ) g(zi ) .
) T > - ;
to Eq (1) are the usual Tinear ones on | Xg.iNg- Xy + L ;
j=1 V1 !
f
' B ‘ n . ‘
Theorem 4.16 Let x ;» 1= 1,2,...5h, ﬁe h_positive numbers, independen But ) (g(ng)) g(z(J))) - g(ygn)) it oty 20
B J:
over Z. Suppose h > 3. Condition ( w Xg 1N0’ R, R) is M-quasi- )
i=1 = _ n .
redundant. 9(z; ") if t, <0
Proof Let f: R-+R bea monotonic solution of Eq (1) where Xi = Xg 1.N W? summarize with €y = +1 if ti >0, e, = -1 if ti < 0 by
(and Ny = Nu[0]). Proposition 4.9 yields that o = Lim f%%l- exists and
. n .
| (3)) - g2{9)) = gre.y(m
is finite where x is required to be of the form .N., N, . : : iz](g(yi ) - g(zi ) = g(eiyi ).

Then we use ‘g( ) = f(x) - ox. We may suppose that f 1is non-decreasing, We use Eq (3) with j =1, =2,...,j = n, sum those equations and

so that for all x #y in R: divide by n

@ alx)-g ’ | alx)) +

It is cTear that g{(0) = f(0) = 0. HNow let Z be of the form
But as a consequence of the definition of the function g, lwe get

h ' ,
7= ) tixy: ° where t.eZ for i=2,...;h . x) h
22 170,51 T blz g& =0 at least when x ¢ ) Xq.iNg- Therefore we also have
A\ ) N -i—'l 3
and fix Xy € N0x0,1' We define for a strictly positive integer j, 1 (n)
) (45) Limpg(e;ys™') = 0. We thus obtain
_ s . - (i . o
2 JXO,iti \1f t; =0 or 2 (J 1)x0,it1 if oty < 0 n
9(x;)
1
(4) X172 > -q,.

ng) = (j-1)x0 it if t; =0 or ng) = -jx0 sbe iF <0 , .
, s We shall now use the fact that h >3. The set of all possible Z is

then dense in R. Therefore (4) is valid only if g(x1) = 0. But x
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was arbitrarily chosen in XO,1N0‘ Therefore 9(X0,1N0) . : 4.9 Application: a characterization of inner product spaces

symmetry in the role of the Xq i‘s, we deduce that g(. . . Let E be a real normed space of dimension at least 2. We

h define an orthogonality relation 1 for two elements x and y in E
In other words,for every x e ) Xg.iNg> we get '

i=1 7 according to
x Ly if for all A in R, ||x+ay]] = ||x|]

h . .
This proves the M-quasi-redundancy of ( m X5 1NO’ R, R) and ends the The condition of orthogonal additivity for f: E - R means
“i:] * -

em 4.16. '
proof of Theorem (1 Cfx+y) = f(x) + f(y) for all x, y in E such that x Ly

Let C(E) denote the class of all continuous functions f: E - R. !

Theorem 4.17 Let E be a real normed space of dimension at least 2.

The norm of E comes from an inner product if and only if the condition

of orthogonal additivity is not C(E)-redundant.

Proof Suppose E is an inner-product space, i.e. |x|2 = <X,X> where

<, > 1is an inner product. Suppose x Ly, then we deduce that
2010012 o .
21 <x,y> + A7 lyl] =20 for every A in R

With A > 0 and Tetting A tend to zero we get <x,y> >0 and with
A < 0, we deduce that <x,y> < 0. Therefore <x,y> = 0. Conversely,

<X,y> =0 easily implies x .+ y. In other words our orthogonal

relation x 1y is the familiar one <x,y> = 0.

Just define f(x) = ]]x][z. It is a continuous function from

E into R. Moreover, f 1is orthogonally additive (Pytﬁagora‘s

theorem). As f is not additive, we conclude that the condition of

orthogonal additivity is not C(E)-redundant. Suppose now the norm of

E does not come from an inner product. We shall prove that the condition
of orthogonal additivity is C(E)-redundant. This will end the proof of

Theorem 4.17. We start from f: E »—R,'f satisfying the condition



4.75

of orthogonal additivity. We decompose f into its even and odd part (4) alone, and the continuity of h, it is not possible to derive

h(xx) = Ah(x) as has been seen in Chapter III §6 (cf Eq'(6)). But

(2) £(x) = g(x) + h(x) glx) = H0)

an inductive way of reasoning is possible. Suppose h(pix) = ph{Xx)

h(x) f(x)éff-x}

and h(piy) = ph(ry) for all integers p, 1 <p < n-1. Then

h{Anx+A(n-2)y)

h(A(n-1) (x+y)+A(x-y))
h(A(n-1)(x+y)) + h(x(x-y)) §
h(x(n-1)x) + h{x(n-T)y) + h(ax) + h(-Ay) - i
nh(ax) + (n-2)h(y) | '

() L (uy)> A» u on R,

If x 1y, then (-x) t (-y) and more generally

i

Therefore both g and ‘h satisfies the condition of orthogonal additivity

and belongs to C(E). We shall then prove that h 1is additive (and even ;

i

linear) and that g is zero identically. A technical Temma will be

useful to provide enough orthogonal elements in E (See bibliography for But

h(Anx+A(n-2)y)

h(xnx) + h(x(n-2)y)

a proof).

i

Lemma 4.3 Let H. be a two dimensional subspacé of E. For any z h(inx) + (n-2)h(nry)

Therefore

in H, there exists a- z' .in H such that z 1 z'.. Moreover, there

exists a pair x, y of elements of H and both x 1y, (xty) + (x-y) hold

(5) h(Anx) = nh(ix) and similarly h(iny) = nh(2y)

a) h is additive

With X =—, n a positive integer, we deduce that

S|—

Let H be a two dimensional subspace of E. Lemma 4.3 provides us with

two elements x, y in H such that x Ly and (x+ty) 1 (x-y). Clearly h(x) - l—h(x)
n

n

then A{x+y) 1 A{x-y) for any A eR and Ax L Ay as well as the relatio

Applying Eq (5) with m, an arbitrary non zero integer and using also the

A 1 (-Ay). By orthogonal additivity, we deduce for h.
. , ' fact that h is odd

h(A(x+y) + A(x-y)) = h(A(x+y)) + h{x(x-y))
h(ax) + h(Ay) + h(Ax) + h(-Ay)

(3) h(2xx)

The continuity of h on E 1immediately yields for all A in R

But h is odd and so for all A ¢ R

(4) | h(2ax) = 2h(Ax) (6) h(Ax) = xh(x)

Similarly, we deduce that

And similarly, the same equation holds with x vreplaced by y. From



(7) h(uy) = uh(y) fof all .u in R.

Let us now combute h(Ax+py) by orthogonal additivity using (6) and (7)

h(ax+uy) = h(ax) + h(ny) = xh(x) + uh(y)

Finally, h is a Tinear form on the subspace H which was arbitrarily

chosen. In other words h is linear on E, thérefore additive.

b) g is identically zero

"Let H be a two dimensional subspace of E and as previou§1y Tet x, V¥

in H such that x ry and (x+y) + (x-y). We shall first compute

where X e R.. We write

g(2xx)

i

g(A(x+y)) + g(A(x-y))
2g(ax) + 2g(ny)

g(2xx) ="g(r{x+y) + A{x-y))

and y, we get

With the symmetry in x

(8) g(2ry) = 2g(ax) + 2g(y)

Therefore, for all A in R, we obtain ¢g(2xx) = g(2y) and as A s

arbitrary

1

a(ry)

(9) , g{Ax)

Then (8) yields A
g(2xx) = 4g(Ax)

Let us suppose by induction that for ihtegers p, 1 <p <n-1, we get

g(pAx) = pa (1) and  g(pry) = p2a(ny)

Then we compute in two different ways
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g{hnx+r(n-2)x)

Bt

g(A(n-1)(x+y) + A(x-y))
g(x(n-1)(x+y)) + g{x(x-y))

g(A(n-1)x) + g(x(n-1)y) + g(hx) + g(-Ay)

It

By induction, as g 1is even

= ((n-1)%+1)g(Ax) + ((n-1)2+1)g(hy)

Due to (9) = (2(n-1)%+2)g (0x)
But '

gOnxiA(n-2)y) = g(anx) + (n-2)%g(ny)

| = g(anx) + (n-2)%9(Ax)
Therefore '
} 2 2 2
g(anx) = (2(n-1)7+2-(n-2)")g(Ax) = n"g(ix)

With A= 5 n a positive integer, we deduce that

=

g(%) = 15 g(x)
n

And with any non zero integer m, using the fact that g is even

The continuity of g on E implies that
' 2

(10) g(x) = 2%g(x)
and simf]ar]y for y
(ny a(uy) = ug(y)

Therefore, Tet XA, u be in R and apply orthogonal additivity using
(9),(10) and {11)
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2 2 Let us now prove that <x,y> = 0 is equivalent to x 1 y.

(12) g(Axtuy) = (A"+u7)g(x)

‘ : If x 1y, then g(x+y) = g(x) + g(y). Therefore <xty, xty>= <x,x> + <y,y>
Now let x', y' be arbitrary elements in the two dimensional subspace .

and so 2<x,y> = 0, that is <x,y> = 0.

H. There exist real constants a, b, c, d andﬂix' =ax +t by; y' = cx + dy.

Conversely, suppose <x,y> = 0. If x = 0, then clearly x i y.

Therefore

If x# 0, let H be the two dimensional subspace generated by x and y.

g(x') + gly') = (aPebPacPed?)g(x)

There exists y' in H and x 1 y'. As already proved, <x,y's = 0.

And

Thus as H s two dimensional, y' and y are colinear, which implies : |

g(x'+y') + g(x'=y') = ((a+c)%(a-c) % (b+d) 2+ (b-d)%)g (x)

x Ly. From this result it is not difficult to prove that the norm

This yields

of E ditself comes from an inner product, which contradicts our hypothesis

and ends the proof of Theorem 4.17.

g(x'+y') + g{x'-y') = 2(a2+b2+02+d2)9(X)

It-is certainly possible to replace the class C(E) by some )

Thus

far larger class of functions, using the kind of techniques developed in

l+| + l_.l =2 XI + ]
'(13) gl ). 9lx'-y") olx") + aly')) Chapter IV. It seems plausible,but is an open problem,to show that one

Suppose that for some x' # 0, x' ¢ H, g(x') = 0. Eq (12) yields may omit all regularity assumptionsin Theorem 4.17 to hold when E 1is

g{x) = 0 ‘and therefore g =0 on H. Let z' be any non zero "a finite dimensional normed space.

element of E, not in H, and H be the two dimensional Tinear subspace

generated by z' and x'. By the same process, we get g(z') = 0.

Therefore 'g =0 on E, which was to be proved.

"We shall have to show now that the situation g(x') # 0 for

all x'#0 in E 1is impossible. As g 1is continuous, by possibly

changing g 1in -g, we may suppose that g: E =R, satisfies Eq (13)

and is strictly positive for all z # 0 in E. A classical result

in functional. analysis, which we shall prove later (Lemma 6.2) yields

the existence of an inner product < , > on the real space E and

g(x) = <x,x>.
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CHAPTER V

CONDITIONAL CAUCHY EQUATIONS OF TYPES III, IV AND V

Programme  This chapter deals with the gemeral solution of conditional

Cauchy equations of type III, IV and V. The tools which are

used are mainly from algebra.

5.1 Mikusinski’ functional equation

In 2.2, we saw how a simple problem of geometry led to a
functional equation, the so-called Mfkusinski functional equation:
(M) flxy) = F{(x)f(y); flxy) # 1

where f: G - F. The Cauchy equation‘is only valid for a1l x, y 1n

G for which f(xy) # 1, where 1 is the neutral element of G.

Theorem 5.1 Let G be a group with no subgroup of index two.

Take Z = [(Xx,y) € G x G; f{xy) # 1] where f: G ->F and F 1is any group.
Then (Z,G,F) 1is redundant. '

Proof lLet f: G- F be a Z-multiplicative function, where for the

moment G and F are arbitrary groups. ‘

a) Let us‘first prove that the kernel of f, Ker f = [x|x ¢ G; f(x) = 1],

is a subgroup of G. Clearly 1 ¢ Ker f (If there exists x such that

f(x) # 1, then f(x) = f(x) f(1) and so f(1) =1 in all cases). A
Now f(xy) =1 when x, y are in Ker f{If not, f(xy) # 1

implies a contradiction to Equation (1)). If «x e Ker f, to suppose

-] : . - .
X ¢ Ker f would imply «x 2 ¢ Ker f ds we get the equalities:
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(2) f(x_1) = f(x_zx) - f(x-z) fx) = f(x"z) If vy ¢ Ker f, then y_] ¢ Ker f (as Ker f 1is a subgroup).

Moreover yx £ Ker f (y = yx-x_1 and so if yx e Ker f, as X! belongs to Ker

: -2
and F(x %) #1, we get L )
as , . then y e Ker f  which is not true). If the product yxy 1 were not in Ker f,

(3) . o f(x_z) = f(x']) f(x_]) according to b), we should have Yo = f(yxy']), as well as f(yx) = f(y'1) = Yy

-1 Then Equation (1) yields Yo = f(yxy_]) = f(yx) f(y_]) = yg contradicting
But (2) and (3) yield a.contradiction as they imply f(x ') = 1. )

2

\ : Yo 7 1.
b) Suppose there exists an Xg> such that Xq ¢ Ker f, but Xg € Ker f 0 ]

If yecKer f, then yxy ! ¢ Ker f as Ker f is a subgroup.

and (f(xo))2 # 1. Then f(x) 1is constant outside Ker f in G. To

2 ‘ We have proved that Kef f 1is a normal subgroup of G. Now let x, y be
prove this,let us put Yo = f(xo) (with Yo #1 as yg? 1). Let x be

two elements not in Ker f. If xy'] were not in Ker.f then we should get - |
any element of G, not belonging to Ker f. Equation (1) yields as

) f(xy_1) =Yy as well as f(x) = f(y_]) =y and (1) yields the contradiction. | k
Xy € Ker f, Thus xy'] e Ker f;' This proves that there are at most two elements in
- (4) Cf(x) = fx xazxg) = f(x xaz) f(xg) the quotient grqup G/Ker f. But as xosé Ker f, we may claim that there
_ f(x Xaz) : k are precisely two elements in G/Ker f, i.e. Ker f is of index 2.
g) If" G has no normal subgroup of order 2, as supposed in Theorem 5.1,
Equation (1) yields as well then there cannot exist an X0 with the properties as stated in b)..
(5) - f(x) = fx Xa]xo) = flx XB]) fx) Thus for any X ¢ Ker f with x% ¢ Ker f, we get (f(x))2 = 1.

Suppose f{x) # f(xo), then  f(x xa]) #1 and so with (4) _ Now Tet us prove for'all x in G, f(xz) = (f(x))z. It is clearly true

1 -2 -7 if x e Ker f as Ker f is a group. If x ¢ Ker f, and x? £ Ker f then
f{x Xg ) = fx Xg xo) = f(x Xq ) f(xo)

= f(x) fxq)

(1) provides us precisely with f(xz) = (f(x))z; If x ¢ Ker f and

; x2 ¢ Ker f, we have proved (f(x))2 =1 which is precisely 1 = f(x

_ . . : : 2 _ 2 _ . : e - -
Comparing with (5), we get y, = (f(xo)) =1 which contradicts our _Let us also prove for all x in G that f(x ]) = (f(x)) T It s clearly

hypothesis. Thus,for every x, not in Ker f, f(x) = f(X0)~= Yo- true if x e Ker f as Ker f is a group. If x ¢ Ker f, then with equation

(1)

¢) Ker f 1dis a normal subgroup of G of index 2 if there exists an Xq

in G having thé properties as stated in b). Let x e'Ker f and.

f(x) = FOET) = (63 f(xT) = (FO)) 27T

G. Two cases occur according to whether y « Ker f or y ¢ Ker f. = . _
Y e g : _ yielding (f(x)) 1. f(x ]).



We are now ready for the end of the proof of Theorem 5.1. Take two

arbitrary elements

First suppose y ¢ Ker f, then Equation (1) yields

Second, suppose x ¢ Ker f, Equation (1) also gives

Xy ¥

in

G.

fly) = FxDF(xy) = (FO)) lxy) or

fxy) = f(x)f(y)

f(x) = f(XY)f(yh]) = f(xy)(f(y))'l' and thus

Coroliary 5.1 Let G be a group such that every element of G is a squar

Flxy) = FOOF().

Finally, if x and y are in Ker f, so is xy and we also get

f(xy) = f(x)f{y)

This ends the proof of the redundancy in Theorem 5.1.

Then for any F, condition (Z,G,F) is redundant where 7 = [(x,y) € G xG;

f(xy) # 11.

The proof amounts to showing that G has no normal subgroup

of index 2. Suppose H is such a subgroup. Let x be in G. If x eH,

then x2 e H.

every element of G
This contradicts the fact that G/H has precisely two elements. The
proof of Theorem 5.1 Teads us, without too much effort, to the general
so]Qtion of Equation (1) when G possesses subgroups of index 2.

Theorem 5.2 Suppose G has a subgroup of index 2 and let 7 be

is a square, we deduce that H

If x ¢ H, then x2 e H as H

is of index 2. But as

is in fact all of G

7 = {(x,y)[(x,y) € G x G; f(xy) # 1}.

Then for any F possessing an

element y, such that yg # 1, condition (Z,G,F) is not»fedundant.

5.5

In .this case, the non-multiplicative solutions of Equation (1) are of the

form_
X'e H
(6) f(x) =

Yo for  x £ H

where_ H _is an arbitrary subgroup of index 2 in G and Yo 1S an

arbitrary element of F having the property that ys 1.

Proof Choose a subgroup H of G, having an index equal

to 2‘and suppose yé # 1 where Yo is in F. Let us prove that a function,
defined as in (6), always satisfies Equation (1).

Take x and y 1in G such that xy £ H. ‘Then we must have
either x e H, Yy #H or x¢H and y e H (as

xeH, yeH imply

xy e H for H 1is a subgroup and x ¢ H, y ¢ H dmply xy ¢ H because

H 1is of index 2).
If xeH yé H, we get yq = fxy) = f(x)f(y) =y,
If X ¢ H, yeH we too get Yo = f(xy) = f(x)f(y) = A

However a function defined by Equation (6) is not multiplicative

since for x and y, both not belonging to H, we gét xy in H and so

1= fxy) # f(x)f(y) = yg

Due to what has beer proved in b) during the study of Theorem 5.1, this
ends the proof of Theorem 5.2. This proof may lead easily to other cases

of redundancy by disproving the existence of such an element Yo

- h



Proposition 5.1 Let F be a group such that y2 =1 for every y in F.

For any group G, with Z %“[(x,y)i(x,y) e G x Gy f(xy) # 1], condition

- (Z,G,F) .is redundant.

In such a case, a function as defined by Eq (6) still is a

multiplicative function.

We may now state a corollary. We begin with the result needed

in Chapter 2, §4 and we return to additive notations. Corollary 5.1 yields

Corollary 5.2 A function f: R >R . continuous at a point and satifying

Equation (1

f(x+y) = f(x) + f(y) for f(x+y) # 0

(1)

is of the form f(x) = f(1)x for all x .in R.

The conclusion of Corollary 5.2 remains valid if we replace everywhere

R by Q, the subgroup of ration&]Anumbers without the continuity assumptio

on f.

Example 1 Take F=6=2Z, the additive group of integers. A1l non

additive solutions of Equation (1)

(1) f(n+m) = f(n) + f(m) for f(n+m) # 0

“are of the form

is even

if'n

if n is a

is odd where g

given integer different from 0.

(The only subgroup of order 2 of Z is ZZ).

Example 2 Let G be the mu]tip]iéative group of the four matrices

5.7

_rl 0, _ 1 04, _ 10 _ 10
eg =L 115 &=Ly 115 e, = [ 41 and ey =T34 4]

Let F be the additive group R of real numbers. There are

three distinct subgroups of index 2 in fhe abelian group G: the one

genérated by ers the one generated by e, and the one generated by

2
2 _ 2 _ 2 _ e
es (as e; = e, = €3 = eqs e]e2 = e,ey = ey and similar relations by
permutation).

However a function f: 6 >R satisfying the Cauchy equation

f(xy) = f(x) + f(y)

and so for example f(e%) =

1
-
~~
]
o
~
1
o

is identically zero as f(eo) =0

[
-
—~
[¢]
—
~
~—

The only solutions of the conditional Cauchy equation

(M f(xy) = f(x) + f(y) if f(xy) #0

(aside from the identically

for f: G >R are the following ones .

zero function):

: 0 for x=¢e, and x = e 0#ackR
f(x) = 0 1 P
o, for x = e, and x = eq
and the two other solutions which can be obtained by permutation.

Now all the solutions of the conditional Cauchy equation,

F: R->G

(1) fxty) = F(x)F(y) if flxty) # 0

are the Cauchy ones (Proposition 5.1).

fxty) = f(x)f(y)




5.9

As f(2x) = (f(x))2 = e, for all x in R, this means that the conditional Then, for any group F, condition (Z,6.,F) is redundant.

Cauchy equation (1) has only the trivial solution f(x) = ey The proof'

572 Generalizations of Mikusinski functional equation

of Theorem 5.1Are1ies on a detailed study of the properties of the kernel

A first generalization deals with a slightly more complicated

of f. The present chapter will deal precisely with various properties

form for the conditional subset Z. But we shall restrict ourselves to

of the kernel of f. For example, we may use some topological properties

comnutative cases. Our first result utilizes a condition on the a]gebraic

fn order to prescribe the size of the kernel of f so that redundancy

size of the kernel of f.

is estabished. A nice result is as follows.

Theorem 5.5 Let F be a commutative integral domain of characteristic

Theorem 5.3 Let G be é locally compact topological group or a complete

metrizable topological group. Suppose that the kernel of f: G = F is a zero and G_ be an abelian group. We take

first Baire category subset of G and define.
, Z={(x:) [{xs¥) € G x G3 F(x+y) - af(x) - bf(y) # 0}

Z=[(x.y)](xy) € G x G f(x-y) # 1].

where a and- b are given elements of F such that a + b'# 1. Suppose that

Then, for any group F, condition (Z,G,F) is redundant. Llet f: G-~ F . :
. e , the kernel of f has an infinite index. Then (Z,G,F) is redundant.

be a Z-multiplicative function. Suppose first that an Xg € G ‘exisfs

Proof 1 i i i ipli ; s b :
having the properties. as stated in b) during the proof of Theorem 5.1. Proof 1) As F is equipped with a multiplication, our conditional functional

equation amounts to

Then, Ker f is a normal subgroup of index 2. The complement of Ker f is

a translate of Ker f and is thus also of first Baire category. Then (1) (f(x+y) - af(x) - bf(y))(f(x+y) - f(x) - f(y)) = 0.

G would be of first category which contradicts Baire's theorem

If f 1is a constant, f(x) S ¢, thenwe get a +b =1 if ¢ #0 and

(cf Theorem 3.3,Chapter III). As a consequence, there exists no such Xq:

so every constant is a solution of the conditional equation without being

Following the proof of Theorem 5.1 we deduce then that f: G~ F s in a Cauchy solution. We avoid non zero constants by imposing a + b # 1.

fact multiplicativeand so condition (Z,G,F) is redundant. In the

2) We shall first prove that Ker f is a subgroup of G. If x, y are

same manner, we obtain: in Ker f, then (1) yields (f(x+y))? = 0, that is x + y e Ker f.

Theorem 5.4 Let G be a locally compact abelian topological group.

0« Kef f (because (1 -‘(a+b))(1_"(0))2 =0 and a+b#1)

Suppose that the kernel of f: G+ F is of zero Haar measure. Define et x e Ker f. Let y = -x in (1). He get b(f(_x))z -0

~In a similar way, we get a(f(—x))2 = 0. .Thys we deduce that .a =b = 0

7 = [y) | (xoy) € 6 x 6 Flxy) # 11

or -x e Ker f. For a #0or b # 0, this ends the proof that Ker f is




a subgroup. The case a =b =0 fs precisely the Mikusinski equation for (f(y+z) - f(y))(fly+z) - af(y)) =0

which we already proved in a) of Theorem 5.1 that Ker f is a subgroup, Thus, if y ¢ Ker f, y + 2 ¢ Ker f and so x ¢ Ker f, in particular '

3) If f {is not odd, then a+ b = 0. Suppose there exists xq» and f(x) = f(y). "If y £ Ker f, as f(y) # f(z), we get the equations

f(—xo) + f(xo) # 0. Using Equation (1) with X = X4, ¥ = =Xq» then " x = - f(x) = f(y+z) = f(y) + f(2) = f(y) and so we also get f(x) = f(y).

Yy = Xq we get » . ' : ~ Now, conversely, take x, y in G such that f(x) = f(y) 40.

af(xo) N bf(—xo) _ - As F is a field of characteristic zero, f(x) # f(-y) = -f(y), we deduce
‘ that f(x-y) = F(x) - F(y) = 0, that is x -

and af(-xq) + bf (xg) ) , that is x - y e Ker f, and so x and 'y

are in the same coset of Ker f.
+b) [f + f(- = +b=0. i ‘
thus (a+ ) (*0) £( XO)] .0 ahd so a 0 N ~ With the help of Equation (2), to prove that Equation (1) implies
ﬂl_ If a+ b =0, then Equation (1) reduces to Mikusinski equation. . the Cauchy €quation, it only remains to show that when f(x) = f(y)
. N : i y ’
Writing Equation (1) switching - x with y and adding it to the original we also get f(x+ty) = f(x) + f(y). Such a result is true wh
. C . is true when we add
.’ L) + = '
one, we obtain using a + b =0 . f(x) = f(y) =0 as Ker f is a subgroup. Now if f(x) = f(y) # 0, as
2% (xy) (F(x4y) - fx) - Fly) - 0. . ‘ Ker f is of infinite index, and with what we have already proved, there exists

an element z, z ¢ Ker f, such that both

£(z) # f(x) and f(z) # f(-x) = -f(x)

Now if a + b =0, with ker f having an infinite index, the proof of

Theorem 5.1 yields that f' is additive. We may now restrict ourselves

'to the case a + b # 0. Thus
EQ We may now assume that f dis odd, a + b # 0 and shall subpose first T f(z+k) = f(z) + f(x) as” f(z) # £(x)
that a # b. Write Equation (1), switching x with y and subtract the . and ' ‘
two equations: ' fly-z) = f(y) - f(2) as f(-z) # fy)
(b-a)(F(x) - FY)(Fxty) - F(x) - fly)) =0 | But f(zh) - fly-z) = F(x) - fy) + 2f(2) = 2f(2) # 0 (as z £ Ker f)

which yields Thus we may apply Equation (2)

(2) fF(x) # Fly) implies flxty) = f(x) + fly) , flxty) = f(ztxty-2) = f(z+x) + Fly-z)
let ; ' 7 f(z) + f(x) + f(y) - f(2)
f(x) + f(y).

From now on, we shall no Tonger use a # b but only Equation (2).

us prové that the largest subsets of G on which f s constant are

precisely the cosets of Ker f.

If X -yeKerf,x=y+tz where “z ¢ Ker f. Equation (T) ‘

written for x and y is




6) To end with. the proof of Theorem 5.5, we have to deal
with the case where a = b #0. If a=b=1, then we plainly get

the Cauchy equation. If.We assume a = b, but different from 0 or 1,

we still know that f muét be an odd function. We shall prove that

Equation (2} remains va]id. Suppose by way of contradiction, that there

exist Xy, ¥, with f(Xé) #flyg) and flxgryg) # fxg) + flyg).

Then Equation (1) yields

(3) Flxgtyg) = aflxg) + f(yg)

Let us compute f(xo), which we write as f(x0+yo—y0). We apply

Equation (1) as f(x0+y0)§#vf(x0) + f(yo) and with f being odd, we

deduce that

(4) f(xo) = a(f(x0+‘y0) - f(.Yo))

We eliminate f(x0+y0) in Equation (3) and (4) to get
(a=1)[a+1)f(xy) + af(yy)l =0

and by symmétry in Xg apd Yo using a # 1, we obtain

i (a+1)f(yy) + af(xy) =0
Thus, by subtraction, we deduce that
flyg) = Flx,)
But this is a contradiction to our hypothesis. Therefore we have
proved Equation (2) to be.valid.
(2) f(x) # f(y) implies f(x+ty) = f(x) + f(y)

We may now end as in 5) and thus have completed proving Theorem 5.5.

Note 1 If a=b=1, Eq (1) amounts tol
(5) (Flxry))? = (F(x)+F(y))2

With G as a semi-group and F =R or F = C, such an equation for

f: G~ F wasalready solved in Chapter II §5 (Corollary 2.1) and proved

* to be equiya1ent to the Cauchy equation.

More can be said about Eq (5) than the results as available in

Theorem 5.5, by relaxing properties of F and G.

Theorem 5.6 Let G be a group, or even a semi-group. Let F be an

integral domain of characteristic different from 3. Then Eq (5) is

equivalent to the Cauchy equation.

When F is a comnutative ring without divisors of zero, then
Eq (5) 1is equfva]ent to the Conditional Cauchy equation relétive to Z
where ‘
(6) Z=[(xy)|x ¢ Gs y e 6; F{xty) + f(x) + f(y) # 0.
Sometimes such a conditional Cauchy equation is called an aiternative
equation. With a Z-additive function (Z being defined as in (6)), we
no longer have to restrict ourselves to rings for F but can use a semi-
group as well. The following theorem is available.

Theorem 5.7 Let G be a’gkoup (or even a semi group). Let F be a

group containing no element of order 3. Moreover, suppose F dis abelian

or contains no element of order 4, then Condition (Z,G,F), with Z as .

defined in (6), is redundant.

Theorem 5.6 is a consequence of Theorem 5.7 as under the
assumption made in Theorem 5.6, Eq (5) is equivalent to Z-additivity.

It is possible to give the general solution of Z-additivity when F s



an abelian group. If F has enough elements of order 3 and order 2, then

(Z,G,F) is not redundant. More precisely (See bibliography).

Proposition 5.2 Let F, G be groups and suppose F is abelian. A

function f: G > F is Z-additive if and only if f is either additive

or of the following form

f(x) = o + g(x)

where o is an _element of order 3 in F and g an additive function

from G into the subgroup of all elements y of F such that 2y = 0.

Proof of Theorem 5.7 To begin with, suppose there exists an’ Xq € G

such that Zf(xo) # f(2x0). We use additive notations for both G and
F. Define oy = f(xO), where f s a Z-additive function (Z as in Eq (6))

By Z-additivity,(f(ZxO) = -20. We compute f(3x0) and then f(4x0) in

two ways

F(3x,) = F(2x X)) = e(f(2x0)+f(x0)) = -e0

070

o)

where ¢ is either equal to 1 or to -1.

f(4x0) = f(3x0+x0) = e'(f(3x0)+f(x0)) = e'(-e+1)a0 gt = 1

f(4x0) = f(2x0+2xo) = -4s”u0 gh = #]

Therefore .(e'(-e+1)+4e”)a0 =0

The possible values of the coefficient are +2, +4 and 6. But 4a0 =0

is impossible as it implies f(2x0)= -20 = +20, = 2f(x0). A fortiori

205 = 0 is impossible. Therefore 6a, = 0. But 20,y would be an element

of order exactly 3, which is impossible by the hypothesis. We deduce that

for all x in G.
f(2x) = 2f(x)

Now suppose F possesses.no element of order 4 but there exists again

(x,y) such that
7 fxty) = ~(F(x)+F(y))

Then we compute f(2x+y) in two ways | : ;

F(2xty) = Flx+(xty)) = e(FO)+F(xty)) = -efly) . e = +1] |
and f
fl2xty) = e' (f(2x)+F(y)) = e'(2f (x)+f(y)) e' = 4]
Thus ' ’
e"f(y) =

. 2f(x) + f(y) e = 4]
In the same way V

e"f(x) = 2f(y) + F(x) e = 1

If e =1, ¢" =1, then 2f(x) = 2f(y) = 0.
If e" =1, e =-1, then 2f(x) =0 and 2f(y) = -2f(x) = 0.
If €' = -1, & = -1, then 2f(x) + 2f(y) = O.

Lan

—

m—
i

-1, e =1, then 2f(y) = 0 and 2f(x) = -2f(y) = 0

In all cases, 2f(x) + 2f(y) = 0, which means

(8) f(x) + fly) = -f(x) - f(y)

Using (7),we deduce from (8) that f is additive. A similar proof
works if we suppose that F contains no element of order 4.
Note 2 Suppose G is a group and F s abeljan, it is easy to prove

that all the solutions of the functional equation f: G~ F



f(xty) + f(x) + f(y) = 0

(9)

are given by

f(x) = a + g(x)

where o is any element of order 3 in F and g any additive function

from G into the subgroup of all elements y in F such that 2y = 0
f(x) - f(0) satisfies

(We deduce from (9) that 3f(0) = 0, then g(x)

Eq (9) with g(0) = 0. Therefore, with y = 0 in (9), this equation

yields 2g(x) = 0 and we may write as well the equation (9) for g in

the following form: g(x+y) = g{(x) + g(y)).

In other words, with the hypothesis of Proposition 5.2, the

family of all solutions of the alternative equation

Flxty) = F(x) +Fy)  if  flery) # -F(x) - F(y)

precisely splits into either solutions of fix+y) = f(x) + f(y) or

solutions of f(x+y) = -f(x) - f(y). There is no mixing or intertwining -

behaviours of the two functional equations.

Such a result.leads to the following open question: Is there-

some intertwining behaviours for the fo]]owjng conditional Cauchy equation

fxty) = f(x) + f(y) if g(x+y) # g(x) + g(y)

where both f: G->F and g: G-+ F? Even for F =G =R, but without

any regularity assumptions for one of the unknown function f, g, the

problem is not yet resolved.

Note 3 The proof of Theorem 5.5 leads us very close to the general’

solution of Eq (1) where G s an abelian group and F an integral

domain of characteristic zero. We state here the general result. The

- (B) f(n)

5.17

proof requires now dn]y elementary computations which we avoid.

Theorem 5.8 Let G be an abelian group and F be an integral domain

of characteristic zero. lLet f: G~ F be a solution of the functional

equation
(1) (F(xty)~F(x)-F(y)) (F(x+y)-af (x)-bf(y)) = o

where a, b are given in F.

We then get the following four mutually exclusive possibilities:

(a) a+b=1, Ker f=0 and f is a constant (non zero) function

a+hb

—

T

~—

0, Ker f is of index 2 and f(x) = 0 for x e Ker f, f(x) = Yy

for x £ Ker f where Yo # 0 is an arbitrary element of F.

(y) a+b=-1, Ker f is of index 3 and f(x) = 0 for x e Ker f, f(x) = Yo

for x e x5+ Ker f and f(x) = Yy for x e -xg+ Ker f

where Xq ¢ Ker f, Yo # 0 dis an arbitrary element of F,

(8) a, b arbitrary, f is a Cauchy solution and Ker f has an infinite index

(e) a, b, arbitrary, f is identically zero.

Example Let G =F =7, the additive group of integers. Any solution
fi Z ~Z of
- (F(n+m)-F(n)-f(m) )} (f(n+m)-af(n)-b f(m)) = 0

with a, b ¢ Z has one of the following form

(o) f(n) =n ny € Z7.(n0 # 0) (possible if and only if a + b =1)

05
0 for even n, f(n) =N for odd n(n0 # 0) (possible if and only

it

if a+b=0)




(1) (F(x+y)-f(x)) (F(x+y)-f(y)) = 0

1

0 for n

(y) f(n) 3h, f(n) = ny for n=3h+1 and f(n) = -ng

for n = 3h+é (n0~# 0) (possible if and only if a + b = 1),

Therefore a solution of (10) is not always a solution of some equation

(s)  f(n) = ngn where n, e Z. Tike Eq (1). We easily deduce that a subset Z having the stated

A further generalization was made. We only state the result without proof. properties is such that Z u (-Z) = G (As 0 e Z', we cannot have

Theorem 5.9 Let G bé an abelian group-and F_be an integral domain of both x' and -x' 1in Z'). Therefore, Z has to be "thick" enough.

characteristic'zero. Suppose f: G~ F satisfies

If, for instance, the abelian group G is a complete metrizable topo]ogiéa]

(10) (f(x+y)-af(x) bf(y))(f(x+Y) cf(x)-df(y)) = o group, or a locally compact abelian group, then a subset Tike Z must
X - - - - =

be of second Baire category, and if Haar measurable, of positive Haar

where a, b, ¢ and d_ are in F. Suppose f(0) = 0. Then f is

measure.

identically zero, excepf in the following four cases

It can be proved that if 0 ¢ Z # G, and if Z 1is Haar

.

b measurable in a Tocally compact abelian group G, then Z and Z' have

1
‘ both a non empty interior Z° and Z'°. Moreover 7Z\Z°, Z'\Z'° have

zero Haar measure. In the case of R (or R"), the following holds

Proposition 5.3 Let Z <R, such that 0 e Z#R, Z+ Zc Z and

Z' + 7' < 7' where 7' is the complement of Z. Suppose there exists

The first and last case are solved with Theorem 5.8 (See bibliography for

non empty open subsets 6 and 6' of R such that 8 n Z and

the complete solution of (10)). An interesting case is the following.

8' nZ' are of first Baire category.

Let 7 be a subset of G such that 0 e Z, Z+ZcZ and Z'+ 7' cZ'

. Then Z = [0,= or Z = ]-=,0].
where Z' 1is the complement of Z in G. We define f: G~ F according

Proof We already noticed that Z was of second Baire category. Therefore,

to

the proof of Corollary 3.2 yields that Z + Z contains a non-empty

h
h*  (h' # h) for x e Z'

interval Ja,b[,a < b.

-5

—
x

~—
n

Suppose 0 < a, then for any integer n > B%gu nb > (n+1)a

so that Z > U Ina, nb[ » [c,o[ for some c in [0,=[.
n=1

Then it is easy to verify that f s a solution of (10) with a=4d =1,

b=c¢c=0, i.e.




Let Ja',b'[ be any interval with 0 < a' < b'. We show that Z'n ]af,b'[

is of first Baire‘category by way of contradiction. To see this we

notice that if Z' n Ja',b'l were of second Baire category, then

Z'n 12a', 2b'[ would. contain an interval for the same reason for Z'

‘as the one for 7 deduced from Covrollary 3.2. As a similar consequence,

7' would contain [c',=[ for some c¢' "in [0,o[. There is a

contradiction as Z n Z' = @. In other words, Z n Ja',b'[ is of second

Baire category and so Z n ]2a',2b'[ contains an interval Ja",b"[, with

2a' < a" < b" < 2b'. Suppose now o > 0 and there exists a B, 8 > a

such that Jo.8[ < Z. Let vy = Sup[B|8 = 0; Ja,B[c Z]. We prove

y = 4o, Clearly Jo,y[cZ and vy - o> 0. Using 2b' =y -a and

a' <b', we find a", b", 2a' <a" <b" <y - a such that Ja",b"[c 7.

But then Ja,y[ + ]a",b"[v= Ja" + v, b" + y[c Z+ Z cZ and as

a" + a < vy, we deduce that Jo,b" + Y[c Z, contradicting the definition

of vy as a finite £.g.b. Therefore Ja,»[c Z. But as a', b' are

arbitrary positive numbers, then J]0,x[< Z and 0 ¢ Z yields [0,«[c Z.

The,ana]ogous conclusion J]-2,0] would be deduced along the same line

if a < 0. A similar proof leads to

Proposition 5.4 Let Z <R be a Lebesgue measurable subset such that

0cZ#R, Z+Z7ZcZ and 7'+ 7' < 7' where 7' is the complement of

Z. Then Z = [0,[ or Z = ]-=,0].

With. some more attention, the following can be proved (see bibliography

for the proof).
Proposition 5.5 Let 7cR", 0 Z#R",2+2cZ and 2'+7' <1’

where 7' is the complementary subset of Z in R Suppose there exists
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an open subset 6 of R" such that the difference set 8 A Z is of

fifst Baire category. There exists an (n-1)-dimensional hyperplane H

containing the origin such that 7 =P y Z, where P 1is one of the two

open half spaces determined in R" by H,and Z, 1is a subset of H

having with respect to H the same properties as Z in R".




5.3 Conditional Cauchy Equations of Type III2

The general situation of type III2 is for the conditional subset

Z to be of the following form:

(1) Z=[0y)|x e 6, ¥ € G, xy £ X]

where X c G with p#X#6 and f: G~ F. Let X' be the complement

of X in G. We write as well Z = [(x,y)|x € G, y € G, xy ¢ X']. We

define Y < G according to

Y= Dyly et fiy ) = ()71

For x ¢ %, we get f(x) = f(x)f(1) and as X' # P, we deduce that

f(1) = 1. Moreover f(x) = f(xyy"1) = f(xy)f(y"]).

In other words, we obtain type II for f: G- F

(2) fxy) = f{x)f(y) for all  (X,y) € X"x Y

It should immediately be noticed that Y is not an empty set as it

contains X'X'~—1 because of the following computation for Xq and Xy

in X'

flxg) = FlxpoF(x,)  and Flx,) = Flxx] )F(x)

so that ‘
f(x1xé1) = f(x])(f(xz))'1 and f(xzx;]) = f(xz)(f(x1))_]

We deduce that

£lxpxp ) F(xpx71) = 1

= "1 T
and seo y = XXy € Y for any Xps Xo € X',

a) If we were to suppose 1 e X', we would deduce that Y = G as for

all x in G:

X' in G is G, and then (Z,G,F) 1is redundant with Z as defined as
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1= £(1) = FOF(x)

We then get,as could have been guessed.a type I equation:
(3) fxy) = f(x)f(y) for all  (x,y) ¢ X' x G

Such a condition is then redundant whenever the subgroup generated by

in (1). But by Theorem 3.2, we also know the general solution of (3),
even in the non abelian case (cf Note 2 after Theorem 3.2). Conversely,
if f satisfies Eq (3) and if Y = G, then f satisfies a Z-conditional
Cauchy equation with Z as in (1).

b) A similar conclusion would hold if we were to suppose that there

exists Xg in X' such that for all y in G, f(y) = f(yx61)f(x0)

(a) appears as a special case of b) with Xq = 1). 1In such a case, we

deduce that for xy ¢ X'

-1

fxy) = fxyx, )f(XO) or f(xyxa]) = f(xy)(f(xo))'1

Therefore

Flxg') = FX)F(Y) (Flxg))

F(x)Flyxg)

In other words, whenever xt e X" = X‘x61, we get

(4) - Flxt) = F(x)F(t)

which is type 1112 as in a) because X" contains 1.
<) Suppose G and F are abelian groups and f: G~ F is a Z-

additive function with Z as in (1). We notice that

(5) flxg) = f(xo—y+y) = flxyy) + f(y)/ for all y in G




and as a consequence

(6) Flxty) = F(x) + fxg) - Flxg-y)

Llet T = X' - Xg and t=x+y - Xg € T. Define g: G > F according

to
(7).

using (6)

w1th s = -y, s arbitrary in G and t in T, we deduce that

(8) g(t+s) = g(t) + g(s) SeG teT

Therefore, g satisfies a conditional Cauchy equation of type I, with

a cylinder G x T. Conversély, let g: G-~ F be a solution of the

for all t 1in T,anx

condition Eq (8). We compute with s.= -y, y ¢ G,
for an f linked to g by (7) that :

i

g(t)

fxty) - flxg)

(

(t-y) - g(-y)
(t-y+xg) - fxg-y)
(

9
f
f

x) - flx,y)

flxty) = f{x) + f(xo) - f(xo—y) whenever x +y e X'

For (9) to imply Z-additivity, we must add

(10) fly) + f(xo-y) = f(xo) for all y e G.
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We could then give the general solution of Z-additivity using Theorem 3.2.
We shall content ourselves with the case where the subgroup generated
by X' dis G. Then T generates G as Well. Suppose F is a group
with an element of order greater than 2. We may apply Theorem 3.1 so that
g ‘is additive, (10) is always satisfied aﬁd f s additive as well.
Therefore (Z,G,F) 1is redundant.

When X' doeé not generate G, then in general (Z,G,F)

is not redundant. We may add

Proposition 5.6 Suppose G =R" or G =T" (where T = R/Z). Let X'

be a subset of strictly positive Lebesgue measure. Llet Z = {x,y);

xeG,yehyx+tyeX']. Condition (Z,G,R), is redundant.




5.4 A Dua1.Equation‘of Mikusinski Functional Equation

With Mikusinski equation, the condition was f(x+y).# 0, that

is the left member of the Cauchy equation. By a kind of duality, it

seems interesting to investigate the condition using the right member

f(x) + f(y) # 0. Subgroups of index 2 of G will then be replaced

by subgroups of order 2 in F.

Theorem 5.10 Suppose that G 1is a group and F a group with no subgroup

of order 2. Define Z

Z=[(x,y) € GxG; fF(x)f(y) = 1]

Condition (Z,G,F) is redundant.

Proof. First we notice that f(1) = 1. In fact, if there exists an x

with f(x)f(1) # 1, then f(x) = f(x.1) = f(x)f(1)
the contrary, if f(x)f(1) = 1 for all x, then (f(l))2 =1 and so
(F(x))"!

and so f(1) = 1.

on

f{(1) = 1 as F has no elements of order 2. Note that f(x—1) =

for all x in G. In fact, if f(x)ﬁ(x']) # 1 then we get

1=f(1) = f(xx_1) = f(x)f(x_1) # 1 which is a contradiction.

x-F .
X

for all

We introduce F = {y e G: f(x)f(y) = 1} and H, = We

and so 1

Let us now prove that HX = Hx'

-1
have X e FX € HX.

X,Xx' in G. It is enough to show that HX c Hx" Our hypothesis yields

(1 Flx') - £(x*T2) #1

and
(2)
From (1), we deduce f(z) # 1 and from (2),we deduce f(x) = f(z).

' Sy -

£(x) - £(x"'z) = 1.

(If not, then f(x_l)f(z) #1 and so f(x)f(x'1z) = f(x)
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- which is a contradiction.)

We may write f(x) = f(z_1)f(zx) because from f(z)f(x) = (f(z))2 71,
as f(z) # 1, we deduce f(zx) = f(z)f(x). Now, with the help of (2)

1 = f(x)f(x—]z) = f(z-1)f(zx)f(x_1z).

But f(zx)f(x']z) # 1, as the contrary implies 1 = f(z'1) and then

1 = f(z), which leads to a contfadiction. Thus

1= fz Do l2) = #(NeED) = 12 D2 F(2)

as (f(z))2 # 1, so that f(z) = 1. This is the required contradiction.
Now, if x e Ker f = {y e G: f(y) = 1}, we get Fx = Ker f.
But Ker f is a subgroup. In fact, using f(x'1) = (f(x))'], it is
enough to prove that if x, y ¢ Ker f, then xy e Ker f. Suppose on the
contrary that f{xy) # 1. Then f(xy)(f(y))—1 # 1 and so we get
f(xy)f(y"1) # 1, yielding f(x) # 1, which is a contradiction. Now,

we get HX = Ker f for any x. in Ker f and so HX = Ker f for all

X in G.
Let f(x)f(y) # 1; then f(xy) = f(x)f(y). Now, let
f(x)f(y) = 1; then y = x where z e Ker f. So
flxy) = f(xx"'z) = f(z) = 1 = £(x)f(y)

Thus, f: G-~ F s multiplicative.

Instead of solving the second problem in the non abelian case IV1y
Tet us only mention the following

Proposition 5.7 If f: G- F is a Z—mu]tib]icative function for

Z={(x,y) e 6xG: F(x)f(y) # 1} then



(Flxy))2 = F()F()FO)F(Y) for all (x,y) G x G.

If F 1is an abelian group, we get Zf(xy) = 2f(x) + 2f(y) _for all x

and _y in G.
The result is obvious if f(x)f(y) # 1.

then y = )

Proof. If f(x)fly) = 1

z where z ¢ HX using the notations introducéd for the -

proof of Theorem5.10. Consequently, f(xy) = f(z). If z e Ker f, the
If z ¢ Ker f, we necessarily get f(x) = f(z).

FOFF(2) = F(z),

prbposition is proved.’
(If not, f(x'])f(z) # 1 but then 1 = f(x)f(x']z) =

Suppose now (f(z))2 #1. Heget f(zx) = f(Z)f(X)

which is impossible.)

and so

1= f(x)f(x_1z) = f(z_1)f(zx)f(x_]z).

1

But f{zx) - f(x-]z) must be different from 1 as f(z_]) = (f(z)) # 1.

Then

1= £z YD),

(F(2))% = 1.

of z, we get f(z) = f(xy) so that (f(xy))2 =1 and so

yields By definition

Thus we have proved that . f(x)f(y) = 1

(Flxy))? = FOOFIFOF(Y)

which ends the proof.

Proposition 5.8 Suppose F possesses as an element of order 2 and define

Z={(x,y) € Gx G f(x)f(y) # 1} For any G, condition (Z,G,F} 1is notl

redundant.

Proof. Consider “f(x) = ¢ where c2~= 1 and ¢ # 1, or f(x)=c¢ for

all x #1 and f(1) = 1.

We may in fact obtain the general solution of the conditional Cauchy equati
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for Z = [(x,y) € G x G: in the abelian case.

Flx)f(y) # 1]

Proposition 5.9 Let F, G be abelian groups. Then f: G-+ F is Z-

additive where 7 = [(x,y) ¢ G x G; f(x) + f(y) # 0] if and only if f

is additive, or if f(x) = Yo (y, e F) or f(x) =0 for x ek,

0

f(x) =yg for x ¢« where 2y = 0 (yy # 0) and where « is a subgroup

~Type IV2 is still not solved in general. We shall simply refer to the

bibliography.



5.5 Conditional Cauchy Equations in the "Tybular" Case

We shall briefly deal with the "tubular" case and on the real
; 2
[O6yI(6y) e RSy e E ]

empty open convex subset of R.

axis only. The tubular condition is for Z =

where EX is, for each x in R, a non

Such a tubular condition is not redundant, nor even redundant within the:

class of continuous functions, if we do not impose any other restriction

on E . For example, let E = ]%3 %{ with 0< |x| <1, E, = Ix.2x[ for

[x] =1 and take for EO some open interval of R. Any function equal:

to 0 at 0 and such that f(x) = x for all |x| =1 {is a solution of

the Cauchy equation under the corresponding tubular condition.

Thus we shall add U (x+Ex) =R. Let I denote the class of all

R Loc

Tocally Lebesgue integrable numerical functions.

Theorem 5.11 Let Z be a tubular condition such that

U (x+EX) =R
xeR

is upper semi. continuous while

and suppose that x - b{x) = Sup y
yeEX

x » a{x) = Inf y is lower semi-continuous. Then (Z,R,R) s I

yeE fLoc

X

redundant.

Proof Fix x in R and let a(x) < c <d < b(x). As b(x) is u.s.c.,

there exists an open neighbourhood el

1

of x such that b{y) > d for

all y in 0 - As a(x) is £L.s.c., there exists an open neighbourhood
2 . 2 . _ a1 2
Oy of x such that a{y) <c¢ for all y in 6. With 6, =0, n ?x’

which is an open neighbourhood of - x, we deduce that [c,d] is inc]uded in

Ey for all y in ex.

Let us now integrate the Cauchy conditional equation on [c,d] for

all 'y in O and using J f(y+z)dz = f(z)éz:

c y+c

By (1), as

derivative everywhere on R.
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yd d
(1) j fuwz=m«ww>+jﬂﬂu
y+c o

f belongs to I, , we deduce that f is continuous on o, -

£Loc

Using (1) once more, we deduce that f is differentiable on ex with a

continuous derivative. As X ¢ 6X, we deduce that f has a continuous

We now differentiate the conditional Cauchy equation with respect

to X
(2) flxty) = f'(x) for all y .in. E, -
Let Yo = f'(xo) for some X in R and consider Y0 = [x}x e Ry f'(x) = yo]. ;
As f' is continuous, Yo s @ non empty closed subset of R. Now let
zeY,. As U (x+E ) =R, there exists x in R such that z ¢ x + E_.
0 xR X : X

But (2) proves that f' 1s constant on x + EX which is an open subset.

Thus YO is open. As R 1is a connected topological space, we deduce
YO =R or f'(x) = Yo for all x in R. Thus f(x)
the conditional Cauchy equation immediately yields ¥y © 0.

= Yox * yy. But ‘
This ends
the proof of Theorem 5.11. .

| Using a selection theorem, we could study the tubular conqition
on metrizable topological groups but this will take us outside the scope

of the present text.



5.6 Conditional Cauchy Equations of Tybe v

Suppose Z s a subset of the plane RZ such that its

complement Z' s of Lebesgue measure zero. What can be said about a Z-

additive function? Could we expect that if f: R >R is Z-additive, then

there exists an additive 'g: R -+ R such that: g = f almost everywhere?
At first glance, the answer appears to be obviously yes. It however require

some detailed study. It is even possible to treat the problem in a fairly

general way, using the notion of a proper linearly invariant ideal.

Let G be a group (with additive notations, even if G 1is not necessarily

abelian).

Definition 5.1 A non-empty family t of subsets of G 1s‘ca11ed a _proper

Tinearly invariant ideal if the following properties are simultaneously

i

iv) 1 dis proper (G # T).

satisfied: ;
(i)‘ If A And B éré”in T, theﬁ AuBer
(1) If Aect and BeA then B et

‘ (iii) For any x in G, and A in T, x - A‘g_r
(

It is easy to deduce that x + A e 1 and A+ x et for any X in G andf

A in tT. The most common example of proper linearly invariant ideals are

the following ones:

(a)

subsets of Haar measure zero.

Let G be a locally compact group and T be the family of all

(b) Let G be a Tocally compact group and <t be the family of all

subsets of first Baire category.

(c) Let G be a metrizable topological group, the diameter of which is

infinite and T be the family of all subsets of G of finite diameter.
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(d) Let G be a group, theICardina1 of which is infinite and equal to
o and 't be the family of all subsets of G of a cardinality strictly
less than o.

(e)

translation and reflections with respect to O and suppose that G has

Let G be a group endowed with an outer measure, invariant under

an infinite outer measure. Take T to be the family of all subsets of
a finite outer measure.
Once a proper Tinearly invariant ideal is giveh on.G, we can always

construct another one on the product G x G, in the following way.

- Definition 5.2 Let 1t be a proper linearly invariant ideal on a group G.

Then tt 1is the family of all subsets Z oft G x G such that except

perhaps for all x in G belonging to a member of T , the section

ZX = [y|¥ € G, (x,y) € Z] belongs to .

It is easy to prove that tt 1is a proper linearly invariant ideal on

G x G.

If t© 1s a proper linearly invariant ideal on G and t' another one on

- G x G, we say that T and t' are conjugate if the vertical section

Z, = [yly € G, (x,y) € Z] of any subset Z.of -/ belongs to = except>
perhaps for all x belonging to some element of .
Tt is the Targest proper Tinearly invariant ideal of G x G conjugate

to T.

Definition 5.3 Let t (in G ) and <’ (in G x G) be conjugate proper

linearly invariant ideals where G dsa group. Suppose that for any Z

in G x G, such that its complement belongs to ' and for any Z-additive

f: G > F, where F 1is a group, there exists an additive g: G-~ F




such that f(x) = g(x) for all x, except perhaps those x -belonging

to some subset in t. MWe then say that (t%7,G,F) is almost redundant.

Theorem 5.12 Let G be a group. Let T (in G), T (in G x G) be

conjugate proper linearly invariant ideals. Let F be any group. Then

is almost redundant.

(t'7,6,F)

It is enough to prove that (7,1T,G,F) is almost redundant. So Tet
- f:vAG + F be Z-additive where Z' belongs to t7. Let X' be the set
of all x 1in G  such that the section Z; = [yly ¢ G, (x,y) e Z'] does

not belong to t. By definition of tt, X' belongs to T.

For any x ¢ G, choose i(x) 1in G such that 1i(x) ¢ X' and x'- i(x) £ X

This is always possible as Tt 1is a proper linearly invariant ideal. Let

Yy © %(x) u (-i(x) + Zx-i(x))' By our choice of 1i(x), we deduce that

YX belongs to t. We-shall now define a function .g: G -+ F according

to A
(a) ' g(x) = fx+y) - f(y)

where y denotes any element of G, not be]onging to Yx‘ For this

definition of g to make sense, we have to prove that (a) does not depend

upon the particular choice made for y ¢ Yx' We compute that

Fx-1(x)+i(x)+y) - f(y)
fx-1(x)) + F(i(x)+y) - f(y)

Fx+y) - fly)

as  (x-i(x), i(x)+y) e Z .

f(x-i(x)) + f(i(x)) + f(y) - f(y)

as  (i(x), y) €‘Z

Flx-1(x)) + F(i(x))
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This last expression is no longer dependent upon y. Thus g is well
defined via Eq (3). Let us pfovevthat the function g 1is equal to T,

except perhaps on X' (Reca]i that X' e 1). Let x £ X'. Suppose first

(x,y) € Z for some y ¢ Yx' Then

tg(x) = fixty) - f(y) = f(x) + fly) - fly)
= f(x)

It only remains to show that the choice of a convenient y s always

possible for x ¢ X'. We impose upon y the additional conditions that

y £ Zi and y ¢ Yx' But both Z; and YX are in T and thus

Z, v Y, cannot coincide with G. Therefore there is some possible
choice for y.

To end thevproofvof Theorem 5.12, it must be proved that g is additive.
The trick will be to use convenient transiates. We start from u, v.

and u +v in G. We first find (1) x é'Yu+v and thus

g(u+v) = flutvtx) - F(x)

Then we find (2) y ¢ YV and (3) z ¢ Yu

fvty) - f(y)
flu+z) - F(2)

g(v)
g(u)

In other words»
gutv) - g(v) - g(u) = (Flutvix) - F(x)) - (F(vty) - F(y)) - (Flu+z) - F(z))

We shall add some moere conditions on x, y and z and we shall have to
prove their compatibility. Let s be such that y = x + s and require that
s ¢ Z;,‘or

(4) )’éx+Z)'(.




Thus

fly) = fx+s) = f(x) + f(s)

Llet 't e G besuch z=v+x+s+t and require that

(5) t#£2Z,,

“f(vixtstt) = f(z) = f(v+x+S) + f(t)

We deduce that

glutv) - g(v) - glu) = flurvex) + F(s) + f(t) - f(z) + f(z) - flut+z)

flutv+x) + f(s) + f(t) - flu+z)

Suppose (s,t) ¢ Z' which amounts to

(6) t#1Il,,

glutv) - g(v) - g{u) = flurv+x) - f(s+t) - f(u+z)

Suppose '(u+v+x,‘s+t) ¢ 7' which amounts to

(7) td =y + x4 7

Then

glutv) - g{v) - glu) = flutvtxts+t) - flu+z)

0

The additivity of g is thus proved as soon as we can exhibit x, y, z and

First we manage to obtain that

t satisfying the relations (1) to (7).

! all subsets occurring in relation (1) to (7) belong to 1. This implies

and (]])

(8) x ¢ X', (9)y #-v+ X', (10) y ¢ x+X x ¢ -v-u+X

The choice of x 1is now possible as (1), (2) and (11) only

require x not to belong tb some element of 1. The second choice is for
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which is also possible for ‘the same reason taking care of (2), (4), (9)

and (10). The thirdchoice is for z and we use (3). The final choice

is for t, but we then have (5), (6) and (7). This ends the proof of
Theorem 5.12.

Note T An irritating aspect of the statement made in Theorem 5.12 is that
it does not precisely explain how the exceptional set X" belonging to =,
on which f differs from g, is related to the exceptional set Z'. By
our proof, we only know that X" is included in the exceptional set X'

as related to the sgctions Zi. The set X" can well be far smaller than

X' in some specific cases. For instance, we get the following result

* (See bibliography).

Theorem 5.13 Let G = R" and F be an abeljan group. Suppose f: G > F

is 7Z-additive where 7 = Rzn\Z' with 7' of finite outer 2n-dimensional

Lebesgue measure. There exists an additive g: G- F and f =g

almost everywhere (for the Lebesgue measure in Rn).

Note 2 At Teast the additive g ‘'we have constructed is the only additive

function which is equal to f except on a subset of tT. To prove.this

last point, let h: . G > F and h(x) = g{x) for all x £ T where T e T

We suppose h s additive and write for any x in G

h{x) = h(x-t) + h(t)

We choose t such that t ¢ T and t £-T + x, which is possib1e as T

and -T + x are in T. .Then



Thus h{x) = g(x) everywhere in G.

Note 3 If we replace equality by an inequality, Theorem 5.12 remains true

for Jensen convex functions but is still open for subadditive functions.

We first quote

Theorem 5.14 Let f: R +~R be such that

(F(x)+f(y)) for all (x,y) ¢ Z

where the complement of 7 (in Rz) is of Lebesque measure zero. There

exfsts a unique Jensen convex function g: R->R and f(x) = g(x)

almost everywhere.

For subadditive functions, the best result available up to now is the

foliowing

Theorem 5.15 Let f: R +R be such that

fx+y) < F(x) + f(y) for all (x,y) ¢ Z

where the complement of Z (in Rz) is of Lebesque measure zero. There

exist two subadditive functions ¢ and ¥ such thatalmost everywhere

o(x) <

Moreover, if the set of all x in R _such that both f(x) and f(-x)

less than e has a strictly positive Lebesque measure, then ¢(x) = f(x) =

almost everywhere.

Quite naturally, one may ask now for the general solutions of types I, II,

We shall simply refer

111 or IV modulo a proper Tinear invariant ideal,

to the bibliography.

6.1

CHAPTER VI

FUNCTIONAL EQUATIONS WITH SUPERPOSITIONS OF THE UNKNOWN FUNCTION

Programme  In this chapter, we leave Conditional Cauchy equations for

more sophisticated functional equations. The main feature of

the equations to be considered is a superposition of the unknown

function. Therefore, we begin by studying a functional equation

linearly linking f(f(x)), f(x) and the variable x on an

abelian group.

For such an equation, a simple introduction is

provided on R and an application is given to the characteri-

zation of inner product spaces.

Afterwards two funetional equations are studied. One origindtes

from the theory of geometrical objects. The other is fTom>

functional analysis.

in algebra.

6.1 On a division model for a population

Applications are provided to some topics

When a certain population is being distributed into classes

(for example committees in a congress or in a department) it has often

been noticed that there exists a tendency for a new subdivision to form

within each class.

Suppose, statistically, that the tendency to subdivide

only depends upon. the number of classes and.is the same for any class.

Is it possible, at the second subdivision, that the tendency to form a

subdivision be the square of the tendency at the first division?

If f(n)

of a family of n

denotes the number of subclasses into which each class

classes will be divided, we get nf(n)

classes at the




first division. We now ask whether it is possible that

(1) fF(nf () =(F(n))2.

Finding all f: N > N satisfying (1) is an interesting

combinatorial problem which we shall not solve generally. Instead, we

shall try to find solutions of (1) which can be extended to all positive

real values so as to still satisfy (1). More precisely, we look for

f: R = [0y~ R such that for all x e Rr':

(2) F(xF(x)) = (F(x))2.

We shall prove the following theorem.

Theorem 6.1 Let f: R" > R" be a continuous function. To satisfy

(2) it is necessafy and sufficient for f to be of one of the following

forms:

(a) f(x)

>»l><

for 2, < x

> :

where x], AZ are any real numbers (or infinite) satisfying O < A < xz <4

[For example, if A1 =0, (b) means f(x) =1 for 0 s x< Ay and
= X_ = 4w ‘ V= X_
f(x) = " for x > A, If %, = +=, (b) means f(x) " for

0 < x <Xy and f(x) =1 for

6.3

X = A;). The interesting phenomenon, in
1

view of the introduction, is the existence of an interval for the variable

x where f is constant betwe

0

We shall prove Theorem 6.1 in

First step We first have to t

by 0 outside the multiplicativ
p =

If A=0, then f =0 and we
Suppose A # @ and let Xg € A

X5 finite or not, as

X

X2
By contradiction, let u

f(xz) = 0 by continuity, as w

Whatever X1 might be (zero o

X, with "g(x) # 0, we also get

¥
R b
x .
o
3o lee
nv

= Inf{x|x

en possibly two Tinear growths.

A

two steps.
ake care of the special role being played !
e group IR+/[0]. Consider A where

[x|x = 0; f(x) > 0].

are in case (a),with A = 0,in Theorem 5.1.

be fixed. We define two numbers Xy

v

0,]x,x0]c A}

v

SUP{XIX 0,[x0,x[c A}

s prove that Xy = teo. If not, we get
ell as f(x1) = 0. Then let us define:
g(x) = xf(x)

r not), we get g(x])‘= g(xz) = 0. For all

3
glg(x)) = %U—

X




From. this, wé deduce that g: A/[0] - IR+ is one-to-one as an equality
g(x') = g(x") =y #0 implies

3 3
90) =Yg =y

xll

and so x''= x". But g cannot be one-to-one and continuous on ]x1,x2[
and zero both in x; and X,. The contradiction leads to X, = c.

As is an arbitbary element of A, we have proved that

Xq
A= ]x], oof |

By contradiction too, let us prove that Xy T 0. We thus.suppose Xy > 0

and for any y > Log Xqs We define

(3) Fy) = Log f(e¥)

Then  F:

]y] = Log X1 o[ + R is a continuous function satisfying the

following functional equation

F(y+F(y)) = 2F(y)

(for y + F(y) > Yqs @s soon as y > ¥q» due to Equation (2)).

Moreover we get a boundary condition

C Y
- Flyp)= Lim F(y) = -=
¥¥y
¥>¥q
and for all y >y, get

(4)

We define G(y) =y + F(y)

(5) G(G(y)) = 36(y) - 2y

G: ]y], o[ » R 1is one-to-one and because of (4) satisfies ~

G(yT) = Lim G(y) = -
.V'*.V]

Yy

6.5

Thus G s strictly increasing. Still using (5), we see that G cannot

have a finite 1imit when y goes to +».  Thus G 1is a homeomorphism from

]y], o[ onto IR. Now for every y > Yy we define H(y) = y - F{y) as a

continuous function over ]y], o[, We then define H': R+ R according

to

H'(y) = H(6™ ' (y))

The function H' 1is continuous and extends H outside the domain of H, i.e.

]y], o[, In fact, if G(y) » Yy we get . )
H(G(y)) = G(y) - F(G(y)) :
=y + Fly) - F(y+F(y)) :
= H(y)
and so H(z) = H(G'](z)) for each z > Y1+ However, there is a contra-

s + . . .
diction as H(yl) = 4o which preventsa continuous extension of H.

Thus we deduce x1 =0,

J0,00[+]0, [ .

are defined for all real values of y

Second step We now return to the study of f: Using previous

notations,the functions G and H

and satisfy

(6) (G (y)) = H(y)

C]ear]&, we ought to compute G_n(y) for every positive integer n. By
induction, we easily get
6"y) =y + (27"-1)F(y)

grow to infinity, we deduce that

H(H(y)) = H(y)

and from (6), letting n




Returning to 'G, this yields for every y in R

G(H(y)) = H(y)

The range of H must be an interval, which we denote by |u],u2| where

| means "["as well as"]" and where -« < By Sy < e However we cannot

simultaneously have p, = yu, = 4o or u; = |y, = -, We also note that the
] 2 1 2

range of H coincides with the set of all fixed points of G. Such a set
u
i

is closed. To take care of the different cases, we put A] = e and

u -Co 4o

xz = e 2 making use ofthe following convention: e =0 and e =

a) If My = Uy = H is a constant function and so F(y) = y -

Thus f{x) = Ax with A =e " > 0. This completes case a) in Theorem 5.1.

= 4+, then G(y) = y for all real y

g) If oy = e and 1,

and so F(y) = 0. Then f(x) =1 for every x > 0 and by continuity

f(x) = 1. We arrive at case b) with A = 0 and X, = +e,

y) If 1y < u, <+, wenecessarily get F(y) =y - w, for

every y > . To see this, take y > Hae If we suppose H{y) e ]U]’Uz[’
-Nn

there ekists an integer "o such that G 0(y) € ]u],uz[. “Thus we get"
-(n,+1) -n ‘ , .
G . 0 (y) = G O(y), which contradicts the fact that G 'is a bijection

as G_](y) #y for yb> Hy. Thus efther H(Y) = u, or H(y) =u];"Iﬁ'the’

same way, using the strict monotonicity of G—], we may show that H(y)

=y

is not possible. So H(y) = Mo and F(y) = y - Ho o yielding f(x) = A
) ‘ 2

§) In a similar way, if “1 > -, WE pfbvé Fly) = y - My

for -o< y o< oy This ends the proof of Theorem 6.71.

6.7

6.2 A functional equation on an abelian group: linear iteration of order two

The functional equation (1), on the multiplicative semi-group
N, is the typical ca.. of a class of fuﬁctiona] equations where the
unknown function f appears in a superposition of itself. It iS’a1sb
a functional equation in one variable and this makes its solutions more
difficult to obtain. However, we shall give here some results in the
general setting of an abeljan group and in §5 and §6 shall deal with cases

involving two variables. The generalized equation (1) appears as follows

f: G- G (G,*) abelian group
(7) Fx+f(x)) = vf(x)
where v is a given integer, possibly a rational number if G 1is a

divisible group or even-a real number if G is a rga] Tinear space.
Heuristically speaking, the general solution for (7) should depend'upon
two parameters, but as (7) remains stable under a translatinn, things
look easier.

If v =1, Equation (7) is sometimes called Euler's functional

equation,which arose from a geometricaltproblem due to Gergonne (cf.
bibliographical notes). A simple transformation Tinks Equation (7)

with another interesting functional equation. If we define

g(x) = x + f(x)

Then f satisfieé Eduation (7} if and only if g satisfies Equation (8).

(8) alg(x)) = (y+¥1)g(x) - yx

If vy = 0, Equation (8) is the functional equation of idempotence.
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Xty _ A (X) A

A AKX VA AT

5 (%w) € J). We also get

If v =‘—1, Equation (8) is the functional equation of involution,

In general, Equation (8) is called the equation of linear jteration of

order two as it links g(g(x)) Tinearly with g(x) and x. We introduce

I' = [x|x e G; p(x) < 1]<d<fx|x e G p(x) < 1] =1

a useful tool in: If we use I and S, = [x] if xeI', S, = [yly = 2%, A e Q, x 2 1]

for x in I but not in I', we easily deduce properties (i), (ii) and

Definition 6.1 Let G be a divisible abelian group. An iterative vy-

decomposition of G consists of a non empty subset I of G and a set (iii). But (iv) fails to be true in general as can be seen with G =R

and J = [-1,+1]. However, if J 1is a closed and convex neighbourhood

mapping x - SX from I dinto the family of all non empty subsets of G

such that for some vy, vy # 0, vy # 1 (y_ rational in.general, but possibly of the origin in a real and linear Hausdorff topological space G, we

notice that J = [x|x ¢ 6 p(x) <1]. Therefore if S = [x] for. ‘ ;

real in case G s a real linear space)
(1) SX nI=[x]

(i1) Sy N S, = P for x #z

p(x) <1 and S =T[yly =2ax, xeR Az1] for p(x) =1, we get .

an iterative y-decomposition of G (for all 0 <y < 1). This last

example does not exhaust iterative y-decompositions of a real and linear

(i1i) For y e SX, vy + (T=y)x € SX
2

(iv) US =G
T xel®

Hausdorff topological space. Let G =R" and let I be a convex

polygon. For x inside the polygon,we use SX = [x]. For x on the

Examples Let for example J be a Q-convex subset of a divisible abe]iaﬁ boundary of the polygon, we use as Sx the half Tine starting from x,

group G, Q-radial at the origin. Define the Minkowski gauge of J as lying outside the polygon and being orthogonal to the side to which x belongs

a numerical function on G if x 1is not a vertex. Finally, we use as S, the wedge determined

p(x) = Inf[A]x € Q, A > 0, §.€ J]. by two perpendicularsto the adjacent sides if x 1is a vertex. We thus

define an iterative vy -decomposition of R’ (for all 0 <y < 1).

As J 1is Q-radial at the origih, p(x) is a well-defined real number for

every element x 1in G. We easily get . ,
Some topology may help us to solve Equation (8), by adding to it a continuity

p(ux) = u p(x) for all x in G, p>=0 in Q assumption. We shall restrict ourselves to topological linear spaces

over the real numbers, even though we could generalize to topological

linear spaces over the rational field.

p(xty) < p(x) + p(y) for all x, y in G

{because if §~e J,.then due to the convexity of J, we compute that




Definition 6.2 let G be a real Hausdorff topological linear space.

iterative y-decomposition of G is an iterative y-decomposition of G,

R
of G as well as SX for all x in I and such that the mapping h: G =3

for some real v, vy # 0, v # 1, such that T s a closed subset

defined by h(y) = x _if y ¢ SX is continuous. If 0 <y < 1, we use the

expression convex decomposition instead of y-decomposition.

Theorem 6.2 Let 0 <y <1,y eR. Let G be a real Hausdorff topological

linear space. A continuous function g: G~ G satisfies the functional

equation
(8)

g(g(x)) = (y+1)g(x) - vx for all x in G

if and only if there exists a regular iterative y-decomposition of G

such that h(x) = 9(x)=yx .

T-v

We first prove a corollary of Theorem 6.2 and then shall proceed to the

proof of this Theorem 6.2.

Corollary 6.1 Llet 0 <y <1, vyce R. A continuous g: R >R satisfies

g(g(x)) = (y+1)g(x) - v(x) for all x ¢ R

if and only if either there exist a, b, ~o<a <b < 4o such that

vx + (1-v)a if x<a

g(x) = 4 x if a<x<b

yx + (1-y)b if x>b

or g(x) = yx+ & for all x in R where & 1is an arbitrary real number .

Proof Let [SX]XEI be a regular iterative Y-decoﬁposition of R.

The continuous mapping h: R >R 1is a topological retract as h(x) € I

for all x e R and h(x) = x for x in I. We deduce that I is
a closed and connected subspace of R. Some five cases have to be diS-

" tinguished and altagether they give us Corollary 6.1.

I =R Then g(x) = h(x) = x (Corollary 6.1 with a = ~=, b
1= {é} Then h(x) = a and g(x) = Ax + 8 with &= (1-v)a
I = [a,b] with -~ <a <b <+, Then g{x) = h(x) = x on [a,b].

If x e Sb’ then 'y = yx + (1-y)b € Sb. But y - b = y{x-b)
which by iteration yields x > b. We easily deduce that

Sb = [b,» [and Sa =]-=,a]. Then for

v

b, h(x) = b and so g(x)

i

X vx + (1-y)b, and for

yx + (1-v)a

A

x < a, h(x) = a and so g(x)

J-=,b] with b < +»=. Thus we easily get g(x) = x for

—
1]

x <b and g(x) = yx +=(1-y)b for x = b

I = [a,+=[ with a > -=, Then we easily get g{x) = x for
x2a and g(x) = yx + (I1-y)a for x < a.

This ends the proof of Corollary 6.1, once Theorem 6.2 is'proved. The

technique which shall be used for the proof of Theorem 6.2 makes a

fundamental use of the continuity of the function g. It remains an

open problem to find the general solution 6f Eq (8), even on R.

We shall now proceed to the proof of Theorem 6.2.

+oo)



(s,)

X'xel .
of G and g{(x) = (1-y}h(x) + yx for all x 1in G,

Proof of Theorem 6.2 Suppose is a regular iterative y-decompositi

Then

(T-yIh[(T-y)h(x) + yxJ+vg(x)
(1-y)h(x) + vg(x)

g(x) - yx + yg{x) = (y+1)g(x) - vx

a(g(x))

due to (iii)

which is Equation (8). As h is continuous, so is g.

Conversely, let g: G -~ G be a continuous solution of the itera

Equation (8). We define h: G + G according to

(x)-
T-y

(9)

Equation(8) yields

(10) h(g(x)) = h(x)

Let us compute the iterates of g.” We write (9) in a different way

g(x) = x + (y-1)(x-h(x))

Therefore, using (10)

g(x) + (y-1)(g(x) - h(x))
= x + (y-1)[x - h{x) + x + (y-1)(x - h(x)) - h(x)]

= x + (v2-1)(x-h(x))

g?(x) = g(g(x))

O

We use induction. Let us suppose for n = 0 (with g (x) =

= g(g" ' (x)) = x + (¥"-1) (x-h(x))

(1) g"(x)

Then
g x) = x + (-1 (x=-h())+ (Y1) I+ (v=1) (x-h(x)) - h(x)]

g™ = x + (M) (x - h(x))

and the validity of Equation (11) is proved. Moreover, g 1is one-to-one

because from g(x1) = g(xz), we deduce (Equation (10)) that h(x]) = h(xz),

which implies Xp T X, as
9(x7) - vxq = 9(x,) = x5 = glxq) - %,
From Equation (11), we deduce letting n grow
Tim g"(x) = h(x)
n->eo \

Using now the continuity of h, as deduced from the continuity of g and
Equation (10), we get for all x in G

2(x) = h(x)

(12) - oh(x) =

Let I = [x|x ¢ G, h(x) = x]. The subset I 1is not empty (Equation (12))

Therefore, let

and is a closed subset of G. Moreover, on I, g(x) =.x.

S, = Iyly « G, h(y) =

closed subset of G and we easily notic€ that

x] for every x in I. Every SX is a non empty

(1) SXnI = [x]
as well as
(i) SXnSx. =p if x # x'

h{vy + (T-y)h{y))
h(g(y))
h(y)

If y e S, hlyy + (1-v)x)

due to Equation (10)
Therefore we get

(i111) vy + (1-y)x € S, forall ye Sy




(iv) G= v SX is obvious from the definition of I. We have thus proved

xel
that [Sx]X'EI is a regular iterative -y-decomposition of G and this

ends the proof of Theorem 6.2. The problem of solving Equation (8) with

0 <y <1 1is now reduced to the finding of all regular iterative y-

decompositions of G. Two problems can be posed .and both are still open

in general.

Problem 1 Let G be a real Hausdorff topological Tinear space and

[s. ] a regular iterative convex decomposition of G. Is S
x-xel X

necessarily either point {x] or a cone with x as its vertex? In other

words, is v, 0 <y < 1, irrelevant in the definition of a regular iterative

convex decomposition? (See Corollary 6.1).

Problem 2 .Let G be a real Hausdorff topological linear space and 1

be a topological retract of G. Does there exist for G an fjterative

- . ' ?
convex decomposition [Sx]x€l.

We shall now 1nvestigéte Equation (8) for other values of .

Theorem 6.3 Let y > 1 and let G be a real Hausdorff topo]ogiéa] linear

A surjective and continuous g: G > G satisfies the equation (8)

space.

for all x 1in G

(8) a(g(x)) = (v+1)g(x) - yx

if and only if there exists for G a regular y-decomposition [Sx]X€I

1 g(x%—yx '

=Y
The sufficiency is proved in the same way as in Theorem 6.2. For the

which is too a v ' ~-decomposition such that hix) =

necessity we may obtain as well Equation (10) and Equation (11). For

a positive integer n, let us define g :

n ‘G—*Gby

9,(x) = x + (y""-1)(x-h(x))

We compute

g"(x) + (v""-1)(a"(x)-h(x)) due to Equation (10)
=y "(g"(x) + (v"-1)h(x))
Yy (x + (y"-1)x)

\ =X : i
{

«©Q
—_
[{=]

=
—
- X
~—
~—
i

This is a new way of proving that ‘g is one-to-one. But by our hypothesis,

g 1is surjective,and so we deduce that g'](x) = g_T(x) and more generally
-n e

g (x) = g_n(x) for all positive integers n. Equation (11) is now true

for all integers n. As vy > 1,

T g,(x) = h(x)

N->»=-00

and so we also get Equation (12).

We end the proof as in the case of Theorem 6.2. However we have something
-1

-1)(x-h(x)) = h(x).
Therefore, if y e Sx’ h(y_]y + (1—y—])x) = x. In other words [SX]XEI is

more than (iii). In fact h(g(x)) = h(x), that is hix + (y

both a y-decomposition and a Y~]—decomposition.

~ Corollary 6.2 Let vy >1T1. A continuous g: R >R satisfies
(8) g(g(x)) = (v+1)g(x) - vx for all x

in R

if and only if g has one of the forms given in Corollary 6.1.

Applying Theorem 6.3 to R, it only remains to prove that g is always

surjective. We have already noticed that g was one to one. As g is
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continuous, g is strictly monotbneﬁ Let o = Tim g(x) and B = Tim g(x),

X-++co Xermco yx + (1-v)a for x < a
Fquation (8) yields that Tim yx = (y+1)a - g{a) and Tim yx = (y+1)B - g(g g(x) =~ X for a<x<b
X->o0 X>=00
vx + (T-y)b for x > b

Therefore o and B cannot be finite and the range of g is R.

As an example, for Theorem 6.3, let G be a divisible abelian topological g .
) ) ] and of type (y,8); for & R, if
Let H be a closed subgroup and suppose there exists a continuous Tifting

E: G/H > G where G/H has the quotient topology (Chapter III §2). Let us g(x) = yx + ¢
consider g: G~ G ' . ; vTheorem 6.4 The complete set of continuous solutions g: R +~R of the
(13) g(x) = 2x - E(WH(X)) functional equation
where ™ is the quotient mapping. Then g: G > G satisfies Equation (8) (8) - g(g(x)) = (v+1)g(x) - vx for all x in R
with v =2 and so f(x) = g(x) - x satisfies Equation (7) with vy = 2. is given by
Here I = £(6/H) and S_ = x + H. for all x in I. In fact we get more ' :

(6/H) X ‘g a) If y>0,yv#1 type (v,a,b) and type (y,8)
for f, in the sense that the following functional equation is satisfied. _ .

: : b) If y<0,y# -] type (v,8) and g(x) = x (type (y,-o,+=))

(14) f(x+f(y)) = f(x) + f(y) for all x, y in G c) If y=1 type (1,6) '
We shall see (§5) that all continuous solutions of Equation (14) have 4) If y=0 type (0,8) and for -® <a <b < +w
the form x - g(nH(x)). A function defined according to (13) is . g(x) = x for x e [a,b], g(x) ¢ [a,b] for x ¢ [a,b]

surjective if and only if for every vy “in G, there exists x and e) If y =] “g{x) = x and for any c e R; any strictly

decreasing and continuous ¢ = ]—w,c]la-R, such that 1im ¢(x) = +eo,
: X—+-—00

2x =y (for example if G is divisible). Proofs of Theorems 6.2 and
o(c) = c, we get g(x) = ¢(x) for x e J-=,c], g(x) = ¢"1(x) for x e Jc,+[.

6.3 can easily be adapted to the case -1 <y <0 and y <1 as well.

As special cases of interest, there remains vy = 1 (linked to Euler's Proof

equation), y = 0 (idempotence) and vy = -1 (involution). We summarize a) Corollary 6.1 and Coro]jary 6.2

all results on R in one theorem. We say that gf R >R is of type b) We prove as in Corollary 6.2, that g is a bijection from R onto

(y,a,b), for - <a <b < Yo if R. We now follow the proof of Corollary 6.1. To prove b) we have to show -

that either I =R or I 1is reduced to one point. Suppose for example

that b <» and a<b. Let ye S Then Yy =yt (1-y)b € Sb and

b
o] Ty ' -
Yo =y 'y *+ (I-y )b eS. But y; -b=v(y-b) and (y,-b) =y Hy-b).

Depending on the choice of- Y15 ¥ and whether v < -1 or -1<+vy <0,



we are approaching b. But ]a,b[nSb = @. This is a contradiction and
case b) is proved.
c) With f(x) = g{x) - x, we get for f the Euler equation (7} with
v = 1. As in Corollary 6.2,we prove that g 1is one-to-one and surjective,
It is therefore a strictly monotone fucntion. Moreover, by»induction, we
see that g”(x) = x + n f(x) for any positive integer n. With

= x - n f(x), we deduce that g_n(gn(x)) = x. Therefore, for
all integers n, gn(x) = x + n f(x). Two cases are to be studied.
Either f(x) = 0 and so g(x) = x which is type (1,0), or there exists
an - X in R and f(xo) # 0. Any point x in R belongs to an
interval with endpoints' Xg *t h ( 0) = gh(x0)> and Xg ¥ h'f(xo) = gh (xo)

for some integers h, h'. Using the monotony of gn,vwe deduce that for

‘ : X
all n, %—gn(x) belongs to an interval with extremities —%‘+ ibiﬂlf(xo),

n

X '
0, (h *n O). Letting n go to infinity, we deduce immediately that

. - VF(x

Tim %‘gn(x) = f(x) = f(xo). Therefore, f is a constant function and g
nN->co

is of type (1,8) for some & in R. v
d) Let I-= [x]g(k) = x]. It is a non-empty closed subset
of R. As g2 =g, I is the image of g and soo I is connected. If
I = [6],btﬁen g(x) = & which is of type (0,8). If I = [a,b] with a < b,
we easily get the form as stated in the Theorem. (Replace for example
"[a" by "]-=", if a = -»),
e)This is the involution case and in contrast with all the previous
cases, the general solution depends upon an arbitrary strictly decreasing
and continuous function.

First, it isclear that a continuous solution of g(g(x)) = x 1is a bijection,

therefore continuous and either strictly increasing or strictly decreasing.

Suppose g is strictly increasing and let x ¢ R such that g(x) # x. Two
cases-occur. If g(x) < x, then a fortiori g(g(x)) < g(x) < x which is
impossible and if g(x) > x, then a fortiori g(g(x)) > g(x) > x which is
impossible as well. Therefore, for all x in R, g(x) = x. Suppose now

g is strictly decreasing. We must have Tim g(x) = +» as g is a

X+=00
bijection. Let ¢ be the unique real number such that g(c) = c.

Define ¢(x) = Q(x) for x e J-~,c]. Let x > c. Then there exists

y e J-,c[ and g(y) = x due to the properties of g. Therefore
g(g(y)) = g(x) = y. 1In other words, g(x) = ¢_](x), where the notation
¢_]: [c,+o[+]-,c] denotes the continuous inverse function of
¢ Jeeo,c]o[c ool ,

Conversely, it is easy to show that functions g(x) = x and g

deduced from ¢ in the stated manner,are solutions of g(g(x)) =" x. This

ends the proof of Theorem 6.4.




6.3 Application: Another Characterization of Inner Product Spaces

Theorem 6.5 Let E be a real or complex normed space. Suppose that

[ 1x1]

such that |ly]|, the following equation

for all x, y in E

‘holds for all real A, u

(1) dxtuy ] = [y |

Then the norm of E arises from an inner product.

Recall that an inner product on a linear space E is a mapping from E x E

into R or C, according to whether E 1is a real or a complex Tinear

spéce, denoted by <x,y> and such that

( [N .
<X,Y> = <¥,X> in thereal case; <X,¥> = <¥,X> 1in the complex case

if and only if x =0

<X,Xx> 20 and <x,x>.= 0

A s> = <XqsY> + <XosY> for all X1s Xy and y in E

<X,y> = A<X,y> for all x- in R (or in. C 1in the complex case),

and all x, y in E

“The norm of E arises from an inner product" means that there exists an

inner product <,> such that for all x in E

Hxl] = Voxox

a) If the norm of E comes from an inner product space E, then

A2<x,x> + 2AuRe<x,y> + u2<y,y>

2 2

2
[ [Axtuy] |

2
| [ux+ay ] |

Therefore we get Eq (1).

6.21

b) Conversely, let us define a function g: E +R according to

2
(2) g(x) = ||x]]
If Eq (1) is satisfied, we compute for x, y in E

2

g(g(x)y+g(y)x) = ’l [Ix) 1%y + |1y

which we write, if X #0 and y # 0, as

stotxvsatoin) = 1l 1| 1l g+ 1] il |
With the help of Eq (1), it becomes .
- g(g(x)y+g(y)x) = IIXIIZIIyIIZIIYfXIIZ = g(x)g(y)g(x+y)
The Tast equation is also valid for x = 0 as for y = 0. We thus get

a functional equation

(3) a(a(x)y+g(y)x) = g(x)a(y)g(x+y)

We now proceed to solve Eq (3), using from the definition of g the only

supplementary remarks

g(0) =0 and g(x) >0 for all x#0 in E

‘We first notice that Eq (3) involves only two dimensional real subspaces of

E. Therefore, it is wise to first solve (3) for g: RZ +R. In such a

case, a new functional equation arises as
2

Lemma 6.1 Let g: R® >R be such that g¢(0) = 0, g(z) > 0 for all non

zero z in RZ and Tim g(z) = +», Suppose g to be a continuous solution '
- oo

of (3) for all x, y in RZ. Then g also satisfies for all x, y in RZ.




(4) o glxry) + glx-y) = 2(g(x)+g(y))

Once Lemma 6.1 is proved, we can deduce that g¢: E -+ R satisfies (4) for
all x, y in E. But-Eq (4) can be solved in such a structure with a
regularity assumption.on ‘g which is weaker than continuity.

Lemma 6.2 Let E be a real linear space. Let g: E >R such that

g(0) = 0; g(x) >0 forall x# 0 in E. Suppose that for all x # 0

in E, there exists a subset IX of R, of positive lebesque measure and

a constant MX such that g{(ix) < MX for all X in Ix' If is a

solution of (4), for all k, y in E, there exists an inner product <,>

and for all x in E

g{x) = <x,x>

Proof of Lemma 6.2 Let g: E R satisfy the functional equation (4) where

E is a real 1inear‘space. We then define f: E x E > R according to

(5) fx.y) = %{9(x+y) - 9(x-y)]

Let us compute 4(f(x1+x2,y) + f(x]-xé,y)) by conveniently grouping terms

and using Eq (4)

A(F(Xt%05Y) + Fxq-%5,¥)) = glxqtxoty) + g(xy=xo4y) = g(x¥x,-y) - g(x]-xz-y

i

2(g(xq#y) + g(x,) - 9(x4-y) - g(x,))

2(9(x1+y) - 9(x7-¥))

= 8f(xq5¥)

X + %X, and Y = Xy = Xy, We deduce that

2

(6) FLy) + F(Y,y) = 2f(5), y)

X] = Xo, We deduce that
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(7) f(2x,y) + f(0,y) = 2f(x,y)

From (4), we deduce that g(x-y) = g(y-x) andvthat' f dis symmetric in
x and y. By the definition of f, f(x,0) = 0 and by symmetry

f(0,x) = 0. Accordingly, (7) yields f(2k,y) = 2f(x,y;, which with (6)
gives us:

F(X,y) + F(Y,y) = FO+Y,y)
Now define, for every pair x, y of elements in E, a function h: R +R
h(x) = FAx,y) "

Clearly h 1is an additive function. For X\ belonging to the subset
Ix’ as provided by our hypothesis, we compute, with the help of Eq (4) and
the sign of g:

() = 2(g(xty) - gOx) - g(y)) = -29(Ax) - 29(y) = -2M, - 29(y)

Theorem 1.2 yields the continuity of h and so f(ix,y) = rAf(x,y) for

all x in R. To summarize, we'have proved that f{x,y) defineééan

inner product in the (real) linear space E.

To conc]ude with the proof of Lemma 6.2, it is enough to notice from

Eq (4) that g(0) = 0 and g(2x) = 4g(x). Therefore f(x,x) = %g(Zx) = g(x).

Proof of Theorem 6.5 When E is a real normed space, Lemma 6.2 ends

the proof (mbdu10 that, which shall come soon, of Lemma 6.1).

When E "dis a complex normed space, we first consider it
as a real linear space. Therefore, we still have f(x,y) as a real '
inner product on E considered as a rea] linear space. But the function 7
g, defined by Eq (2),satisfies g{ix) = |A|2g(x) for all A in C; so

we'define for X,y in E




CF(xLy) = flxy) - if(ix.y)
For each pair (x,y), F(x,y) is a complex number. It satisfies the

axioms of a complex inner product

for all X]’ X, and y in

Flxy#xg,y) = Flxqsy) + Flxny)

for all A in C, and

F(A,y) = AF(x,y)

X, y in E

(as can be verified by a simple computation)

F(x,x) = 0 and is zero only if x =0 (From g(ix) = |X|zg(x

we compute that f(ix,x) = 0 using Eq (4) and so F(x,x) = f(x,x)).

F(x,y) = Fly.x)
which can be deduced from Eq (4), using g(ix) = g(x),

-f{x,iy)
g(x)).

(Frdm flix,y) =

g(-x) =

Moreover F{x,x} = f(x,x) = g{x).

With Temma 6.2 and what we just proved above, we deduce that the norm of

a real or complex Tinear normed space arises from an inner product

This is the

space if every two dimensional real subspace is Euclidean.

classical result due to P. Jordan and J. von Neumann.

For the proof of Lemma 6.1, we need another lemma, giving the solutions

of Eq (3).in R.
Lemma 6.3 Let g: R ~R be a continuous function such that g(0) = 0,

Suppose Q is a solution

g(x) > 0 for all- x # 0 and -Tim g(x) = +=.

X0

of the functional equation (3)

. (3) g{g(x)y + g(y)x) = g(x)g(y)g{x+y) for all x, y in R.

There exists a positive constant a, a > 0, such that g(x) = ax2

X

in R.

Proof With y = -x
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in Eq (3}, we deduce that g(-xg(x) + g(-x)x) = 0,

g(x) # 0 for x # 0, we get that g 1is an even function.

With F(x) = xg(%) and ‘h(x) = 91%2- for x # 0, Eq (3)
. X .

and as

yields ;
(8) h(F(x)) = h(x) for x # 0. :
Once more, we meet a functional equation of the Form (8). (See Eq (6) f

|

in §1 and Eq (10) in §2). This time, the solution will depend heavily
upon the fact that the variable lies in R. ‘ |

As g(0) = 0 and 1im g{x) = +=, we deduce that there exists a largest

XO > 0 such that F(XO) = XO. Moreover F(x) > x for all x > XO'
Take an arbitrary Xg 2 Xg- As F(XO) = X, and  1im F(x) = 4=, we may '

X0

find at least one Xy> Xy = Xy such that F(x]) = Xg- Clearly x; < xg.

Repeating t i
p g the process, we get a sequence [Xn]nzl’ with Ko < %oe1 S %,

and F(Xn+1) = X Therefore 1lim Xp = Xy, exists. But the continuity of

n-co

Fyields F(x_) = x_ and so by definition of Xgs X, = Xo- Repeated

application of Equation (8) now yields h(xo) = h(F(x])) = h(x1) = h(F(xz))

= h(x2) = ... = h(xn). By the continuity of h, h(xO) = h(XO). But X0

was arbitrarily chosen, larger than or equal to XO' Therefore h s
X 2 Xd. We

we have

constant on_ [Xo,w[. It means g(x) = h(XO)x2 for all

may apply Eq (3) with x = XO and an arbitrary y = 0. As

+o, we may find an x

Lim (g{x)y + g(y)x) = 0

X0

g(xo)y + g(y)x0 2 X, forall y=0 and g(xo)

large enough so that

_ 2 :
= h(XO)xO. Therefore

2

h(Xg) h(Xg)xgy + 9(¥)xg1% = h(Xg)xGaly)n(iy) (xgty)®



Developing this expression we get

222 _

(9(n))? - xh(Xy) (X50y)a(y) + (h(X))xgy® = 0

The discriminant being xg(h(XO))Z(xg—yz)z
for all

, and y being arbitrary, we

easily deduce that g{y) = h(XO)y2 y > 0. Due to the evenness

~of g, this ends the proof of Lemma 6.3.

Proof of Lemma 6.1 Eq (3) looks harder to solve in RZ than in R, as it

does not seem possible to deduce from it, in this case, a functional

However, with the help of Lemma 6.3, we

equation of the type (8).

for any z in R2 and A in R. Using

already get g(iz) = Azg(z)

z, t in R2 (complex numbers), we write Eq {4) as

(9) 9(z+t) = 9(2)9(t)algay + 5rey)

Now, the idea is to get a similar functional equation for “the periodic

R~ ]0,[

(period w) h:

g(z) = IZ|2h(Ar9 z)

A somewhat Tong computation (see bibliography for details), based on the

equation for h deduced from (9), leads to

9(z) = glx+iy) = g;(x) + g,(y) X, ¥ «R

where both 94 and 9, are defined over R, strictly positive

except at 0, continuous, such that Tim g](x) = Tim gz(y) = 4o and

both satisfying Eq (3).

Lemma 6.3 then yields
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I

glz+z') + g(z-2') = gq(xix') + gq(x=x") + go(yty') + go(y-y")
= 2(g1(x)+gy(x")) + 2(g,(y)+g,(y"))
= 2(g(x)+g,(y)) + 2(gy(x")+g,(y"))
= 2(g(z)+g(z"))

which ends the proof of Temma 6.7.

From Theorem 6.5, we may deduce an interesting geometrical characterization.

Theorem 6.6 Let E be a real or complex normed space such that the lengths

of the side of any triangle in E determine the lengths of the medians.

Then the nbrm of E arises from an inner product.

Proof The geometric property that the.1engths‘of the side of any
triangle in E determine the 1éngths of the medians can be analytically
interpreted as saying there exists some function L: (R+, R+, R+) >R

such that

[y [ = LCHIXT TS [yl Hx=y[]) © for all x, y in E

The function L satisfies enough combinatorial functional equations to

yield the theorem. For example, let x, y ¢ E with ||x]| = [|y|].

LCHxty Hs TIxEs Ty D
LCTPeyEEs Ty TIxED
| [x+2y]]

|12ty ]| = | (xry)4x] |

We prove by induction that ||hx+y|| = ||x+hy]| whenever |[|x|| = [|y]]

for all positive integers h.

[ [hxay [ =[] (h-T)xry+x] |

I

LO =Dy IxI ] 1] (h=2)xey ] ])
LU x+ =Dyl Iyl [ Ixeth=2)y] 1)
| [x+(h-1)y+y] |

11

il

[ |x+hy]]|.




Define T = [y|y eR: [}x+yy|| = ||yx+y|| for all x, y in E such
that | [x[] = |{{y]]].
Clearly 0 eT,y '«T if O#yeTl and -y eT if yeT. Let
Y]+Y2 )
s Yo i i -1. Th — € T, i
Y .YZ in T satisfy Y1¥o # -1. Then 1+Y1Y2 € To see this we
compute as follows (| |y x+y|] =.||X+y1y|| for “[|x|] = |ly|]).

s

O+ v (vqxn) [ = vy (xbygy) + (yqxiy) ||

Therefore

[Hvqv)x + ()= [ r¥r)x + (vgrpdyl |

‘Let Yis Yo in 1-1,+1[ and set Xq = Arctanh Yis X = Arctanh Yor

We get

Y]+Y2

TI?;;E-= tanh(x1+x2)

Therefore with T' = [y'|y' = Arctanh v; v € ]-1,+1[,y ¢ I'] we deduce

It is a closed subgroup of R as T

that T' s a subgroup of R.

is a closed subset of R. Therefore_either ' =R or there exists

Yé in R and T' = yéZ. To prove that the second case is impossible

it is enough to notice that %—e I' and so Arctanh %-e ' whenever h

is a non zero integer. We then deduce that T =R and so Theorem 6.5

yields Theorem 6.6.
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6.4 A Functional Equation in the Theory of Geometrical Objects

It is always an important problem to determine all subgroups
of a given continuous group of transformations. The classical method of
S. Lie presupposes strong regularity. The straightforward method of
functional equations can bring some insight, involving less regularity
assumptions. As a very simple example, 1et g be the group of affine

transformations of the real line o |

Teg if T(x)=ox+8 (a#0) o, BeR !
We Tlook for Qﬁe parameter subsemigroups G of g: . ‘
Tu e G Tu(x) = olu)x + 8(u) uelR, i.e. such that :

for u, v in R, there must exist w in R and

(]) : . TW - TU ° TV
Then
(2) a(w) = a(u)a(v)
and v

- (3) ‘ s(W) = oa(u)B(v) + B(u)

Suppose that 8: R +R s one-to-one. We define x = B(u) and
£(x) = a(8™(x)).

a functional equation of a new type

Eq (2) and (3) yield, for x, y in the range of B8,

(4) L f(eyf(x) = FOOF(Y)

A function like x >~ 1 + ax, a ¢ R, is a continuous solution of Eq (4).

The Dirichlet function, equal to O for irrational x and 1 for rational x




is a (non-continuous) solution of Eq (4). Letnow g: R-+R be a

discontinuous additive function (hence non Lebesgue measurable: cf

The function f

Chapter IV) and define f(x) = 1 + g(x). satisfies

Eq (4) if and only if g(yg(x)) = g(x)g(y) for all x, y in R. By

Theorem 4.6, we may find a discontinuous additive g defined on R and

In such a case, ¢g(yg(x)) = g(x)g(y) is

taking its values in Q.

satisfied. Therefore (4) holds for very irregular solutions. Eq (4)

‘also appears when looking, in the same way, for the three parameter

subgroups of the centro-affine group of the plane, or in the theory of

geometrical objects (cf bibliography).

Eq (4) is a functional equation of two variables with superposition

of the unknown function. Its general solution on a linear space over

is known, but in a rather unpractical way.

a commutative field F

Theorem.6.7 Let E be a linear space over a commutative field K. Let

f: E » K _and suppose f s not identically zero. This function satisfies

the equation

4 - Fx+yf(x)) = F(x)f(y) for all

X, y in E

if and only if there exists an additive subgroup F of E, a multi-

cative subgroup A of K\[0] and a function 'z: A~ E such that

a} ax e F forall XAeh, xeF.. Conversé]x if yekF,

A e A, there exists x e F such that Xx = y.

b) z(A) ¢ F if and only if A =1

C) C(A]AZ) - C(A")

Ay € A

for all A 2

- X1C(X2) e F °F
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d) f(x)
f(x)

A if xezg(A)+F

0 if x # U(g(X)+F)

Ael

Proof Suppose f s a solution of Eq (4), f: E > K, and suppose f

is not 1dentica]1y zero. Let G be the set of all "x 1in E, such that

f(x) # 0, and let F be the set of all x 1in E, such that f{(x) = 1.

First step (G,o0) is a group, where o is the binary operation:

xoy = x + yf{x)

As f(xoy) = f(x)f(y) # 0, xoy is a binary operation within G. From (4),

we deduce that f(0) =1 as f is not identically zero. Therefore

Ooy =y and yo0 =y, so that 0 is a neutral element of (G,0). If

X,y and z ‘are in G, (xoy)oz = (x+yf(x)) + zf(x+yf(x))

= x + yf(x) + zf(x)f(y) = x + f(x)[y+zf(y)] = xo(yoz) and so o is
associative.

We compute xox' = x - ?%ij'f(x) = Q.
oo 1
f(X ) = m

If x dis in G, let x' = '?T%T'

Therefore 1 = f(0) = f(xox') = f(x)f(x') and so

compute x'ox = T&YJ’ xf(x') = —?()):—T# _(Tf); = 0.

Second step (F,+) is an additive subgroup of E

We now

If x,y arein F,as f(x) = f(y) = 1, then we compute
f{x-y) = f(x-yf(x)) = f(x)f(-y).

Therefore x -y ¢ F.

But with x = y, we deduce that f(-y) = 1.

Third step F is a normal subgroup of (G,0)

let x, y in F and put y' = —?1%7-= -y. We already noticed




f(xoy') = 1

Therefore F 1is a subgroup of (G,0).

. . . Voo
let z in G and x in F. We compute, with =z HEE

that f(zoxoz') = f(z)f(x)f(z') = f(x) = 1. Therefore zoxoz' ¢ F for

all z in G and x in F.

Let A = f(G). It is a subset of K.

Fourth step A is a mhltip1icative subgroup of K\[0].

As f is an homomorphism from (G,0) into K\[0], A is a multiplicative

subgroup of K\[0]. The kernel of this homomorphism is the normal subgroup

(F,0) of (G,o0).

Fifth step Let "y ¢ F and X ¢ A, there exists x e F and Ax =y

and for all x in F, X e A; Ax e F.

As (F,o)} is a normal subgroup of (G,0), we deduce that

Fox = F + xf(F) = F + x for x e G

xoF. = x + Ff(x)

In other words f(x)F = F for all x 1in G.. This proves the fifth step,

which is a).

The subgroup A is homomorphic (via f) to the quotient group G/F (for

the o operation). Let ¢' = G/F > G be a lifting relative to F

(cf Chapter III,§2). It induces a Tifting z: A > G relative to f, in

the sense that

f(z(x)) = A : for all A in A

As seen in the fifth step, each coset h(A)oF is equal to h(A) + F

and clearly f(g(A)+F) = f(z(x)) = X as well as f{x) =0 if x ¢ G
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where G = U (h(A)+F), which proves d).
Ael :

]
-

Therefore ¢(1) ¢ F. Conversely, if ¢(A) ¢ F, then f(g(}))
and so A = 1, which proves b).

As f s a homomorphism from (G,0) onto A, for A], Az “in A,
g(x1x2) belongs to (g(x1)oc(A2)) + F. In other words
chg) = e TFEDT = £042) - t04) = Wz0y) < F
which proves c¢). ,
For the sufficiency of the Theorem 6.7, let a), b), c¢) and d) be

satisfied and let us compute f(x+yf(x)) for x, y in E.

If x e U (g(A)+F), then f(x) = 0 and so f(x+yf(x)) = 0= f(x)f(y). -
el . .

If x = c(k1) + F, we must consider two cases. Either y = ;(x1) +F or

In the first casé, X + yf(x) c(A]) + A1c(A2) + F + A]F
= C(X]XZ) + F
Therefore f(x+yf(x)) = f(c(A]AZ)) = MA, = f(x)f(y)).
If f(y) = 0, let us suppose that f(x+yf(x)) # 0, which implies
the existence of a X ¢ A such that x + yf(x) € ¢(A) + F. Let

Ay = MAy. MWe derive that yf(x) < z(A) - o(A)) + F or
yi(x) e o(ay) + 2z(h,) - 2(dy) + F = Az(d,) +F

which yields MY € A]Q(AZ) +F. But F = A1F by a), and so y e c(xz) + F

which is a contradiction. Therefore f(x+yf(x)) = 0 which precise1y is

f(x)f(y). This ends the proof of Theorem 6.7.
We could use Theorem 6.7, plus a little bit of analysis, in order
to find out all continuous solutions of the functional equation (4)

when E 1is a topological vector space on the field R or C. We




could also study the Lebesgue measurable solutions

of Eq (4) where E is some R" (n > 1).

We shall only mention a result in the case of the real axis

(see bibliography for more).

Corollary 6.3 A continuous function f: R>R 1is for all x, y in R

~a solution of the equation

(4) fx+yf(x)) = £(x)f(y)

if and only if f has one of the following forms

ax + 1

0

X
Sup(] = 'a—a O)
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6.5 The functional equation of multiplicative symmetry on an abelian group

In §2, we have investigated functional equations in a

single variable with superposition of the‘unknown function. Related to
these are the functional equations in two variables of a similar form
which should normally be easier to study, and whith are particular cases

of the functional equation dealt with in Chapter VI, §2. Such are, for

example, -functional equations of the following kind

FIF(x)+y) + f(x+f(y)) = f(x) + f(y)

or
FF(x)+y) + f(x+f(y)) = 2(f(X)+f(y))-

this Tast equation, with y = x, reduces to f(f(x)+x) = 2f(x), which

is Equation (7) of Chapter VI, §2. However, functional equations of
this kind are considerably simplified if an assumption of symmetry is
made, namely that f(f(x)+y) = f(x+f(y)). This provides us with a new,

and rather typical functional equation on an algebraic structure (G,*).

(1) FIF(x)*y) = f(x*f(y))

The general solution of Equation (1) is known on an abelian group. The
purpose of this section is to provide the reader with the proof and to
obtain related results for functional equations of a similar form which
appear in the next section and provide some applications to algebra.
G+ G

Theorem 6.8 Let G be an abelian group. f: is a solution of

the function equation

(1) F{F(x)+y) = f(x+f(y)) for al1 x,y in G.
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if and only if there exist two subgroups H and I of G, H included in

I and two lifting h and i

h: G/I » G/H and i I/H- I

such that

(2) f(X) = 1[7TH(X) 'h(ﬂI(X))]

Proof ﬂI (respectively WH) is the canonical epimorphism from G onto

G/I {or onto G/H) We have identified G/ﬂ/I/H_ with G/I as usual in group

and Tys is then the canonical epimorphism from G/H onto G/I. We have

by definition nH,ohowI

Let - f: G > G satisfy (2). We notice that

=Ty and ﬁHoioﬂHV\ = ﬂH@\ for all x in 1.

m(F(x)+y) = m(y) and mp(xtf(y)) = m(x)

Therefore

F(x+f(y)) = ilm,(x+f(y) - h(m;(x))]

imy(x) = hlmp () + m(y) = bl ()T

i

= Alny(y+F(x)) = hlry())]

1

fy+f(x))
Conversely, let f: G > G be a solution of (1). Let us compute, for

all x,y and z 1in G:

Fx+f(y+f(z)))

It

f(x+f(f(y)+z))
FF(x)+f(y)+2)
(
(

i

fy+f(f(x)+z)

fy+f(x+f(2)))
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(3) FlxtF(y+F(2))) = F(x+F(y)+F(z))

Let H be the subgroup of G generated by all the elements of the form
f(y+f(z)) - f(y) - f(z) where ¥,z are any elements in G. We define
with the help of (3) a mapping of g: G/H > G/H according to

g(my(x)) = m,(f(x))

We can compute easily a functional equation for g:
glmy () +g(my (YT = m [FGerf(y)) T = my (F(x)+F(y)) = g(my(x)) + g(m,(y))

In other words, for all x,y 1in G/H.

(4) . g(x+g(y)) = g(x) + g(y)
The general solution of Equation (4) on an abelian group is not difficult
to find. We Teave fhis to the reader as we will Tater find the general

solution of (4) on a quasi-group (cf proof of Theorem 6.10). There exists

a subgroup H' of G/H such that
g{x) = x - h'(wH(x)) for x 1in G/H

where T is the canonical epimorphism from G/H onto G/@/h’ and

h': G/%/h‘ > G/H a Tifting relative to H'. There exists a subgroup I
of G, I containing H, such that H' can be identified with ‘I/H and
we identify G/@/&/H with G/I. We denote by h the Tlifting

h: G/I - G/H relative to I/H. We have obtained

Ty(FO) = 1y = hlrg(x))




I/H~ 1 vrelative

Finally, as ﬂH(X) - h(wI(x)) e I/H, with a 1ifting 1i:

to H

f(X) = i[ﬂH(X) - h(WI(X))]

This ends the proof of Theorem 6.8. On a non abelian group, Theorem 6.8

has been generalized but with additional assumptions concerning f. It

remains an open problem to find the general solution there as well as in .

There is another

the case of an abelian quasi-group (See bibliography).

way of stating Theorem 6.8.

G+ G be a function on an abelian group G. This

Theorem 6.9 Let f:

function satisfies

{1) Fix+f(y)) = fly+f(x)) for all x,y in G

it

if and only if f f20f1 where f1 and f2 are two functions such that

“for all x,y in

¥

(5) fir 66 and (¢ (y) = F1(x) + F(y)

and

(6) f,: I -1 and fz(x+f2(y)) = f2(x+y) for all x, y in I

where 1 1is a subsemi-group of G and is the range of f].

Suppose f = fzof], with the properties as stated in Theorem 6.9

for f, and f,. We get with z < G such that f,(2) = fzof](y)

f(x+f(y)) = fr0f[x+f(2)]

=vf2(f](x) + f](z)) = fz(f1(x)+f20f](y))

£ (F, (041 (1)
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By symmetry
fx+f(y)) = fly+f(x))

Now let f satisfy (1) and define, using the notations of Theorem 6.8

f1(x) =X - ﬁ(h(ﬂI(x))) f.: G->G

1

where h: G/H -~ G is any 1ifting relative to H. A simple computation

shows that f] satisfies Equation (5). Moreover f1(x) eI forall x
in G and I 1is in fact the range of f1 (Take x e I; for example, ‘
f1(x) = x - R(h(0))). Define f,: 11, using the 1ifting i intro- [

duced in Theorem 6.8, by .

The function f2 satisfies Equation (6) as can be éasily verified. Then

we can compute f20f1(x):
f20f1(X) = i[ﬂH(X) - T‘-I_{('I'\{(h<'”]:(.X))))] = i[ﬂH -'h(ﬂI(X))] = f(X)

Equation (5) and Equation (6) are particular cases of Equation (1) and
it is now easy to find their solution on an abelian broup. We postpone
the results to the next section where results are given'more generally

on a quasi-group.

Corollary 6.4 Let f: R-+R be a non constant continuous function’
satisfying

(M - f(x+f(y)) = F(F(x)+y) for all x,y in R

There exists a real constant a and f(x) = x +a for all x 1in R
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It has just to be noticed that the subgroup of periods of f 1is closed
and contains H as défined in theorem 6.8. The following corollary

can be proved with the same kind of computation.

Corollary 6.5 Let f: R~ R be a non constant continuous function. Then

f satisfies the functional equation

(7) f(xf(y)) = flyf(x)) for all X,y in R

if and only if f 1is of one of the following forms:

(i)  f(x) = ax for some a in R, a#0
(i1)  f(x) = Sup(bx,cx) for ¢ eR with ¢>20,c>b,b<0
(iii) f(x) = Inf(dx,-dx} for d >0

Reca]]lthat we have already solved f(xf(x)) = (f(x))2 for a continuous
f: [0, + [0, (Theorem 6.1).

In R, an equation, apparently similar to (1), can be solved under a
continuity aésumption

(8) () + F(x) = fy+f(x)) + f(y)

We get solutions  f(x) = 03 f(x) = 2(x-a) where aeR or

f(x) = - %—Log(1+eA(x_a)); A#a, acR; AeR{0}, and the Timits

obtained from the last solution Tetting A tend to +x or to -w«.

In R+, FxF(y))F(x) = Fyf(x))f(y) can be solved as well. But those

equations have not been studied on more general algebraic structures.
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6.6 Applications to algebra: associative and commutative mappings

G being a set equipped with an associative binary operation
*, we shall try to conﬁtruct all other binary operations related to the
ffrst operation * in some specific way. vao explicit cases shall be
investigated leading to similar computations.
Case 1 Find all associative binary operations A on (G,*) such that

for all x, ¥, z in G we have the following relation
(M o x*y)az=x*(yaz)

Case 2 Let f: G+ G be a mapping and define a binary operation | over

G, called the image of * fhrough f, according to

(2) x1y=flx*y)

Find a1l mappings f: G+ G for which the image | s
associative? We shall completely solve case 1- for an abelian quasi-group
and case 2 for a monoid; Somé definitions and notations may be useful here.
A monoid (G,*) is a set G with an associative binary operation * on
G which possesses a bilateral neutral element e. .Such a monoid is

called right regular if from the relation

Xx*z=y*z
we in fact may deduce x = Y. A guasi group is a monoid which is right
and left regular. An equivalence relation P ona monoid (G,*) is
called compatible (with *) if x1PY; and  x,Py, imply that
(x] * x2)P(y] * yz). When such a compatible equivalence relation is given

on a monoid (G,*), we can consider the set G/P of all equivalence classes.

This is a monoid too, when equipped with its canonical binary operation.
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We still use * for this canonical operation. The canonical epimorphism
from G onto G/P shall be denoted by w. A lifting for P is a-
mapping p: G/P + G for which moporm =>n. On a group (G,?), a
compatible equivalence relation P coincides with a normal subgroup H
of G if we use x Py to say that x * y—] € H where
H={x|x e G and x P e}. This G/P is isomorphic to the quotient
group G/H and = 1is the usuaf quotient mapping. |

With any abelian quasi—gfoup (G,*), we associate a group (G*,*)
in the following classical way:

On the product G x G, equipped with the product law, we define

an equivalence relation R according to (x],y])R(xz,yZ) ifoxy %y, =yt

Clearly R 1is compatible on G x G and we define G* to be (GxG)/R.
There exists a natural, homomorphic embedding of G into G*, namely
X >~ p[(x,e)] where p denotes the canonical epimorphism from G x G onto

G/R. To make things simpier, we often shall write x instead of

p[(x,e)].

Case 1 This case is completely solved, for an abelian quasi-group

(G,*), with the following theorem..

Theorem 6.10 Let (G,*) be an abelian quasi-group. Let A be a binary

operation on G such that for all x, y and z in G we have

(x *y) Az=x%*(yAz). Then A 1is associative if and only if there

exists a subgroup H of (G*,*), a 1ifting h for H such that for

all x in G we have {h[w(x)]}_1 * x € G, in such-a way that for every
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3 x 8y =x* {hln(y(3}7! * y

As a consequence, we shall prove:

Corollary 6.6 An associativé operation A satisfying (1) on an abelian

the same equation (1) on the group (G*,*).

We divide the proof of Theorem 6.70 into several steps.

Lemma 6.4 Let (G,*) be a monoid and A be a binary operation on G.

A satisfies Equation (1) if and only if there exists a mapping f: G~ G

such that
(4) XAy =x*f(y)

Just use f{x) = e A x with some easy computation. The second

lemma is also easy to prove

Lemma 6.5 Let (6,*) be a monoid and f: G - G. The binary operation

A defined by Equation (4) in Lemma 1 is associative if and only if f

satisfies for all X, y in G the following functional equation

(5) | F(x * £(y)) = F(x) * f(y)

Our task then is to solve Equation (5) and for this we shall
require * to be commutative from now on. Thus let (G,*) be an abelian

quasi-group and Tet f: G - G be a mapping satisfying Equation (3). We

~define a relation P on G according to tPt' when t' * f(x *t) =1t * f(x * t')

for all x in G.

Lemma 6.6 P is a compatible, regular equivalence relation on (G,*)

P is obviously a reflexive, symmetric relation. For the




transitivity, we multiply the relation t'Pt" by t to get

SEE TR F(x K E') =t KR F(x % t!)

tFtt o f(x *t")

="kt o f(x *t)

Since tP:t'. A »
Thus t' * t* f(x * t") = t' * t" * f(x * t) and with the help

of the regularity of (G,*) we get tPt".

Let us first show that tPt'  if and only if t' * f(t) =t * f(t').

With x = e, necessity is obvious. For the sufficiency, we use

Flx * t' % F(t)) = f(x * t') * f(t)

Flx * t' * £(t)) = f(x * t * f(t')) = f(x * t) * f(t')

Multiplying by t' and using the commutativity of *

R A PO A f(tf) = flx*th) x et *f(e) = flx ¥ t') *t x f(t')

and

1R F(x Kt R F(E)) = t' % F(x %t % F(E')) = F(x % t) ¥t % F(t')

By regularity, we deduce tPt'.

(G,*) as t]Pt' and tZPté imply that

P " is a compatible relation on 1

(t; * tp) * fty * t5) = ti oty * () *Ft5)) = (b * L) * oty K ty)

‘Moreover P is regular, which means that tPt' 1is equivalent

to (t *y) P (t" *y). One way is obvious as P is compatible. Suppose

now that (t * y) P (t' * y). Then

t'*y*\f(x*wt*y)=t*y*‘f(x*.t'*y)
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and so with z=x* y
t'* flz*t)=t*f(z*t')

Now, for any X 1in G, due to Equation (5)

A F(X* R f(z ¥ t)) =t xF(X X)) xFf(z *t)

1}

t* (X *t') *f(z*t")
But . |
% E(X *t %z % £1)) |

ttF (Xt * f(z % t))
tox F(X % t) % f(z % t')

By cancellation of f(z * t'), we get back tPt', which ends
the proof of lemma 6.6. | |
Qur néxt step is to extend P to tﬁe group (G*,*). First, let
us define P on G x G according to (x,y) P (x',y') if (x * y') P (y * x).
If‘we consider G as embedded into G x G via x - (x,e), then P

is an equivalence

extends P. By computation it is shown that P

relation on G x G. Let us denote by R the equivalence relation for

which G&* = (G x G)/R. We undertake to show that if (xy2¥7) P (x5¥1)

(x}a39) R (x3oy5) and (xq5y;) R (xp5¥,)  then (x,.3,) P (xp,y5).

Starting from (x1 * yi) P (y1 * xi), we multiply by Yy and cancel ¥y

by the regularity of P. Thus (x2 * yi) P (xi * yz).r By multi-

p]icatﬁon by xé ‘and cancellation of xi, we get the required equivalence.
Thus P canonically defines aﬁ equivalence relation P* on G¥*.

A routine computation shows the compatability of P* on (G*,*), which

proves that P* can be associated with a subgroup H of (G*,*).

such that tPt'.

be in G We may write

Let t, t'




(t,f(t)) R (t',f(t")). fhus p(t,f(t)) 1is an element of G* which

We write p(t,f(t)) = h*(w(t)) where

depends only upon w(t).
h*: G/P - G*.

But Equation (5) can be used in the following way

fx * fy)) * x = f(x) * x * f(y)

which proves  (x * f(y)) P x for all x, y in G. As a consequence

(f(y)) Pe

_ Finally, let us write

for every y in G.

and as p(f(x),x) = [o(x,F(x))1"", we get

-1

f(x) = [h* (n(x))]

* X.

This last expression must.be1ong to G for all x in G. More-

over as

o(f(x),e) P* p(e,e), we get

m*(h(m(x))) * m * (f(x))
m*(h* (w(x))

m(x) = m*(p(x,e))

which leads to w = #* * h* * 5, Therefore, we may arbitrarily extend

h* to a lifting h for H; i.e. G*/H > G* and obtain for évery X

(6) F(x) = Th(n(x))]7 * x

Returning to the binary operation A, we conclude .

x by =x*[hnyNI *y

Conversely, an f defined according to Equation (6), with the

stated properties for m and h, satisfies Equation (5) as can be shown
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by direct computation.
It should be noticed that the intersection I of G with the
image of G*/H through the Tifting h coincides with the kernel of f.
This kernel itself coincides with the set of all indempotents for (G,A).
When G 1is a group, even a non-abelian one, a solution for Equation (5)
can be based on this set I. 'However thié set I can be empty in the
case of a general quasi-group. i
Example Let G be the abelian quasi-group of all positive integers with
We get Z = G*

the additive operation. and with H =3Z, a particular :

solution for f(n + f(m)) = f(n) + f(m) s ' ,
f(n) =n - ((n :
by 3.

where ((n : 3)) denotes the remainder of the division of n

Corollary 6.7 Let (G,*) be a simple abelian group. The only associative

binary operations A on G such that (x *y) Az=x* (y Az) are

xAy=x*y*a for some a in G or x Ay = x.

The proof of Corollary 6.6 is now easy. This corollary could

also be.stated in the following way.

For an abelian quasi-group G and an f: G -+ G satisfying

Equation (5), there exists an f*: G*.» G* extending f and still

satisfying Equation (5). Such an extension is not unique in general.

In the general case of a non-abelian group G, theorem 6.10 has
to be slightly modified as H need not be normal but G* = G and so
G*/H denotes the set of all left cosets. v _' ' :

In the case of an abelian group, it is however possible to



generalize Theorem 6.10.

Theorem 6.11 Let (G,+) be an abelian group and A a binary operation ip

G such that e A e = e. Suppose that . X + A -
ppose that [(x +y) A z] - [y A z] only depends

on x. Then the operation A is associative if and only if there exists

subgroup H of I, a lifting h: I/H 1 and a mapping

it G > G/I for which i(e) = e and "i{y + z) = z whenever yle I and

with h{e) = e

z

x &y = mlxty) - h{m(y)) + i(y)

Here Ty (respectively nI) denotes the gquotient mapping onto

A direct computation leads to the

G/H (respectively onto G/I).

sufficiency of Theorem 6.10. For its necessity, Tet us write {cf. Lemma 6.4)

x Ay = g(x) + f(y)

G~ G 1is some a priori unknown funtion. But g 1is necssarily

where g:

an homomorphism. Indeed as A s associative, we get

(7) a(g(x) + f(y)) + f(z) = g(x) + f(g(y) + f(z2))

From g(e) = e and e A e = e, we deduce f(e) = e. With

Thus the image of g is

y=z=-¢e in {7), we first get g(g(x)} = g(x).

a subgroup I and G/I s isomorphic to the kernel of g. We get

G=1 G/I via x=g(x)+ (x - g(x)). Let us write nI(x) = g{(x)

With z=x=¢

and wG/I(x) = x - g(x). in (7), we get
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(8) g(f(y)) =

Finally, with x = e 1in (7)

f(gly) + f(z))

(9) g(f(y)) + f(z)

Taking (8) into account, we deduce

f(gly)) + £(z)) = f(a(y)) + f(z)

G/I. Moreover with f' =go fog : |

n

We clearly get f(I) <« I and f(G/I)

'y + f'(2))

f'{y) + £'(z)

Theorem 6.10 ﬁrovides the general solution of this equation. But

f'="Ffo me If we define i: G -+ G/I according to

i{x) = /1 © f(x)

then since Equation (9) leads to

Flrg(y) + m(F(2) + mgq(F(2))) = Flmply + £(2))) + Flngp (F(D),

we have that

i(r (y) + m(£(2)) + i(2)) = i(2)

This relation leads, for every y in I and every z in the

range of i, to the relation
ily+z)=1z2

Theorem 6.11 summarizes all these results.
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‘Theorem 6.12 Let (G,*) be a monoid and | be a binary operation on &

Corollary 6.8 Let A be an associative binary operation on the real axis:

satisfying (x *y) | z=x ] (y * z) and such that e | e =e. Then |

Suppose [(x +y) A z] - (y A z) only depend on x. Suppose too that x ay

is separately continuous in x and in V. Suppose that there exist js associative if and only if there exists a compatible equivalence relation

P on (G,*), and a 1lifting h for P with h(e) = e, in such a way that for é

Xgs ¥ such -that x > Xg Ax and x> x A Yo are not constant functions:

* Then there exists a constant a such that x Ay =x+y + a.

x Ly =h(r(x*y))

Continuity leads to g(x) = bx and idempotence to either b =70

which is impossible or to b = 1. As H must be closed we get either

Corollary 6.10 Let (G,*) be a monoid and f: G~ G a non-periodic

H=R andso xAy=x+y+a or H is discrete. However H = {0}

function fixing e. The image of * wunder f is associative if and only

kz for some k > 0 s fmpossible by continuity.

is impossible and H

if f is the identity.
Sufficiency in the proof of Theorem 6.12 comes from the following

In the same vein, it is easy to deduce from Theorem 6.10 the

following Corollary:

computation

Corollary 6.9 Let (G,*) be an abelian topological group and f: G~ G

be a continuous function. Then f satisfies Equation (5) if and only if

f ggg;gg_written as f(x) = (h(ﬂ(x)))'T* x where 7 1is the canonical

epimorphism from G onto G/H for some closed subgroup H and

i
=
o~ o~~~ o~
5 -
—~ e~ e~~~
<
*
<
*
N
~—
—

h: G/H - G 1is a continuous 1ifting.

Case 2 In order to introduce Case 2, we first consider an equation looking

Tike Equation (1) but where we reverse the order of the two binary Necessity can be proved as follows. First we notice that

operations in the second member. Namely, let (G,*) be a monoid. Parallel x| y=f(x*y) forsome f: G- G. Therefore associativity for |

ﬁo Lemma 6.1 is the following: | implies
A binary operation | on G satisfies for-all x, y, z in G
(1) . f(f(x *y) * z) = f(x * f(y * 2))
* ’= *
(10) exyy Lz=xlly*2) with y = e in (11), we get
. . . . . . .
if and only if | is the image of under some f: G -+ G. As in (12) FOF(X) * 2) = f(x * £(z))
Theorem 6.10, we are Tooking for all such binary operations | which are
with z=-¢e 1in (11), we get

associative.
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f(f(x * y)) = f(x * f(y))
But z =-e 1in (12) leads to f(f(x)) = f(x * f(e)) so tha{/
Flx * y * £le)) = flx * f(y)) = F(F(x) * y)

In theorem 6.12, we supposed e | e = e so that f(e) = e.
(However, we could avoid such a hypothesis, replacing it with e le=2
where A 1is an invertible element in the center of (G,*). 1In such a
situation, the theorem will remain valid but with P non compatible in

general). Here we get
(13) . flx *y) = f(x * fy)) = f(f(x) * y)

We may define a relation P ovef G according to tPt' if
f(x *t *y) =f(x *t' *y) for every x, y in G. Obviously P is
an equivalence relation. In fact tPt' if and only if f{t) = f(t').
With x =y = e, one way is obvious. The converse comes frém a combinatorial

identity deduced from Equation (13):
flx ¥y *t) = f(f(x *y) * t) = f(f(x * fly)) * t) = flx* fy) * t)

or

(14) flx *y *t) = f{x * fly) *t) forall x,y, teG.

Therefore if f(t) = f(t') we compute tPt' as

flx ¥t *y) = flx * f(t) *y) = f(x * f(t') *y) = f(x ¥ t' *y).

Let now t,Pt: and t_ Pt} and use Equation (13) many times.

11 2° 72
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1 1 2
= f(ti * f(té)) = f(ty * té)
= F(tg % ty)
which gives (t] * t2) P (ti *'té) and so ends the proof that P is a

compatible relation.
We have seen that f(t) only depends on the equivalence class

of t, which implies the existence of an h: G/P +~ G such that

However Equation (14) states that tP(f(t)) for all t e G.
Thus 7o f(t) =n(t) or mohow=mandso h is a 1ifting for P.
Such a lifting satisfies h(e) = e as f(e) = e, which completes the
proof -of Theorem 6.12.

An analog to Corollary 6.6 with Equation (10) is not possible.

- In fact, we shall give an example of an associative binary operation |

satisfying Equation (10) on an abelian quasi-group (G,*) But which cannot
be ‘extended to an associative operation ¥ on (G*,*) still satisfying
Equation (10). The reason is that the relation P is not reqgular in
Qenera].

Example Let (N,+) be the set of all natural numbers n > 0 equipped

with the additive operation. The binary operations | on (N,+) satisfying

(x+y)lz=x1(y+2z)

are precisely the following.
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(@) x Ly=x+n, for some ng e N
(b) xly=x+y for 0 <x +y< Ny
= g(x +y) for Ny < X +y

where N is a fixed strictly positive integer and g: [n1,w[n N -N a

(where n, is a fixed strictly positive

periodic function of period n 5

2
integer) such that

g(t) = t + k(t)n,

for t e {n],n]+1,...,n]+n2—1} where k(t) e N

(c) x1ly=glx+y)- " where g: N >N is a periodic function

of period Nos @ strictly positive integer, such that Ny € nﬂN and
g(t) = t + k(t)n2

for t e {0,1,...,n-1} with k(t) ¢ N, along with the restriction that

k(0) = 2n, "and g{t) = n

0 0

This resq]t ﬁomes from Theorem 6.12 (plus a certain computation
as we do not impose 0 | 0 = 0) and from the determination of all
compatible equivalence relations on (N,+). We omit the proof.b Case {b)
is a convenient example of an operation |, not extendable to the set Z
of all integers.

With the help of Théorem 6.8, a last case is not difficult

to obtain.

Corollary 6.11 Let G be an abelian group and f: G~ G such that

fle) = e. MWe set x(y = f(x + f(y)). The binary operation 0O is

associative if and only if O is commutative, i.e. there exists two

subgroups H and I of G, H c I, two 1iftings h: G/I ~G/I and
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it I/H-> 1 such that h(e) = e, i(e) = e and

x Oy = ilmy(xty) - hin(x)) - hry(y)]

‘The fact that 0O is associative if and only if [0 . is commutative can

be proved more generally for an abelian monoid (G,*}. However the
functional equation of commutativity has not as yet been solved on a
quasi—groupﬁ The difficulty seems to come from the fact that the

equivalence relation introduced for Case 2 is not regular in general.
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CHAPTER 7

Operator theory and functional equations

Programme We intend to provide examples of the use of functional equations
in operator theory. We shall begin by studying Reynolds
operators, a rather Zarge class of linear operators, which
plays some part in turbulence theory in hydrodynamics and in
probability theory. They are defined by a functional equation.
Then we shall proceed to. D(o)~ operators and to linear
derivation. Afterwards we shall study the so-called multipli-
catively symmetric operators. We shall conclude with a
functfonal equation which occurred in the study of extreme

operators.

Functional equations appear quite often in operator theory.
After all, a Tinear operator P, from a vector space E into a vector

space F over somé scalar field, satisfies the two functional equations:

S P(f+g) = P(f) + P(g) for all f, g in E
) P(AF) = AP(f) for all f in E and A 1in the
scaldr field of both E and F.

Another striking example is the study of semi-groups of opérators

Pt+u = PtoPu

A derivation operator,i.e. a linear operator satisfying. the

functional equation:



P(fg) = Pf . g + f - Pg,

plays an important part in the analysis of Banach algebras. In order to

keep these notes introductory, we shall content ourselves with few examples

of an elementary level.

7.7 Reynolds operators

In order to give a theoretical definition for a turbulent fluid

motion, it is generally said that the velocity of a particie or the pressure

at a given point in such a fluid presents "irregular" fluctuations around an av

value, both for the time-yarjab1e and for the space variable. It appears

that averages,. and averages which are not constant functions, are here

essential. .Obviously, random functions are well suited to the search for

such averages and a great number of investigations concerning turbulent

fluid motions use probability theory, and therefore mathematical

expectations as averaging operators. This means that averages are

computed via many different experiments done at random. Another point

of view, historically the first, was to study averages along a time
+T

variable by using an expression such as é%—J f(t)dt (and its limit

-T

when T increases) or to study averages along a space variable by

using similar integrals. Naturally, the Tink between these two investi-

gations is to be found in ergodic theorems. However, following this

latter averaging approach,we may look for the axiomatic rules to be

satisfied by what shall be considered as an average for a function.

Because much freedom remains, we may require the Tinearity of the

f. and its average Pf.

correspondence between Ye also may ask for
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some assumption of continuity on the 1inear operator P (or more

restrictively a positivity assumption). There is a need for a supple-

mentary property since linearity and continuity are far too genefa] to

' prqvide a means of obtaining useful averaging methods. An idea,

originated by 0. Reynolds,is to look for an operator P "commuting" with
the different1a1’operator governing fluid notion, namely the Navier-
Stokes equation. Recall that the vectorial Navier-Stokes equation, valid

for a newtonian filuid, can be written as

t ..;. N
3 > >
(1) DB—X = p?* - grad p + vpa(V) - p div(VeV)
> . ‘
where V(t,M) 1is the velocity at a point M and at time t, the

. >

components of which are V1, V2 and V3. In Eg (1), AV(t,M) s a

vector whose components are AV], AV2 and AV3, p is the pressure, ;
: > >

an external force and div(VeV) ds a non linear term, which denotes a

vector whose components are equal to ) %;—A(Vivj) for i =1,2 and 3.
3=1 %

Eventua11y, for incompressible fluids, we must add
>
(2) , divV =20
» -
0. Reynolds looked for an operator P acting.on V and p in such a

N
way that P(V) satisfies a Navier-Stokes equation with a supplementary

term, the turbulent one, considered as added to the external force

(3) 2L < prt-ai ((-p(i))o(i-p (1)) 1rvone (V)
- o div(P(V) 8P (V)) - grad(P(P))

It has ‘been proved that if P acts on the variable t only, then (3) is




-a consequence of (1) if we add to some continuity and stationary assumptions

on P (which means commutation with translations) the equation:

P(£2) = (PF)2 4 P(f-PF)2

Thﬁs leads to the functional equation characterizing Reynolds operatoré

which is

(4) P(f Pg+g Pf) = Pf Pg + P(Pf Pg)

Reynolds operators have been studied by many authorsv(see'bib]iographica]

references).

7.1.1 Reynolds Operators Over Periodic Functions

Let k be any positive integer. We denote by C(Tk) the

algebra of all continuous 2n/k-periodic functions defined over R and

taking on complex values. For k =0, C(TO) is simply the set of all

constant functions. We endow C(Tk) with the uniform norm. For every

real number  h, the operator Th represents the translation operator:

fix>f(x+h)

Th

A linear operator P:C(Tk)+C(Tk) is stationary when, for every real

number h, we have the commutative'property

() (TR = T ()

To get acquainted with Reynolds operators, our first task shall be to

describe all continuous and stationary Reyn61ds operators over C(T]).

Let us begin with some definitions.

Let k be any positive integer

- (6) Ple ) = a(n)e,

‘ +r
] - _1
(a) For k = 0, we define PO = o [‘ﬁf(t)dt

£(x) + 8Dy + ...+ FOekTlen)

(b) For k # 0, we define Pkf(x) =

The operator P, is defined over C(T1) and takes its values in C(Tk).
Now Tet s be any complex number (finite or not) such that s
is different from a multiple of k. We define the operator Rs, from C(Tk)

into C(T]), by the fb]]owing equation -

+
s k -its m
(0) RF(x) = 2 [ | e (et ar
251n7zv K

and for the case where s is equal to o
(d) R_f(x) = f(x) R, 1is the identity operator.

Theorem 7.1 A non-zero, statonary and continuous linear operator over C(T1)

is a Reynoids operator if and only if there exist an integer k and a

coﬁg]ek number s, different from a multiple of k,Asuch that

P = RSOPk

Proof. Consider the functions e, defined by e, Xfre]nx where n
is any relative integer. These functions are the only eigen-functions
for all operators Th and, due to the commutation property (5) for P

and Th’ are also eigen-functions of P, which gives:

where e C.
n




Computing Reynolds relation with f=e .and g =-e

n m

O PlePle ) + Ple Ple ) = Ple )P(e ) + P(P(e )P(e ))

which implies a relation for the function n+a(n) defined over Z:

(8) a(n+m)(a(n)+a(m)) = a(n)a(m)+a(n)a(m)a(n+m)

Now define a subset A of Z by A= {n|neZ: a(n)#0}.
0 belongs to A, because 2a2(0) = 2(O) + a3(0) yields q(O) =0 of
a{0) = 1. But a(0) =0 implies af(ny =0 for all n and éo P = d
which is excluded. Therefore a(0) = 1.

Suppose n is in A, then a(n) + a(-n) = 2a(n)a(-n) which

proves that a{-n} 1is different from 9 and so -n is too in &.

Finally, we have proved that A s a subgroup of Z. Therefore,

there exists an integer k such that ~ = kZ.

Relation (8), for n and m reétricted to A, provides

I I I B
a(n) * a(m) ~ a(n+m)

Defining b{n) = 51%7—- 1, which is possible for n in A, we
get the familiar functional equation of Cauchy: b: Z - C.

(9) . b{n+m} = b(n) + b(m)

As n and m are multiples of k, we then get

b(n) = % b(k)

where b(k) s a complex number such that b(n) + 1 is different from

zero. This implies b(k) # —%- for all n which afe non-zero multiples

of k.

According to the continuity of the operator P, and a theorem Tike

7.7

(a) The case b(k) = 0 implies a(n) =1 for n in A.

Fejér's _theorem, if f 1is expanded into its Fourier series along

inx 1 ~int
f o~ %cne where cn(f) = ?Ef[_ﬂf(t)e dt

then Pf, in turn, possesses the following Fourier expansion

inkx . Y
Pf %ane

+T0
If k = 0, we get directly Pf = co(f), that is Pf = Pof = é%—J f(t)dt

-

according to the notation defined just before theovem 7.1.
If k 1s different from 0, we see after some easy computation,
using the unicity of the Fourier expansion of functions in C(T]) that
K where

FOeDy 4. +f (x5 2)

(10) P (x) = —K—

We note that P1(f) =fo that is P] is the identity operator.
(b) The second case is for b(k) # 0 and we suppose first that
k = 1. We can then define b(1) = %— where s is a complex number but
not an integer. Then the Fourier expansion of Pf s given by

(1) pf ~ Je,——e'™
" n (n-§+1)

because af{n) = (n»%+1)—1 for n in A = Z due to eguation (9).
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Then, taking derivatives in the sense of distribution, we get the

following differential equation concerning Pf:
{x) + Pf(x) = f(x)

Using the fact that Pf must belong to the algebra C(T1) we find, after

some computation, a solution for (12):

Pf(x) = Rsf(x) = —~—————-Joﬂe'15tf(x—t)dt = f(x-t-m)dt

ggl_ When k # 1, then we first use P, from 'C(T]) into (T
and then compose it with 'Rs from C(Tk) into C(Tk) S C(TT) in order

to obtain the operator P, the image of which is included in C(Tk)

This comes from the fact that we have obtained the following Fourier .

series for

because we have taken b(k) and so s must ndt be a muitiple of k.

* In the sense of distribution, which theory we do not intend to cover here,
the "derivative'of f ¢ C(T]), where f(x) ~ che1nx is %;(x) ~ 7
n

for a differentiable - f, the derivative of f 1in the distri-
bution sense,coincides with its usual derivative. This éxplains why

we solve the differential equation (12) in.the ordinary way. .

7.9

Conversely, it is possible to verify that any operator like Pk = RmoPk

or RSoPk is a continuous Reynolds operator which commutes with
“translation operators on the algebra C(T]).

Corollary 7.1. An idempotent, non-zero, stationary and continuous Reynolds
operator on C(T1) is of the form P, as given by theorem 7.1.

Operators 1ike Pk appear as typical averagin operators. It is

possible to prove directly that Pk satisfies the following. equation
(14) P (P (9)) = P (F)P,(q)

which is the functional equation characterizing semi-multiplicative
symmetric operators sometimes called averaging operators. Equation (14)
tells us that Pk(g) behaves as a constant for the operator.

VConversely, all non-zero stationary’and continuous operators
on C(T]) satisfying equation (14) are of the form Pk' More generally,
fo]]owing the same lines, we can prove

Proposition 7.1. A bounded linear operator P on C(T1) such that

P(1) = 1 -and which is multiplicatively symmetric, that is which satisfies

P(fPg) = P(gPf) for all f and g in C(T]), is_stationary if and

only if it is of the form P, of theorem 7.1.

Obviously, with averaging‘properties, Pk also manifests
smoothing properties. ,For example, if f 1is of bounded variation,
then y(Pkf) < V(f), where V denotes the total variation of f.

In the same way, RS' also has a smoothing property in
the sense that R.f is more regular than f because its n-th Fourier.
coefficient is more quickly converging towards zero when n tends to

infinity. For example, Rs(f), for f in C(T1), a]Ways possesses an

absolutely convergent Fourier series as can be seen by the following inequality




(15)

We have seeh that operators Pk possess both averaging and smoothness

properties. However, RS has only a smoothing property, according to

the following easy corollary:

Corollary 7.2 A continuous and stationary Reynolds operator P over C(T])

is one-to-one if and only if P is an operator of type R

g

Let us now give a quantitative measurement of the smoothness

of R, as an operator from C(T]) into C(T]).

If f has Fourier coefficients such that Jlc (f)| is a
n

convergent series, then we have

V(Rsf) <

where V(Rsf) denotes the total variation of Rsf and e 1is defined by

Inf il+l_ -1
ns| ¢

nezZ

If f dtself is of bounded variation, then

V(Rsf) < A(s)V(f)

and A(s) is a constant depending only upon s. .Obviously A(s) = ||RS||

which is the norm of the bounded operator RS for the uniform norm

(Note, by contrast that [[P || = 1).

The operator Rs transforms real functions into real functions

if and only if s is a purely imaginary number, let us say s = is'. 1In

this last case l[RSII = 1 and moreover R_ 1is a positive operator. As
a side result, we note that if P 1is a Tinear Reynolds operator
satisfying the hypothesis of theorem .1, and transforms real functions
into real functions, then P s a positive operator because both Rs

and ?k are;positive operators under these conditions.

Writing s =Sy + 152, we find from a simple computation

S 2 L
°2
2

(16) when s, # 0, then [[R|] =
sin S

>

—_—+ ]
2
sh S,

and so we can find an operator Rs, the norm of which is as near to 1 as

we wish,

TTS-I

(17) when s, = 0, then > 1 for 5 # 0.

RG] = sTams,

2
Naturally, if P and P' are operators satisfying the
hypothesis of theorem 7.1, then PoP' = P'oP. However the commutative
product RSORt = RtORs is not a Reynolds operator in opposition with
oP, = Pm, where m s the Teast common multiple of k and 1.
Obviously, theorem 7.1 remains true if we replace the continuity
of the operator P for the uniform norm by the continuity of P for an

LP-norm, with p = 1, or any functional norm for which f - cn(f) are

continuous 1inear forms.

7.1.2 Reynolds Operators over C,(X)
A Reynolds operator P: A~ A on an algebra A, is a linear

operator such that




(4) P(fPg+gPf) = Pf.-Pg + P(Pf.-Pg) for all f, g in A.

It is then clear that P(A), the image of the algebra A under P, is

also a subalgebra.

An averaging operator P: A - A,on aTgebra A, is a linear operat

“such that for all f, g in A:

(18) "P(f-Pg) = Pf-Pg

There are close relations between Reynolds operators and averaging

A quite general result is the following.

operators.

Theorem 7.2 Let P be a continuous Reynolds operator over CR(X),

the Banach algebra of all real valued continuous functions on a comgacf

is a totally disconnected compact Hausdorff space.

space X. Suppose X

-Then P s an idempotent averaging operator.

Lemma 7.1 Let P be a Reynolds oberator over an algebra A. For all

n =1, the following formula holds

P (E(PE)" Y = (PA)" + (n-1)P(PF)".

1, this equality is triviai. For n =

For n = 2, it follows from the defini

We suppose the

of a Reynolds operator. We now proceed by induction.

formula true for n. Theﬁ,

PLE(PEY™) = nP(£-P(F(PR)™ 1)) - (n-T)P(F-P(PF)™)

Using the Reynolds identity twice in the second member, we get

(1) (P(F(PA™) = n[PE-P(F(PA)™T) + P(PE-P(F(PA)"T))]
- (n=1)[PEP(PE)" + P(PE-P(PF)") - P(PF)™T]

Replacing twice nP(f(Pf)n-]) by the value given in the induction formula,

we get | 1
(1)P(F(PE)™) = [(PH™T + (n-1)P(PFY™.PF 4 p(pF)™] |
+ (n=1)P(PF)"-PF)] - (n-1)P(PF)".PF |
+ (n=1)P(PF)™T - (n-1)P((PF)".PF) |
and so

(n+1)P(FPAY™) = (PE)™T & np(pr)H |
which ends the proof.

Lemma 7.2 Let X be a compact Hausdorff space. The space ‘CR(X) is the

c]ésed Tinear hull of its idempotents if and only if X is totally

disconnected. A

An element of CR(X) is an idempotent if and only if it is the characteristic
function of a clopen set (both open and c]ésed) and so always belongs to

the unit ball of CR(X). Let us first recall what a totally disconnected

space is.

A topological space ‘X is totally disconnected if the largest

connected subset containing a point x of X is reduced to  {x}.

For compaét spéces, é classical result asserts that the 1ahgest connected
subset containing‘a point .x, call it C(x), is the intersection of all
clopen sets of X containing x. .Supﬁose that C€(X) is the closed
Tinear-hull of its idempotents and suppose C(x) Rcontains a point y # x.
There exists an f ¢ Ck(X) with f(x) # f(y). But for anyr e > 0, there

exists fg in the linear hull of the idempotents of CR(X) such that




However fe(x) Y Y s 5 is the

characteristic function of a clopen subset of X and so equal to zero or
one simultaneously for x and y. Then |[f(x) - f(y)| < 2e which is
contradictory and proves that X 1is totally disconnected. Conversely,

suppose that X 1is totally disconnected. "It is easy to see that the

Tinear hull H of the idempotents of CR(X) is a subalgebra of CR(X)L

containing constant functions. Moreover H separates X when X
is toté]]y disconnected. The Stone-Weierstrass theorem says precisely

that H s dense in CR(X).

Theorem 7.2 is now easy. Let Pf be an idempotent in the image P(CR(X)).

We get using Temma 7.1

P(F.Pf) = 1P+ (1-Dyp(pr)

Letting n grow to infinity,

P(Pf) = P(f.Pf) and so P(Pf) = Pf

We therefore get P as the 1dent1ty_operator over the idempotents in
the image of CR(X) under P. But the closure of this image can be
proved to be isomorphic to some CR(Y) for a totally disconnected and
compact Y, due to the same Stone-Weierstrass theorem.

In fact, let B be the closure of P(CR(X)). Due to the
Reynolds property, B 1is a closed subalgebra of CR(X)' Let us introduce

an equivalence relation P on X

xPy if and only if Pf(x) = Pf(y) for all f

The topological quotient space X/R is a compact Haus
Stone-Weierstrass theorem then asserts that B is
CR(X/P). But X/P fs totally disconnected too. Usin,
what we proved for idempotents in the image of P, and the .
P, we deduce that P s the identity operator on its image, i.e.
idempotent (P2 = P}. Turning back to Reynolds identity, we get replav
f by ¥Pf: _

P(Pf-Pg) + P(q-Pf) = Pf.Pg + P(Pf.Pg)

and so the characteristic equation of an. averaging operator:
P(f-Pg) = P(g-Pf) = Pf.Pg

Corollary 7.3 A Reynolds operator on CR(X), where X 1is a finite subset,

is an idempotent averaging operator.

Theorem 7.2 remains true, with a similar proof, if P 1is acting on a
real Banach algebra A such that the range of P is isomorphic to some
CR(X), where X s a totally disconnected and compact space. Such a
generalization can be applied to the case where A is the |Lebesgue
space L;(Q,F,u) of all essentially bounded real valued functions on a
measure space (Q,F,p). This may lead to a generalization to the
Lebes9ue spaces: LP(Q,F,u), for 1< p<w andupto p=1. (The
required property there is for the range of P . to be closed). We

shall proceed in 7.3 to study averaging operators on algebras such as
C(X). We shall even study more general linear operators, the so-called

multiplicatively symmetric operators. However, before doiﬁg so, we shall

Tink Reynolds operators with the socalled D{(a)-operators and with derivation

operators.,



7.2 D{o)-operators

_For both a1gebraicé1 and combinatorial reasons, it is interesting

to introduce operators satisfying functional equations similar to that of tj

Reynolds operators.

A subclass of such operators is that of the so-called D(a)-operators.

Definition 7.1 A linear D(a)-operator P: A - A on an algebra A is

such that for all f, g in A

P(f-Pg+gPf) =

(1) oP(fg) + (1-a)Pf-Pg + P(Pf-Pg)

is a scalar.

where o

A multiplication by u'] exchanges a linear D{(a) -operator

into a D'(a)-operator, characterized by the functional equation

(2) P(fPg+gPf) = P(fg) + (1-a)Pf-Pg + aP(PfPg)

A D(0)- operator is a Reynolds operator and a D'(0)- operator is called

§

| a Baxter operator. To get an insight into such operators, we begin, as

in the Reynolds case, by investigating stationary D(a)-operators over

C(T1). We keep the notations used in 7.1. |
Theorem 7.3 Let o be a real number different from 1 and such that
0<a<?2. Let P be a stationary bounded-linear operator P: C(T]) > C(T
of type D(a). Moreover suppose P(1) =1 and P transforms real valued

functions into real valued functions. Then there exists a real B such tha

fel

Pf(x) = o T (1-a
h=0

)N (x+ha)

7.17

Converse]x, Eq (3) furnishes a linear operator of type D{a).

Proof As in 7.1, P(en) = a(n)en where en(x) = exp(inx), for every

integer n. Therefore, due to (1), n » a(n) satisfies the functional

equation ' ?

(4) (a(n) + a(m))a(n+m) = aa(ntm) + (1-a)a(n)a(m) + a(n+m)a(n)a(m). f
i

Let us now define three disjoint subsets of Z , the set of all integers

A= {n|neZ; a(n) # 0 and a(n) # a}.

g = {nnez; a(n) = 0}

A, = Infnezs a(n) = o}
Oca  due to our hypothesis P(1) = 1. If a(n+m) = 0, then a(n)a(m) = 0
and if a(ntm) = o, then (u~a(n))(a-a(m)) = 0. These two properties
imply that if n and m are in A, (ntm) is also in . In addition,

_ a-aln
we get a(-n) = T-(2-q)a(n) » S0 that -n e A as soon as n e a.
Finally, A is a subgroup of Z and so A= kz for some

integer k. We also notice that Ay = A Moreover, if n and m

belong to Age then ca(ntm) = 0 and so o is a semi-group in Z

But if we suppose that 1 does not belong to A, then it belongs to either

Ag OF Aa and as k belongs to A, we must have k = 0. There are
two cases: ‘
k = 0. g = Z\[0] and Ay = Z+\[O] if we suppose, for example,

that 1 belongs to Ao With a function f in C(T]), we associate its ;

Fourier expansion




inx
f ~Jce
an

Due to the assumed continuity of P, we get the following Fourier
expansion for Pf:
inx
Pf~cyta Iocne

But an operator R defined by f + Rf ~ Zoc e X is not bounded for
n'h

the uniform norm according to a theorem due to M. Riesz. This theorem

tells us that case k = 0 cannot happen.

k70. Then k=1 and A= Z. We rewrite equation (4) and after
having defined b(n) = (—T—T ), we find a simpler equation
(5) ) b(ntm) = b(n)b(m)

But to equation (5), we must add b(n) # 0 and b(n) # (1-a)™" for all

n. We get, solving (5), b(n) = a" where a = b(1), and so

a(n) = ((1'%)an+%)-]

Due to the continuity of the operator P, we get for the Fourier expansion of Pf

einx

£~ ’z‘((y(}—‘)a“%)"
As stated in the hypothesis of theorem 7.3, we assume that P conserves real
functions, so that, for all n
a(n) = a(-n) and so ial =
. is a real number and from (5) derive

We then define a = e'IB where 8

easily a difference equation concerning Pf which we now denote by

Q, .f

B,
1
(7) (100 , Flet8)0,  (x) = #(x)

This difference equation has at most one solution in C(T ), except

when for an i -— i"B 1.
nteger n, (1 )e ‘o 0. But as o 1is real, and

different from zero, the exceptional cases are a =2 with g== (mod 2n/n)

If then 0<a <2 and o ¥ 1, equation (7) has a solution given by the

following absolutely convergent series

g f(8) = T (1-0) r(xska)

which we obtained after having taken the inverse of —{6 =(T-a)6,) in the
B
convolution algeb
g ra of bounded Radon measures on T] This ends the

proof of theorem 7.3.

Note 1. Suppose g = an, then equation (7) can also be written
as

Qg of(X)-0  Flxran) '
< + Qg oFlxtan) = £(x)

When a tends to, zero, we formally get a differential equation for

Pf = Lim Q
a») 8,a

d
(8) _ -n i%—;-)(x) + Pf(x) = f(x)

and so P appears as R ing
eynolds operator Pin according to notation of

37.1. This result might have been foreseen because a D(n)-operator is

a Reynolds operator.

s
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105, f11 = 11F] for 1 <a <2

babivod 5 estdeterut (G0 pagld

Note 2.. If 8 is not an ergodic element of R (mod 2x), for
2n
n

example B = -—

, thenywe-find that QB, f is a relatively common weighted d
_ an

mean

ke (100 i ~ E 0TI = e Fl] < |
qwﬁW;j?E;{(fﬂ@ﬂw—fhn+(FWHﬂw%QM]

Due to (7), the operator QB

AaNEs u»m, ””” Todiw 8
(When d tends to zero, Q (x) formally tends towards Pnf(x) where
sd v aovip moidpie

Pn is the .averaging operator occurring in theorem 7.1).

of a convolution operator. This operator be1ng the convo1ut1on by

a Dirac measure §

B

If B is an ergodic element (mod 2w), that is if [eikB]k 7
B €

Qo =2

is dense in the unit circle, then ngxf(x)\ appears to be the Abel

. ‘ ferd oroguia Fevd
Such a Dirac measure 68 induces a convolution operator M
(0 NOF ey U0 By fienit a P Do
according to Mf = 5§ *f, and M is a multiplicative operator:

B P Ot R R O S
\U J NI e i o

summation process of the divergent series =} f(x+kg). For a given B8
EHNENE !"m"""""{; k=0 ’
a -~ QB a is gn analytic function of o.

Wik« “ b

satisfies the hypothesis of -

Corollary 7.4 Suppose the operator ( . - (' -
9 M(fg) = (MF)(Mg) >n L 0n

theorem 7.3 with 0 < a < 1. Then, Q is of type Q, g for an ergodic : | | 0

itive function hiio  {.x)8 =y Pt el

Th1s last result immediately leads to the foﬁ1ow1ng genera11zat1on.

To \H; A0 aild o anubab
il SRabaniyl)

Let M be a bounded 1inear operator on (T1), sat1sfy1ng (9). We

B if and only if Qf(0) = 0 implies f = 0 for a positive function f.

If B is ergodic, and 0 <a <1, Qf(0) = 0 implies f(kg) =

suppose that (a-1) does not belong to the spectrum of M. Consider {i;)

foh all integers k, so that f = 0. The converse is easi]y'derived.

an operator Qa defined by Qa’ a(1+(a- 1)M) -1 wh1ch, g
1- aQ

We get liQa,Bll =1 forall B and if f 1is of bounded

variation, we get the following smoothing property (10) M= —
1-a (st
o, 8 Starting from M(Qaf-Qag) = M(Qaf)M(Qag), we get Yosid dep uw oy leni
However, Q cannot be used as an averaging operator because 2 - . R
-# Q,fQ,9 - a(fQ,g+9Q,f) + a*fg =~(1-a)(Qana9-aQa1(Qanag)) (eh)

duloe supfay ol

and finally Q, appears as an operator of type D(a), when we exc]ude

of the following result:

Corollary 7.5 An operator satisfying the hypothesis of theorem 7.3 is

a=0 and a = 1. The converse statement is also true, namely if Qék(}

a bijective. operator.

is an operator of type D(a), for which 1 does not belong to'the spectrum,

Equation (7) also yields for the uniform norm
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Conversely (14) defines an operator D(a) satisfying the hypothesis

then (10) furnishes a bounded and multipiicative linear operator.

of theorem 7.3. We notice that Q is an isometry for .1 <a <2 and

Theorem 7.4 Let Q ‘be a bounded linear operator on C(T]). Suppose

a positive operator for 0 <a < 1.

Q(1) = 1 and suppose that Q possesses a bounded inverse. Q is of

The genéra]ization of Theorem 7.4 to the case of C(X), where X is

type D(a) for O0<a<2 and a#]1 if and only if there exists a
: a compact Hausdorff topological space is not difficult. It remains to

continuous 2m-periodic function ®: R > R such that

solve the case when Q ds not supposed a priori to possess a bounded 3

[es]

Qf =a ]
k=0

(1-a)kfo®(k) inverse. é

‘where Q(k) denotes the composition of k-times @ by itself.

First,suppose that Q is D(a). Then M= E%Q%- is a bounded

Thein, for every

multiplicative operator on C(T]) such that M(1) = 1.

Xq in T], f - Mf(xo) is a continuous and multiplicative form on C(T])
and‘sov Mf(xo) = f(yo) according to a well-known result. (ct® bibTiography)

We write Yo © @(xo) and using the continuity of operatbr Qa’ we

deduce the continuity of @. Then Mf = fod. But we also have

(1) | ‘ (T-a)M =T - aQ”!

which yields MQ = QM, that is

Qfod

(12) Q(foo)

Finally we get the following functional equation, by using (11) and (12)

1 1 e =
(13). (1-3)0f00 + 2 O = f

The unigue solution in C(T]), within 0 <a < 2, is

(14) Qf = a E (1-a)kf0<1>k

k=0




7.3 Derivation operators

Reynolds operators are closely related to derivation operators;

Formally, suppose P~ is

invertible and is a Reynolds operator. We

define the linear operator D by

]

where P~

is the inverse of operator P. Then we compute that D

satisfies

D(f.g) = Df.g + f.Dg

(1)

This functional equation (1) is the defining equation of a derivation

operator.

It is easy to prove that the only continuous linear and

stationary derivation operator D: C(T1) > C(T]) is the zero operator.

We start from D(en) = aee, as previously,due to.the property

of statioharity. Then Eq (1) yields

a =a_ +a
n m

n+m

Therefore, for some A 1in C, a An. But D 1is continuous for the

n

uniform norm, which implies

IN

x| In]

Lol

and thus D = 0.

JLICSIN

" The only possibility is A =0

A classical theorem in analysis states that the property of

stationarity plays no part for the result to hold. Namely:

Theorem 7.5 Let X be a compact Hausdorff space and let C(X) be the

The

Banach algebra of all complex valued continuous functions over X.

c(X) + c(X)

only Tinear operator D: which is a derivation is the zero

7,25

operator.
By linearity, it is enough to prove that D(f) =.0 for any real-valued
Suppose first f has a square root which is an element of

£ o= 92. Therefore, if 92 is

f in  C(X).

c(x), i.e. Eq (1) yields Df = 2gD(g).

zero at some point Xq in X, then so is D(gz) at point Xg- Clearly,
any real valued f in C(X), zero at Xg> Can be written as a difference
g2 - h2 with 0 = g(xo) = h(xo). As a result, for any real valued

f din C(X), zero at Xg> D(f)(xo) = 0. If we let 1 be the function

everywhere equal to 1 and Xq be an arbitrary element of X, we deduce Y

that D(f—f(x0)1)(x0) = 0. But Eq (1) yields D(1) = 0. Therefore we

obtain for any Xq in X

Df(xo) =0
yielding D = 0, due to our arbitrary.choice of Xg- Theorem 7.5 can
be generalized to any commutative complex Banach algebra, i.e. to an
algebra A which is a complete normed space satisfying the inequality

‘[Ifall < HEL Tl

works as follows. Let A be any complex number and suppose first that

. . AD
D: A>A is.a linear and bounded derivation operator. We define e

for all f, g in A. The idea of the genera1izatjon

as a linear bounded operator:

Let x: A~ C be a Tinear and multiplicative form on A (cf 2.3). Let :

us consider
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Theorem 7.6 The only linear and bounded derivation on a semi-simple complex

Banach'a1gebra is the zero operator.

We estimate Q(A,fg)
It must be noticed that in Theorem 7.5, no continuity was assumed for D

in contrast with Theorem 7.6. Therefore Th. 7.6 does not contain 7.5

as a particular case. However, it can be proved that Theorem 7.6 remains
‘i j . *

) Xingfll X£23431l , true without the continuity assumption for the operator of derivation D.

n=0 i+j=n . ‘ v |
(cf bibliography for such a result and for generalization to the non-

where i, and J, are positive integers. Using the absolute convergence commutative case).

of the series (Cauchy's product), we get:

N
nt

Therefore, for all f, g in A

(2) Q(x,fg) = Q(X,F)Q(x,q)

As in 2.3, it turns out that a non zero linear multipliicative functional

in A s bounded and even of norm 1 (see bibliography).
(3) [Q(x.f] < [|f]]

But the application, A » Q(A,f), for any given f in A, is an entire

function. The majoration (3), combined with Liouville's theorem, implies

that Q{),f) = Q(0,f) = 1. As a consequence X(Dn(f)) =0 for n=>1.

Finally, x(D(f)) = 0, for any Tinear and multiplicative form on A and
forany f in A. In a complex and commutative Banach algebra, the
set of all f 1in A such that x(f) = 0 for all linear and multiplicative

form x on A is the radical of A. A semi-simple algebra is an algebra

with a radical reduced to the zero element. It is an easy exercise

to shew that the Banach algebra C(X) 1is semi-simple. We thus have proved




7.4 Multiplicatively.symmetric operators

In the sequel, X will be a compact Hausdorff space and C(X)

will be the Banach algebra of all complex valued functions over X,

equipped with the uniform norm. The following result holds (cf biblio-

graphy for a proof).

“Theorem 7.7 Let P: C(X) > C(X) be a 1inéar, bounded and idempotent

operator of norm 1. Suppose that the range of P contains a strictly

positive function. Then for all f, g in C(X) the operator P satisfies

(1) P(f.Pg) = P(Pf-g)

Note The condition on the range of P can be replaced by the following less

restrictive one.

If e'%f(x) = %' pF(x') for all £ in C(X), then x (and x')

do not belong to the Choquet boundary of the range of P.

The functional equation (1) is the defining equation of a

multiplicatively symmetric operator (which itself is a particular case

of multiplicatively related operators).

In the case where [|P]| = P(1) =1, and for P: C(X) ~ C(X),

a multiplicatively symmetric operator coincides with the so-called exaves.

We first need a notation to define an exave.

Let A, B be compact spaces and w: A > B be a continuous

function. Let [m] denote the linear operator of composition:

[w]: C(B) ~ C(A)

where

[r](f) = fom.
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A linear gggxg_ P for m: A -+ B 1is a Tinear operator P: .C(A) > C(B)
such that [n] = [nJoPo[m]. We shall not prove here the equivalence
of linear exaves with multiplicatively symmetric operators {see biblio-
graphy) but just sketch some results.

Let P 'be a bounded multiplicatively symmetric operator on
C(X). We define A- to be the set of all x in X such that for all

f, g in the algebra C(X), we get

(2) P(f-Pg)(x) = PF(x)Pg(x)

Such a set A 1is called the averaging set of operator P. When P s

markovian (i.e. ||P]|] = P(1)=1), then it can be proved that -A is
not empty. We define B to be a topological quotient space of X.

Namely, an equivalence relation P on X is defined according to
xPy if Pf(x) = Pf(y) for all f in C(X).

Then B = X/P and = will denote the canonical quotient mapping
X+ x/P. By T we denote its restriction to A. We finally define

P: C(A) » C(B) according to

where g 1is a given extensiqn of g into an element of the algebra
C(X). It happens that P does not depend upon the choice of the
extension for g. Moreoever, it can be proved that P is a markovian
linear exave for . ‘

Conversely, we associate a multiplicatively symmetric operator

with a markovian exave. Let A, B be two compact Hausdorff topological

| f
|
|




Denote by T(A) the

spaces and 7 A -+ B be a continuous mapping.

image of A through 7. Let w: X - B be any compact fibre bundle

over B, extending the given fibre bundle 7 A~ w(A). By R, we

c(X), associated with A

shall denote the restriction operator on

Rf(a) = f(a) for all f in C(X), a in

R: C(X) » C(A)

If we define P: C(X) » C(X) by

PF(x) = P(RF)(m(x))

is a markovian multiplicatively symmetric operator.

we may prove that P

As in 6.5, we may try to reduce Eq (1) to the superposition of two simpler

functional equations. Namely

(3) : P(f-Pg) = Pf.Pg

and

(4) : P(f-Pg) = P(fg).

We keep the notation already introduced.

Proposition 7.2 Let P: C(X) » C(X) be a linear and bounded operator.

if and only if for
any f in C(X) the value of Pf at any point x only depends upon

f, g in C(X)

Then P satisfies Eq (3) for all

the values of f on the equivalence class P(x) of x.

Proof If Pf(x) bniy depends upon the values of f on the equivalence

class Pg is constant on

P(f-Pg)(x) = PF(x)Pg(x), i.e. Eq (3).

Conversely, suppose (3) is satisfied for each x in X.

of x, then as

P(x) P(x), we deduce that

and

There exists a Radon measure My in X
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Eq (3) can therefore be written as
0= jxf(y>tpg<y) - Pg(x)Tdu, (y)

As f s arbitrary in C(X), we deduce that Pg(y) = Pg(x) on the

support of uX. In other words, Pf(x) only debends upon the values
P(x}) of x.

of f on the equivalence class Due to Proposition 7.2,

a linear operator satisfying Eq (3) is called an averaging operator.

Let us turn now to Eq (4). By definition, a Tinear operator satisfying

Eq (4) is called an interpolating operator. With any Tinear operétor

P: C(X) » C(X) we define its interpolator (Int P) as the subset of

all x in X such that Pf(x) = f(x) for all f in C{X). It is

generally empty, but never in the case of an interpolating operator.

Proposition 7.3 Let P: C(X) > C(X) be a linear and bounded operator.

Then P is an interpolating operatok if and only if for any f in C{X)

the value of Pf at any point x -bn]y depends'upon the values of f

on the interpolator of P.

~interpolator of P.

If P 1is an interpolating operator, Tet y be its inter-

polator. For each x 1in X, there exists a Radon'measure H, on X and

Pf(x) = [Xf(y)dux(y). Then Eq (4) yields
jxf(y>(g(y)‘- Pg(y))du, (v) = 0

Therefore g(y) = Pg(y) for every y belonging to the support of

Hy - In other words, the interpolator of P is not empty and the

values of Pf at point x only depend upon the values of f on the




Conversely, let P an operator with this last property, which

implies that Inf P is not empty. We notice, as Int P is a closed subset

of X, that

P(fPg)(x) = fo(y)Pg(y)dux(y) = F(y)Pg(y)du, (y) = JI . Pf(y)g(y)du
‘ . : n

JInt P X

fo(y)g(y)dux(y) = P(fg)(x)

An interpolating operator is directly connected with a linear extension

operator.

Let Y be a closed subset of X. A linear and bounded operator

E: C(Y) » C(X)

is a linear extension operator relative to Y if

Ef(y) = f{y) for all y 1in Y and all f in C(Y).

Proposition 7.4 Let Y be a closed subspace of a compact Hausdorff  X.

There exists a linear extension operatdr relative to Y if and only if

there exists a Tinear and interpolating operator P: C(X) + C(X) having

Y as its interpolator.

o

Suppose E is a linear extension operator relative to Y. Then for

any X in X, we get a Radon measure My supported by Y and

OB ROING

Define P: C(X) » C(X) according to

P = | FE) (1)

The interpolator of P is easily shown to coincide with Y. Moreover,

by Proposition 7.3, P is an interpolating operator.
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Conversely, let P be an interpo]atfng operator, with Y = Int P.
Then, for any f in C(Y), we define Ef = P(f) where F 1is any
continuous extension of f to all of x (Tietze's extension theorem).
By Proposition 7.3, we notice that E 1is a linear and bounded operator
and does not depend upon the chosen extension for f. Moreover E is
a linear extension operator.

An interesting, and st511 unresolved problem in the general

case, is to characterize those compact spaces for which every closed

-subspace of X is an interpolator for some interpolating operator on

C(X). (See bibliography).

Let Y be a closed supspace of X and-let ~ be a closed
equfva]ence relation on X. We denote by C(X), identified with C(X/~),
the subalgebra of C(X) containing all functions which are constantv
on each class of equivalence. (Same thing with €(Y), by restricting

~ to Y). A linear g-extension operator for Y and ~, is a linear and

bounded operator Q: C(Y) -~ C(X) such that Qf(y) = f(y) for all
f in C(Y) and y in Y. '
With those definitions, multipiicatively symmetric operators

can be analyzed (see bibliography).

Theorem 7.8 Let P: C(X) » C(X) be a markovian operator. Then P is

multiplicatively symmetric if and only if

P = QoSoR

where R s the restriction operator associated with some closed subset

Y -of X.

!
|
1
1



is an averaging markovian operator on  C(Y) for which

Q is a markovian linear g-extension operator for Y and for the

equivalence relation P.

It remains to study multiplicatively symmetric operators in other

Banach algebras.
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7.5 Extreme operators in L]

7.5.1 A sketch of the functional analysis background

Roughly speaking, when A and B are Banach algebras, the
extreme operators, if they exist, of the convex subset of all linear

operators P: A =B of norm less than or equal to one, satisfy some

functional equation involving the multiplication as defined on A or B.
For example, it can be proved if A (respectively B) is the Banach ‘ .
algebra of all real-valued continuous functions over a metrizable

compact space X (respectively Y), that the set of extreme operators

C(X) - C(Y) such that

coincide with the set. of all operators P:

m P(1)P(fg) = P(f)P(g) for all f, g in C(X)

The functional equation is not, in the general setting, as simple as (M)
and sometimes the functional equation only characterizes a subset of

all extfeme operators. It depends upon topological properties of both
X anq Y. (See bibliography). Quite naturally other spaces A and B
Have been studied and in particular febesgue spaces of the L]-kind.

A generalization of (1) is possible and describes the situation. If

we replace the study of extreme points of norm one operators by the study

of extreme points of the socalled doubly stochastic operators within the LI

case, some still unresolved question occur. In order to propose a

counter example to some natural conjecture in this setting, J.V. Ryff ‘
introduced a functional equation (2), which we shall try tosolve here.

(We refer the reader to the bibliography for all the background from




functional analysis and for the construction of the functional equation)

(2) | af(ax) + bf(bx+a) = bf(bx) + af(ax+b)

where O0<x<1,a+b=1,0<a<1 and a# %z It can be proved that

every solution f: [0,1] ~R can be extended to a solution on R

(i.e. satisfying (2) for all x in R). In general, these extended

solutions are not bounded, a}though accurate growth estimates are

difficult to obtain in general. We shall here study bounded solutions

of Eq (2) where x runs thorugh all of R.

7.5.2 Bounded measurable solutions of the Functionél equation

Theorem 7.9 Llet 0 < a <1 and a/l-a be an irrational number. A

bounded L ebesque measurable f: R -~ C satisfies for a]]v X _in 'R with

a+b-=1

(2) - af(ax) + bf(bx+a) = bf(bx) + af(ax+b)

if and only if f 1is an almost perijodic Bohr function.

Recall that almost periodic Bohr functions were studied in III §5.

Notice the weak smoothness assumption made regarding f. Yet the

conclusion étipu]ates that f is indeed uniformly continuous. The

proof of the theorem will be given, following the establishment of

some preliminary results in the theory of tempered distributions.

If f 1is defined on R, we say that f has polynomial growth

if there exist positive constants A and B and a nonnegative integer

k

such that

1£(x)| = Alx|K + b
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In particular a bounded function is of polynomial growth. FEach such

function associates in a canonical way with a tempered distribution Tf

acting on the Schwartz space S according to the pairing <9,Te> = ff(x)¢(x)dx.

R

Assume that f: R > C is a solution to the functional equation (2) for

all x e R and that f 1s locally Lebesgue integral. We define

n 1 b ,
F(x) = Jo(f(t) - BTE'J f(s)ds]dt and convert (2) into (3)
a

(3) | F(ax) + F{bx+a) = F(bx) + F(ax+b)

With G(x) = F(ax) and r = b/a, we get

(4) G(rx+1) - G(rx).= G(x+r) - G(x)

Note that F, henceA G, has polynomial growth whenever f has this
property. Define 6 to be the Fourier transform of the tempered
distribution TG associated with G. The reader will recall that

the Fourier transform of a tempered distribution u ih the Schwartz
space S' s defined by G(¢) = u(&) where ¢ is any element of the
space S of rapidly decreasing functions. The Four{er transform 5

is the canonical one. In addition to this, let Tr represent the

operation of translation by r: (Tr¢)(x) = ¢(x+r), and denote by D, A

the dilatation operator (Dr¢)(x) = ¢(rx). Equation (4) becomes

DrTr(TG) - Dr(TG) = Tr(TG) - TG. '
Taking the Fourier transform of both sides we obtain

(5) | %-01[(e1y-1)é] = (Y18
F R




~

with the understanding that dilatations commute distributions: D {G)(¢)
o

The same understanding applies to translations. However, if h is g functi

of polynomial growth, then define

D_(h-G)(¢)

Apply Dr to both sides of (5) and use the relation DrDl =1 +to obtain

r

~ ~

= e 1)D_(G)
= e - - .

]

(6) = (eM1)

Then multiply by e V-1 and obtain

~

Dr[(eiy—l)(eiyr—l)(}] = _11: (e 1) (¥ "1)6 .

Proposition 7.5 Any tempered distribution T with the property that

DrT = %-T igs a multiple of the Dirac measure at the origin,

=

. : _ 1 _
Proof. Since (¢,D,T) = ;(Dﬁ,T} for all ¢ €5 and DT =

r
we have <:Dl ¢,T’> = <<¢,T>> If ¢ € 5 has compact support and satisfies

7/

r

¢${(0) = 0 then the sequence {D ) ¥

(l)n a=) converges to O uniformlyron

compact subsets of IR . Since ¢ has compact support this is the same as

convergence to 0 in S . Therefore lim <5D ¢,T>) =0 = <,¢,T3 . The
no e ()7 C
T

compactly supported functions in S which vanish at the origin are dense in

8, = {6 € 5: $(0) = 0} , hence {¢,T) =0 for all $es, . If ¢ef is

arbitrary, and. ¥ e S satisfies ¢(0) = 1 , then <¢—¢(O)¢,T> =0, or
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<omy = 0(0) pT) L ie. T = (p) sy

We conclude that

(e"V_1)(e V" -1)G = 26

fér some A e ¢ . :

The roots of (eiy—l)(e?yr—l) = 0 constitute the set 2wZ U %E'Z =E . |
Assume that r 1s irrational so that these roots are gll simple. If Yo
does not belong to E choose ¢ e S whose support is compact, does mnot %

intersect E and ¢(y0) #0 . Then y(y) = ¢(y)[(eiy-1)(eiyr—l)]—l lies

in . 8 and
(8,6Y = (ua(eV-1) (7006 ) = apl0) = 0

Therefore, the support of G 1lies in E . Assume now that -y e E , ¥ #0 ,
and that ¢ € S again has compact support in a neighborhood of Yo inter-
secting no other poinﬁ of E . Let ¥ be any other function in 8 with the

same properties as ¢ with the additional property that w(yo) =1 . Then

0 = [<1>—4>(y0)\p]-[(ely—l)(elyr—l)]"l ¢ 8 and still lies in § because of the

simple zeros in the denominator. Hence,

(8.6) = olyy) (n,6d + (V1) (e 1)0,6)

{v,6) <¢,6yo> +28(0) = {(¥,6) <¢,5y0‘>. : |

Thus G is locally a multiple of the Dirac measure ¢
0



Any distribution with support {0} must be a combination of the Dirac

distribution and its derivatives at the origin. Thus, for appropriate com:

'

{)\k}kEZ

I O

k=l;’ k ke we have

plex constants {

e

T (k) '
G~ a8+ ) A 6 }oa s
kZO k0

The sign ~ means that equality holds locally or, equivalently, if ¢ ¢ §

has compact support then <«bﬁ}> is computed by applying the right-hand

side of the relation to ¢

If ¢ ¢ 8 , we have from (6) by suitable change of variable

<(eV1)9,6) = (e 1D, 4,6

r

Suppose that ¢ 1s compactly supported and that its support intersects E
. n (k)

akéo and

at zero only. Then G ~ Z
" k=0

n . n ..
(1) y ak[(ely—1)¢]§:g =7 ak[(elyr_l)Dl o]
k=0 =

(n—‘l) (

Comparing the coefficients of ¢ 0) we find that

2-n

since ¢ , and the first n derivatives of ¢ , are at our disposal. It

follows that a =0 when n > 2 Considering the case n = 2 we obtain
n

from (7)

(1—r)¢(0){ial—(r+1)a =0

2
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+ = i
(1 r)a2 ia,

we have < &,¢>

so that , with the constant 2 arbitrary. By definition

<(G,¢> » hence if ¢ has support intersecting E at
zero only

a_i

, 17 2
[ao +ady - 35y le(ylay

b s

~ 1
<:Ga¢ > =
Vo
or,
G . B+ Y(x—xg)
(since a+b =1 ) where Yy and R are arbitrary scalars.
Only the polynomial growth of f has been used up to this point. [f, in

addition, f and a are

is bounded, then the arbitrary constants aO 1

clearly equal to zero. Define H to be the tempered distribution which

~

represents G away from the origin:

For any ¢ ¢ 8 with compact support
RS ~ ~ te 2uk
oy = (o) = kzo [n ¢(2mk) + 2 $(=5)]

It follows by uniqﬁeness of the Fourier transform on S' that H is given

by a function (also called H ) defined {locally) by

=2nik

e x

exists

Since H -has polynomial growth, the convolution of H with any ¢ e S




and we have formally:

[N

ikx
+
Ak¢

(QZk)elrkx] )

(8)  w(x) = [ H(x-t)¢(t)at = ) [Ak(;(enk)e
"R k#0

In order to obtain equality for all ¢ € S we need some estimates regarding

] ~

, °end the A . For example, consider ¢, € S with ¢n(2nn) =1,

< 1, and the support of ¢n equal to some interval around 2mn

the A

0 <

intersecting no other points of E We may use

‘;n(X) = exp(l - —

for |x - 2m]| < En , and ¢n(x) = 0 where %1 is chosen sufficiently small.

Then

<¢n"ﬁ> = Ant;)(&m) = [14 ¢n(x)H(x)dx

so that

RS

k .
|_<_Aé o, ()]« x| Fax + Bé |¢n(x)|dg

In order to estimate these integrals, we need to restrict En By virtue of

.

the nonintersection requirement and the irrationality of r en can be

chosen so that

for all nonzero integers q

By writing [ [¢ (x)]|dx as
R "
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1
: 1 k .
as € [ exp(l - —=)|e t - 2m]| at we get a majoration of |A_| by a
n v 2" n
-1 1-t
is majorized by a certain

polynomial in n and € . It follows that |An|

power of n This proves that (8) is valid for all ¢ e S since |¢(2nk)]

2nk
e

~

and |¢ The series

tend to zero faster than any negative power of k .
in (8) is uniformly convergent and proves that is almost periodic. By

approximating the Dirac measure appropriately at the ofigin with funhctions

¢k e S we obtain a sequence of almost periodic functions

|
i

{H % ¢k};=l converging on R to H Since H 1is uniformly continuous, the

convergence will be uniform so that H 1is also an almost periodic Bohr function.

Remark .Theorem 7.9 is certainly true if we only assume that f has
polynomial growth in place of boundedness. The difficulty lies in.shoWing

that H is uniformly continuous or that we may subtract a polynomial from

G in such a way that the remainder is bounded.

Now we proceed to study almost periodic solutions of (2). In order to

simplify the statement of the next theorem, we introduce this definition. .

Definition 7.2 Iet r be a nonzero real number. Let H: R+ R and

G: R >R be continuous periodic functions of period one such that the Fourier

coefficient of order 0 is O (CO(G) = ¢ (H) = 0) . The pair (H,G) is a

pair of r-associated functions if for all x in R we get

(9) H(x+r) - H(x) = G(x + % ) - 6(x) .

It is not difficult to exhibit r-associated pairs. We may construct a family
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of r-associ i 1 s . !
i ociated pairs depending upon an arbitrary function of period 1 V Moreover, f Tbeing a linear combination of continuous periodic functions

o'{®

Let +t: i '
R >R beof period 1 and let : is an almost periodic Bohr function. This proof does not require — to

be irrational.

t(x + %) - t(x)

Proof of the ﬁecessity. Let us suppose that f 1is an almost periodic

Bohr solution of Eq. (2). As any constant function is a solution of Eg. (2),

Clearly, the pair (H,G) 4is an r-associated pair. However, it is worth ; we consider the primitive

.

noticing that all r-associated pairs do not arise in such a single way as F(x) = | (£(t) - co(f))dt

O—x

shall be proved later.
where co(f) is the Fourier coefficient of order 0 of f

. By integrating Eq. (2), we get a new functionalyequation
Theorem 7.10Let f: R > R’ be an alnost periodic Bohr function ?

A function

f .satisfies Bg. (2) for all x e R , with b # 0 and %- irrational, if and Flax) + F(bxta) - Fla) = F(bx) + Flaxtb) - F(b)

only if , i a ; o . i
nly if there exists an p B2ssociated pair of functions (h,g) , and a ‘ Due to a classical result, as we subtracted from f 1ts zero Fourier

-Lonstant f0 such that for all x in ‘ ' coefficient, the function F s also an almost periodic Bohr function.

Now take r = %- and define G(x) = F{bx) . The function G: R +R is

f(x) = fO + %’ also an almost periodic Bohr function, and satisfies the following functional
equation.
Proof of the sufficiency.¥
(10) G(rx+l) - G(rx) + G(r) = G(x+tr) - G(x) + G(1)
af(ax) + bf(bx+a)‘= (atb)r, + % h(% x) + g(x) + h(ﬁ%@) + % g(bxte |
(a+b)f0 + % h(EE%E) ; hix) + g(ézig) + b f i We now multiply both members of Eq. (lb) by eéwx , for any real nonzero
w , integrate from -T +to +T , divide by 2T and let T tend to infiﬂity.
by using h(x+1) = h(x) and h(Ez%—ﬁ - h(x) = g(aX;b) - g(x) which is Eq. (9) : 1 This yields, with w # O | |
with r = %- - orton)
= bx) + af(axtb) (11) (ei %—_l)er(G) _ (eiwr e (@) .

* With the hypothesis made in Theorem 7.10, the writing of f(x) =
£+ L n() + 1 g(X) is unique '
0 b b’ " a®a que.




°

. . 2 .
.Multiplying by wr,wr ,... , instead of w , and simplifying we get

it

{wr™ {wr™ iw Ciwr
(e -1) (e (e7"-1){e""=1)e (G) , n

= 0,1,2,... .

-1l)e n_l(G) =
wr

-1)| <4, while Lim c (G) =0 if |r|>1
n=2p+l wr

pree

fwr” fwr®
But |(e -1)(e

n-1

or Iim ¢ n—l(G) =0 if |r| <1 for all w # 0 because I
n=2p+l  wr ‘ » wed_(G)
o P

is convergent and |r| #1 , r # 0 . Thus we get

(12)

From Eq. (12), we deduce that the spectrum of G is included in E (= QNZL)EE‘

If we suppose w = 2m , for a given n in 7%, Eq. (11) gives back:

The formal generalized Fourier series associated with G ‘can now be written

in the following form, as r is an irrational number:

21 mnx ezinnr_l QiH%X
G{x) =c (G) + £ ¢ (G)[e + ——— e 1.
0 n#0 2mm Qi"g
e r -1

Consider now the formal trigonometric series

(G)e21wnx

E c2Tm

n#0

Such a formal trigonometric series is in fact the Fourier series assoclated

7.47

with a continuous function Hl of period one. For the proof, we have to
make use of the following more general lemma (with A = 277 ) concérning a
special case of idempotent multipliers for Fourier series (cf bibliography).

Lemma 7.3 Let G: R~ R be an almost periodic Bohr function and A be

a subgroup of (R,+) . The formal generalized trigonometric series

5o (£)e®™*
W

wel

is associated with an almost periodic Bohr function.:

Using the Lemma with

A= 212 , we get that Hl + cO(G) is continuous, and so is Hl itself.

We in fact may obtain a little more
concerning function Hl . By our construction, G possesses a continuous and

almost periodic  derivative. So does H, . For the proof, it is enough to

see -that cw(G') = iwcw(G) for w # 0 and by using the previous lemma

r {(2imn)ec (G)eglnnx

n#0 2m

(1)

is the Fourier series associated with some continuous function H . We

dHl (1)
a;“‘(x) = Hl (x) , using for instance Fejer's Theorem.

Thus Hl has a continuous derivative (which is an almost periodic Bohr

function). In the same way, up to a change of variable ( x into rx ), the

easily conclude that

formal trigonometric series

tennr_l 2imnx
L c2nn<G) 2inD
n#0 e T -1
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is associated with a continuous function H2 of period 1 and of class Cl ; This corollary,via some computation,is a simple consequence of our Theorem '7.10

By the uniqueness theorem for the representation of almost periodic Bohr thanks to our way of exhibiting %-—associated pairs. It should be noted that
functions, we may now write : we made use of atb = 1 1in the Corollary Jjust to use b2 = b mod (ab) . Such i

an hypothesis was not required for Theorem7.10 to be valid.It also should be

AR ry st )
(J)’JO = f(J )’JO’ for continuous J,Jj' and constants

noticed that f g dg f

» if and only if J =3 and jo = jé as soon as %- is irrational. In general, :

However, we compute easily that ‘Hl(X+r) - Hl(x) ‘and HQ(X+%) - Hg(x) ; all almost periodic solutions of Eq. {(2) are éot of the form f(j)’jo for ;

have the same generalized Fourier coefficients and so are equal. We con- V some continuous function J of period ab and some constant jO . We shall |

clude that the pair (Hl’H2) is an r-associated pair and that CO(Hl) give a counterexample. But before that we begin with another theorem giving ;
Let us now go back to F(x) . o ' the general continuous solution of Eg. (2) when %- {or 2 ) is an integer.

We could use a device similar to the one used in Theorem7.10, but prefer a direct

approach which is itself interesting from a functional equation point of view.

. . l .
As Hl and H2 are functions of class C , we obtain Theorem 7.11 Let b = Hi— (or a = ;——-) where n 1is a given integer

grester than or equal to 2 . Let f: [0,1] >R be a Riemann integrable

function. The function f satisfies Eg. (2) if and only if there exists a constant

o and a function k: R » R , periodic and of period E%i' , locally Riemann

Wbere Afo ; . In the same way, h 7 integrable, such that for all x in [O,l]., we have
and g are continuous fuﬁctions of period 1, cO(h) = cO(g) =0 and so
(h,g) 1is an r-associated pair. This ends the proof of Theorem 7.10. £(x) = ax + k(x) .

Corollary 7.6 Let a+b=1,a#b;a#0;atl . There exists a : Proof. We take b = ;%I , 50 that a = ;%I- and §-= n . We define a
family f(j)’JO of almost periodic Bohr solutions of Fq. (2), depending‘ ﬁew function a(x) = f(;fiJ where o: [0,n+l] > R and get for all x e [0,1] |
upon an arbitrary continuous function J of period ab and an arbitrary |
real comstant J, - (13) a(x+n) - a(x) = nla(nx+l) - a(nx)] .

(3,3, ,
r (x) = a[J(ax+b) - Jlax)] + blj{bx+a) - j(bx)] + 3y




It is noticeable that for any real constants B and vy , Bx + y is a

solution of Eq. (2). Thus we can always assume, without loss of generality,

a(0) = a{n+l) =0

that function o has been chosen in such a way that

It is easy to see that this implies al(l) = a{n) = 0 . We now make a new

change of function by introducing

.

F(x) = al(x+n) - alx)

We then get with Eq. (13) and for all x & [0,n]

F: [0,1] >R .

l-F(E’) = o{x+l) - a(x) .
n 'n

By induction, obtain

(14) L r® e rED e mEED] - ()

Now, by iteration, we decompose each térm of the left member of Eq. (14) i

x+n2 - ) ]

X+n
) 2

5) teelt F(

[F(%5) + F(

n n n

2
x+n-1, _ 1, . xtn-1 xtn-1l+n x+n-l+n -n
PP = PGSR ¢ pCEEER) b p(HEESEEN) ]

n

By summing up vertically all such equations, we get

: 2
F(x) = 3 [F5) + (R 4.0 (R
n n n n
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More generally, we deduce by induction that for all integers k

_k
1 L

F(x) == ] TF(=) .
k . k
n i=0 n

However the function F , as well as f , is Riemann-integrable on [0,1]

so that we obtain the following relation

Thus F 1is a constant function, which is the zero function due to the assumed
boundary conditions. Coming back to o , we see that

d{x+n) - al(x) =0 for all x in [0,1]
and

alx+l) - a(x) =0 for all x in [O,n] .

This leads to

1, - Iy
fx + n+l) = f£(x) for all x in [O, n+l] .

. 1
We may then extend f dinto a periodic function k , of period ey over

R , which ends the proof of Theorem 7.11.

1
n+l

With b = , we deduce that the general almost periodic Bohr solution
of Eq. (2) is a continuous function of period ;%I' because almost periodic

functions are bounded functions and so the o appearing in Theorem 7.11 must be




Now, if there were to be a j such that f(x) = f

equal to zero.

_n__
(n+1)°

with j of period and a constant jo , this would mean

L) C s - L)

+ (1 - =0 - —

flx) = ntl’. Nl

0

_n
(n+1)?

ey s n
, 1t is also of i —_ = - —
N period Sy 1 ey

But as J is of period

£(x) = 3+ (1= 20 - e + ) - (1 - 25)x))

But then we may compute an average according to

(x) + £{x + %? +oo04+ fx +'Ei£? = nj . )x + —=)-3(1- - )

10 ,,
+ (1L - =) [j((1 Py o

0 o+l T

j having as a pefiod, and we obtain the following

_n
n+l

.f(x) 4o+ fx + Eil) B

n - JO

Although the function f 1is a continuous function of period _%I" it is not
4 Cf(x) 4.+ f(x + Bl n
true in general that n should be a constant. Such an

n

average is constant if and only if the spectrum of f, which is included in

(n+l)2n2, has an intersection with 2wn% which reduces to {0} This proves

(j)ajo

that f in general cannot be of the form f Howevér, there exists

for any f which is ;%i- periodic, an n-associated pair (h,g) , and a con-

stant fO such that
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L p(x) = £y + (HD)n((nl)x) + E‘n—l— g(il-*ni x)

n n
. = - = 1 _no _ £ .
We first may take fO co(f) ,h =0 and g(x) pve) (f(n+l x)’ cO( })

. . 1 .
Thus g 1s a continuous function of period o with co(g) =0 and so

(O,g) is an n-associated pair. We thus have proved

Theorem 7.12 Theorem 7.10 remains true when 2 (or VE,) is an integer

o

greater than or equal to 2 .

Note. When is irrational, the expression of f(x) as

) where (h,g) is an %' associated pair is unique.

P % o

1 X 1
+ = h(=) + =
£y * 5 blg) + 5 el

Tc see this, it is enough to make use of the lema. We could have added a
uniqueness result to Theorem 7.10.However, this is no longer true for The-
orem 7,12 when % is rational. Summarizing our conclusions for both the

rational and irrational case we have

Theorem 7.13 lLet a and b be nonzero real numbers such that % #F +1

A function f e AP(R) satisfies (2) if and only if there exists (h,g) , an

%'-associated pair and a constant fo such that

It only remains to prove the general rational case and the necessity of
‘the given formula (even though it may not be unique). From (12 ) it still

follows that SpGC E and




(G)(e2innr

(15) c - 1) =c¢

2mm

Suppose r = g- where p and q are relatively prime. Equation (15)
gives us some nullity results. If n is a multiple of q without being a

multiple of r , then 02nn(G) = 0 . Analogously, if n is a multiple of

p without being a multipie of q , then ¢

2Tm(G) = 0 . Thus we may write

the Fourier series associated with G in the following form:

2imnx ezi“n 8‘_1 2imn % X
Can(G){e - e
népZiJq% e2imn %'—l
ne%
. q
(@) e211rn p_x]
nepq#

(o]
21n

(o]
nepZ\q#% 2™ % neq2\pZ%

In the last three sums, all terms havevtheir spectrum in g% . Using the
lemma,we see that they represent an almost periodic Bohr function. The same
is true of the first sum. Reapplying the lemma,with A = % ,to the first
term,we find that the following function F 1is continuous of period 1:

2imnx
e

-

F(x) -~ z c (G)
népgUaqz ™
ne?

In the same way, so is

J(x) ~ Z c
népZuq
. ne?
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Moreover,

Flx + g) S = I+ ) - )

so that (F,J) are %’—related. The three other terms can be grouped as a

single function H in AP(R)

2itkgx
H(x) ~ 2 ok (G)e 4 §
keZ 4
which is, in fact, d-% ~periodic continuous function. Consequently,

6(x) = F(x) + J(3 %) + H(x)
Differentiating this expression we obtain

or(x) = = g(X) + = £(5) + n(x)

where h(x) =-%-H'(%J has period §-= %- and completes the proof, since we
1 X 1 X
can easily replace h(x) by g-gl(;) + g‘fl(E? R T
Finally, we state without proof
Theorem 7.14 Let e AP(R) . Then f satisfies (2) with a #~b , a #0

if and only if f is the sum of a continuous a-periodic function and an odd

almost periodic function.

! I
Note. Tven in the case a = -b , Theorem 7.13 remains valid provided we
drop the requirement that the functions be of period one in the definition

of r-associated pairs.




7.5.3 Some open problems. The following problem naturally arises.

Problem 1. 'Is it possible that for some values of §-= r , all solutio

of Eq. (2) could be written as f(J)’JO ? We have seen that this cannot bek

the case for r = E or r=mn {(n>2) W i
n n > . e may guess that this cannot pe

the case for a rational r . However, if r 1is irrational, we should have

S(3(axt) = j(ax)) + H(3(bxra) ~ §(bx))

i

)

-+
o

&) + = g(X) .

As ‘r 1is irrational and as J(ax+b) - j(ax) has period b , we may once

more use our lemma to deduce that

* %(j(ax’fbl) - jlax)) = ¢ +%— h(

o’ [

Jo

and in the same way

a

o

Jlax+b) - j{ax)

J(bxta) = j{ox) .

We define J(x) = j(abx) and so J has 1 as a period. Then
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hix) = J(x + %) - J(x)

and
1 .
glx) = J(x + BJ -J(x) .
- 1 11 ) "
But atb =1 so that r+l = E— and 1 + ;'= 3 J being of period 1 , we
may also write
(16) ‘h(x) = J(x + %) - J(x)
\g(X) =J(x +r) - J(x) .

Equation (16) easily implies that (h,g) is an r-associated pair. Problem 1

is now equivalent to the following.

Problem 2. For which irrational r's is it true that all r-associated

pairs (h,g) can be written iﬁ the form‘of Eq. (16) for some J: R+ R of
period 1 7

(Let us recall that h and g are supposed to be continuous by defini-
tion of an r-associated pair.)

let r be an irrational number. If f and g are trigonometric
polynomials of period one and of degree less than or equal to N , it is not
difficult to see that (h,g) is an r-associated pair if and only if there
exists some trigonometric polynomial JN , of period cne and of degree less
than or equal to N , such that (16) holds. Now, Fejér's theorem amounts to
saying that for any continuous function h of beriod 1 , the expression

=+N .
hN<x) = h % FN(X) = nz c (h)(l _ _]_i\ll_L)elernx

n=-N




uniformly converges towards h , where FN is the Fejér Kernel.

If then (h,g) is an r-associated pair, so is (h = FN, g % FN) s

N

h % F and g % FN are trigonometric polynomials of period one and of

degree less than or equal to N , there exists a J such that

Tl + ) = 3 )

where JN is a trigonometric polynomial of period one and of degree less

than or equal to N . ‘Moreover, as r is irrational, an immediate application

Theorem 7.9  shows that JN is unique. Our Problem 2 (or 1) is solved if the

following one is solved:

For which irrational numbers v , if anv, is it true that

(x)

Problem 3.

. 1
the uniform convergence of J.{x + ;J - JN(X) and of JN(X +r)-J

N N

implies the uniform convergence of JN ?

In fact, if JN uniformly converges toward$ some J , necessarily a

continuous and periodic function of period 1 , we immediately get Eq. (10).

We shall just add one comment here to give some insight concerning

Problem 3. Let us denote by C[0,1] the Banach space of all complex valued

and continuous functions f , of period one and such that 'co(f) =0,

equipped with the uniform norm. For any nonzero real r vwe define a differ=

ence operator Dr

D. is a linear and bounded operator from C[0,1] into c[0,1] . Tt is a
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one-to-one operator if and only if r 1is irrational as can easily be seen.

The image of E[O,l] under D , for an irrational r -is a proper subspace
r

of 6[0,1] . To prove this, by contradiction, suppose Dr(C[O,l}) = ¢fo,1]
Then using the open mapping theorem, there should exist an a > 0 and

el < 1,7l - /

With f(x) = exp(2imnx) , this leads for all ne & , n # 0 , to

2in~r’1
But this contradicts the density of the vequence {e }nez\{o} on the unit

circle. One can easily verify that Dr(C[O,l]) is a proper dense subspace of

clo,1] .
If Problem 3 has a positive solution for some T , it seems reasonable

to guess that r and i are not algebraically related, like transcendental
r

numbers for example.

i

|
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mean of f 3.5

Radon measure 7.4
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N u [0]

6.2

4.3

neutral element of an (additive) group
7.11%

3.5.1
probability of an event A 2.6

equivalence relations 6.6
epimorphisms 3.2; 6:5
4.2

The set of rational numbers
Qn ]0,00[

Qn [0,f

Q-convex hull of E (Def. 4.6)
an operator 7.2

The usual topological set of all real numbers
10,f

[0,e[
4.3; Property 2.

equivalence relation 6.6
7.1.1

6.2
semigroup 2.5
5
non empty open subset 1.1

R/2nZ 2.1
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Temma 3.1
5.6
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y/A set of all fnte

' , gers
(z,6,F) condition 3.1
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BIBLIOGRAPHICAL INDICATIONS

There are two basic references for functional equafions. Both references
contain an almost exhaustive bibliography up to their date of publication. : Both
books are easily accessible and make no use of sophisticated results. The first one
is '

J. ACZEL ’ - Lectures in functional equations and their applications |
Mathematics in Science and Engineering
Academic Press New York 1966

The second one is more specialized :

M. KUCZMA - Functional equations in a single variable
Monografie Matematyczne Warszawa = 1968

Another general book on functional equation is available in romanian :

M. GHERMANESCU - Ecuatii functionalé Bucarest 1960

For systematic current references concerning functional equations, it is
best to consult the periodical ""Aequationes Mathematicae', published since 1968
(by University of Waterloo, Ontario, Canada, edited by BirkhHuser Verlag, Basel,
Switzerland).

An introduction to functional equations can be read in :

E. HILLE - Topics in classical analysis
Lectures in Modern Mathematics, Vol 111}
Wiley and Sons  New York 1965

or in a chapter of the handbook of mathematical psychology :

R. BELLMAN - Functional equations .
: : Handbook of Mathematical Psychology, Vol 111
Wiley and Sons - New York 1965 '

Another presentation uses, functional equations for some basic mathematics

J.TODD, 0. TAUSSKY - Functional equations
Mimeographed notes of the Department of Mathematics
. California Institute of Technology, 1974/75
revised in 1978.

Outside the previous references, we shall provide the reader wifh some
bibliographical information chapter by chapter.




/ Chapter | /

Theorem 1.2, and Lemma 1.1. appeared frequently in various publications
as soon as the Lebesgue theory was spread. Note the role played by the Polish
school. A non exhaustive list of papers, in their order of appearance, is the
following : '

Seemingly, the first paper to prove that a Lebesgue measurable and additive
f :“\-q,ﬂi , is continuous, is the following :

M. FRECHET - L'enseignement mathématique (1923), XV, p. 390-393

Later, came the proof that if E is of positive Lebesgue measure in IR , the set
of all x-y where x, y are in E, contains a segment (o, a] for some a ) 0 :

H. STEINHAUS - Sur les distances de points dans les ensembles de mesure
positive
Fund. Math 1 (1920) p. 93-104"

Frechet's result was proved without Hausdorff's maximality theorem and adapted also
to the case R2 (it can be deduced from Th 4.9)

W. SIERPINSKI - Sur 1'équation fonctionnelle f (x+y)z f(x)4 f(y)
Fund. Math 1 (1920) p. 116-121

(The proof in R2 can even be generalized so that, to suppose only f(x,y,) and
o

f(xo,y) to be Lebesgue measurable for some (xo,yo) € IR2, still yield the continuity).

Another short proof, based on Lusin's theorem (for a]]:{) o0, any Lebesgue measurable
f: [a,b =M is continuous except perhaps on a set of Lebesgue measure less than & ;
it uses Hausdorff's maximality theorem), appeared simultaneously in :

S. BANACH - Sur l'équation fonctionnelle f(x+vy)= f(x)+4 fly)
Fund. Math 1 (1920) p. 123-124

Then comes Lemma 1.1 proved on [R™ and applied to various cases.

A. OSTROWKI - ﬁber die Funktionalgleichung der Exponentialfunktion und
verwandte Funktionalgleichungen
Jahresbericht Deutsch. Math., Verein 38 (1929) p.54-62

Later, two other proofs of the continuity of a Lebesgue measurable additive function
f iR 5 MR appeared in

M. KAC ' - Une remarque sur les équations fonctionnelles
Comm. Math. Helv. 9 (1936/37) p. 170-171

Various circumstances under which Lemma 1.1. and analogous Lemmata hold were tho-
roughly studied in : . ’

S. PICCARD - Sur les ensembles de distances des ensembles de points d'un
espace euclidien Gauthier-Vitlars 1939

and,
S. PICCARD ~ Sur des ensembles parfaits, Université de Neuchatel

1952 (194 p.)
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Another proof then appeared, of the continuity of a measurable additive function

f:f\-\.ﬁﬂ\t

A. ALEXIEWICZ - On a functional equation of Cauchy
W. ORLICZ - Fund. Math. 33 (1945) p. 314-315

and later, a second proof ,the one we chose for lemma 1.1.

H. KESTELMAN - On the functional equation f(x4vy)=F(x)4 fly)
Fund. Math. 1947 p. 144-147

Another generalization, with measurable stochastic processes appeared in

B. NAGY ) - On a generalization of the Cauchy equation
Aeq Math (1974) 10 p.165-170

Various generalizations of Theorem 1.2 (convex situations) are studied in Chapter 1V,
4,5 and 6. Further references will be found in the bibliography for Chapter 1V.
Another extension is given in :

V. DROBOT - Generalized Cauchy equations in groups
“Aeq Math 5_(]970) p. 120-122

Corollary 1.4 is common folklore.

Corollary 1.5 is a generalization of results which appeared in-:

S. KOTZ - 0On the solutions of some isomoment functional equations
Amer. Math. Monthly 72 (1965) p. 1072-1075

J. ACZEL - General solutions of '"isomoment" functional equations
Amer. Math. Monthly 74 (1967) p. 1068-1071

and,

J. ACZEL - Some generalized "isomoment'' equations and their general

P. FISCHER equations
Amer. Math. Monthly 75 (1968) p. 952-957

Proposition 1.1 and generalizations can be found in :

W.B. JURKAT - On Cauchy's functional equations

‘ Proc. Amer. Math. Soc. (1965) 16 p. 683-686

S. KUREPA - Remarks on the Cauchy Functional equation
Publ. Inst. Math. Beograd 5(19), 85-88 (1965)

A. NISHIYAMA - On a system of functional equation

S. HORINQUCHI Aeq. Math. vol. 1 no. 1 p. 1-5 (1968)

P1. KANNAPPAN - Some relations between additive functions

S. KUREPA l. Aeg. Math. & (1970) p. 163-175
1l. Aeq. Math. 6 (1971) p. 46-58

J. VAN DER MARK - On the functional equation of Cauchy

Aeq. Math. 10 (1974) p. 57-77

Derivations have been studied in so many instances, both in algebra and in
functional analysis, and still constitute an important subject of research. At the
level of this exposition, a simple construction of non trivial derivations is to be
found in : ’

S.L. SEGAL - Aeq. Math. vol. 2 (1969) P28RI p.111-112

A basic reference is




P. SAMUEL
0. ZARISKI

- Commutative algebra I,

derivation operators.

fo{x+y- xy) = f(x)a fly) - Fxy) X, YEK

flxpy) ¢ Flo) = Flx)4Fly) x,YEK

See,

over a field
Aeq. Math.{1974) 11 p. 273-276

and the references quoted in this paper.

normed space E, is the following book :

E. HILLE : . - Functional analysis and semigroups

See also the following short papers

convexes ou internes

1958

Il Van Nostrand

satisfies, in fact, Cauchy's equation up to a constant (is affine)

R 5E

More is known nowadays, and some references will be given in chapter V11 for linear

Some functional equations were proved to be equivalent to Cauchy equation.
For example, if a field K has at least five elements, a function

P f: K — ¢
whefe is a group, which satisfies the Hosszu functional equation :

T.M.K. DAVISON - The complete solution of Hosszl's functional equation

) ?auchy's inequality, or suradditive functions (or its opposite, sub-additive
function, i.e. flx4y) € f(x) 4 Fly)) have been intensively studied for the needs of
functional analysis. The best, and encyclopedic, reference when

R.S. PHILLIPS American Math. Soc; Coll. publ. no.31 ' 1957 808 pages

S. MARCUS - Un critére de finitude pour les fonctions sous-additives
Comptes Rendus Acad. Sc. Paris 244 (1957)

p.2221-2222

S. MARCUS - Critéres de majoration pour les fonctions sous-additives,

Comptes Rendus Acad. Sc. Paris 244 (1957) p. 2270-2272

for a
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/ Chapter N

Gauss'functional equation was treated by :
P. LEVY ' - Théorie de l'addition des variables aléatoires, Paris 1937

We chose this example mainly as an introduction to conditional Cauchy
equations.

Mikusinski's introduction of his functional equation appeared in Polish
papers, but there are a number of papers on this functional equation published in
English. We refer, for this and for all references in conditional Cauchy equations,
to the exhaustive bibliography of the following survey paper :

Marek KUCZMA - Functional equations on restricted domains
Aeq. Math. (1978) 18 p. 1-34

Functional equations on restricted domains is another, if longer name, for
conditional functional equations. ’

For the "almost everywhere!' Cauchy equation, more will be said in
Chapter V §6. For the spectrum of L1 (W), see :

L.H. LOOMIS . ~ Introduction to abstract harmonic analysis
) Van Nostrand, 1953

Jensen's functional equation is common folklore, it has a geometrical
significance in preserving midpoints. See the bibliography in Aczél's monography.
As it is related to Jensen convex functions, see chapter IV §6 and the bibliogra-
phical references quoted there. Naturally, the classical and‘wonderful book :

G.H./HARDY - = lnequalities .
G. POLYA : Cambridge Univ. Press
J.E. LITTLEWOOD 1934 (and 1952 for the second edition)

always provides useful information.

The generalized Cauchy equations dealt with in 2.5 was treated by many
authofrs. Let us mention some references. See the already mentioned survey paper
of M. KUCZMA or the next reference for more bibliographical details.

P. FISCHER, G. MUSZELY On some new generalizations of the functional equation of

Cauchy :
Canadian Math. Bull. 10 (1967), 197-205

In this paper, Theorem 2.8, Th. 2.9 and Th. 2.10 were proved. Amongst the earlier
papers are : '

i B
E. VINCZE - Uber eine Verallgemeinerung der Cauchyschen Funktional-

gleichung, Funkcialaj Ekvacioj 6 (1964) p.55-62

- E. VINCZE - Beitrag zur Theorie der Cauchyschen Funktionalgleichungen

Archiv der Math. 15 (1964)p.132-135
Corollary 2.1 was also obtained in a simpler way for a group G in :

H. SWIATAK - On the functional equation (F(x+y))2 = (F(x)+f(y))2
Publ. Techn. Univ. Miskole 30 (1970) 303-309 .




- B.6 -

It must be mentioned that the first proof for continuous functions f= R =&
if due to M. HOSSZU in 1963 and was published in hungarian -

' - . P
M. HOSSZU - Egy alternativ flggvényegyenletrBl
Mat Lapok 14 (1963) 98-102

Some generalizations of Corollary 2.1, the proofs of which are postponed
to Chapter V, first appeared in

P. FISCHER - Sur 1'équivalence des équations fonctionnelles
flxdy)=f(x)+fly) et (Flx+y))2 = (F(x)+ f(y))?2
Ann. Fac. Sc. Toulouse 1968 p.71-73

and were improved by :

M. KUCZMA - On some alternative functional equations

Aeq. Math 17 (1978) p. 182-198

More references for generalizationsshall be provided with the bibliography
-given for Chapter V.

For information theory and functional equations, the best reference is

J. ACZEL - On measures of information and their characterizations
Z. DARBCzY Academic Press, 1975
/ Chapter 11l /

A classification of Conditional Cauchy equations appeared for the first
time in

J. DHOMBRES, R. GER - Equatiops de Cauchy conditionnelles
. Comptes Rendus Acad. Sc. Paris 280, 1975, p. 513-515

.and proofs were given in the following paper by the same authors

J. DHOMBRES, R. GER. - Conditional Cauchy Equations - Glasnik Math. (1978)
Vol 13 (33) p.39-62

A general survey for conditional equations recently appeared in

M. KUCZMA. - Functional equations on restricted domains
Aeq. Math. (1978) 18 p.1-34

See also for some proofs :

G. MEHAT - Equations de Cauchy conditionnelles
DEA de mathématiques, Université de Nantes 1976

Corollary 3.1 uses Lemma 1.1 for which we have already given a long
bibliography. Another reference is useful

J.H.B. KEMPERMAN - A gereral functional equation
Trans. Amer. Math. Soc. 86 (1957) p. 28-56

..B_7_

Corollary 3.2, based on the result on R, concerning the interior of E 4 E when
only topological conditions of the Baire category type are given, appeared in the
already quoted paper by S. PICCARD. Generalizations to topological linear spaces
are numerous. See amongst others :

Z. KOMINEK ‘ = On the sum and the difference of two sets in topological
spaces
Fund. Math. 71 (1971) p. 165-169

Z. CIESIELSKI - Some remarks on the. convergence of functionals on bases
W. ORLICZ Studia Math. 16 (1958) p. 335-352

L. DUBIKAJTIS, - 0n Mikusinski's functional equation

C.FERENS, R. GER, Annales Polonici- Math. 28 (1973) p. 39-47

M. KUCZMA

R. GER - On an alternative functional equation

Aeq. Math. 15 (1977) p. t45-162

A. BECK - The interior points of the product of twosubsets of a locally
compact group
Proc.Am. Math. Soc. 9 (1958) p. 648-652

M. KUCZMA - On a theorem of R. GER
Prace Matematyczne VI (1975) p. 73-75
W. SAUNDERS - Verallgemeinerungen eines Satzes von S. PICCARD
Manuscripta Math. 16 (1975) p. 11-25
W. SAUNDERS : - Verallgemeinerungen eines Satzes von H. STEINHAUS
Manuscripta Math. 18 (1976) p. 101-103
A.S. BESICOVITCH - On the set of distances between points of a general metric
S.J. TAYLOR space
Proc. Cambridge Phil. Soc. 1952 (48) Part. 2 p.209-214
Lemma 1.1 was nicely generalized to some Radon measures on IR , instead of the Lebesgue
measure :

M. KUCZMA, J. SMTTAL - On measures connected with the Cauchy equation
Aeq. Math. 14 (1976) p. 421-428

See also for regularity results for conditional Cauchy equations of type |

J. TABOR - Solutions of Cauchy's functional equation on a restricted
domain
Coll. Math. 23 (1975) p. 203-208

J. TABOR - Continuous solutions of Cauchy's functional equation on a
restricted domain
To appear in Aeq. Math.

rd
A. GRZASLEWICZ - On extensions of homomorphisms

Aeq. Math. (to appear)
and for some other applications

’
K. LAJKO - Applications of extensions of additive functions

Aeq. Math (1974) 11 p.68-76

A sort of converse theorem to Th. 3.4 appeared in :

4
A. GRZALEWICZ = On Cauchy's nucleus
Z. POWAZKA, J. TABOR  Publ. Math. Debrecen Tome 25 Fasc. 1-2 (1978) p. 47-51
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Corollary 3.5 is a generalization of a result of :

A.R. SCHWEIZER - A bifurcative generalization of a functional equation due
to Cauchy
Bull. Amer. Math. Soc. 22 (1915) p. 294

The application to extensién of homomorphisms appeared in

J. DHOMBRES - On some extension of homomofphisms
Nanta Math. vol. X no. 2 p. 135-141 1977

Bohr groups appear as a particular case of duality in topological groups which
is at the very heart of harmonic analysis. The encyclopedia.in the domain is

E. HEWITT, K.A. ROSS - Abstract Harmonic Analysis - Vol 1,2
Springer Verlag 1963, 1969

Shorter but deep introductions are :

A. WEIL - L'intégration dans les groupes topologiques
Hermann 1940

W. RUDIN - Fourier analysis on Groups
Interscience Publishers 1962

L.H. LOOMIS - An introduction to abstract harmonic analysis
Van Nostrand 1953

A reference for the Diophantine result used in the construction of the
Bohr group of TR is :

G.H. HARDY, - An introduction to the theory of numbers (4th ed)
E.M. WRIGHT Clarendon Press 1964 :

The first author to have investigated Cauchy conditional equations along
curves seems to have been :

M. ZDUN - On the uniqueness of solution of the functional equation
@ (x4 (x))= P(x) + @ (F(x))
Aeq. Math. 8 (1972} p. 229-232

Lemma 3.2 and Corollary 3.6 are due to Zdun - Theorem 3.10 is an improvement of
a result of :

M. KUCZMA - A characterization of the exponential and logarithmic
functions by functional equations:
Fund. Math. 52 (1963) p. 283-288

Theorem 3.11 was first proved for some use in the theory of information in
J. ACZEL, Z. DARDCZY - Charakterisierung der Entropien positiver Ordnung und der

Shannonschen Entropie
Acta Math. Acad. Sc. Hung. T4 (1963) »p. 95-121

See algo a proof as a consequence of Theorem 3.12 :

J. ACZEL, Z. DARDCZY - On measures of information and their characterizations
: Academic Press 1975

Th. 3.11 is proved here in a different way as a consequénce of Th. 3.2. |t would be
be inkeresting to deduce Theorem 3.12 from Theorem 3.11. Y
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Theorem 3.12 was first proved by P. ERDUS :

P. ERDUS - On the distribution function of additive functions
Ann. of Math. 47 (1946) p. 1-20

then generalized in :

P. ERDYS - On the distribution of additive arithmetical functions and
on some related problems
Rend. Sem. Mat. Fis. Milano 27 (1957) p.45-49

Other proofs appeared in the literature. Amongst those, we mention :

A. MATE ) - A new proof of a theorem of P. ERDOS
Proc. Amer. Math. Soc. 18 (1967) p. 159-162

t. KATAI - A remark on additive arithmetical functions

Amer. Univ. Sc. Budapest

EBtvbs Sect. Math. 10 (1967) p. 81-83
and the one we fd lowed after J. ACZEL and Z. DARGCZY (see the book already quoted)
Additive functions in number theory have orginated a large number of papers.

For an account of what is known, we refer to various papers of H. DELANGE in the
'séminaire de mathématiques de la Faculté d'Orsay'';(France) in number theory.

Another proof of Erdds's result will be given in Chapter IV § 7.

/ Chapter IV ./

Theorems 4.1 and 4.2 are generalizations in various ways of the now classical
Hahn-Banach theorem, which is central in functional analysis. We refer for a proof
of the usual Hahn-Banach theorem itself to :

W. RUDIN ~ Real and complex analysis
McGraw Hill 1966, 2nd ed. 1972 (French translation, Masson
1975). ’
or to :
G. CHOQUET - = lLectures in Apalysis, Vol I, Il and !l - Marsden Ed.

Benjamin 1967
Theorems 4.1 and 4.2 ,or similar theorems,certainly appeared many times, notably in
papers dealing with non-archimedean analysis. The idea of a use of such theorems

for proving converse theorems in Cauchy equations goes back to a nice paper of :

Marcin E. KUCZMA - On discontinuous additive functions
Fund. Math.66 (1970) p. 383-392

Theorems 4.3. and 4.4 appeared in :

- J. DHOMBRES, R. GER - Conditional Cauchy Equations

Glasnik Mat. (1978) Vol 13 (33) p. 39-62




and Theorem 4.5 appeared in :

J. DHOMBRES - Sur quelques extensions d'homomorphismes
Comptes Rendus Acad.Sc. 281 (1975) p. 503-506

Such theorems generalize a certain number of results scattered in the literature.
We quote some papers and refer to the bibliography of :

M. KUCZMA - Functional equations on restricted domains
Aeq. Math (1978) 18 p. 1-34

for a more complete list of papers. Theorem 4.1 is classical in group theory,

Corollary L.4, was first proved in :

’ "
Z. DAROCZY - Uber die Erweiterung der auf einer Punktmenge
L. LOSONCZ! additiven Funktionen
Publ. Math. Debrecen 14 (1967) p. 239-245

The case of a non-connected open subset of [R2 has been treated in hungarian by
Székelyhidi (cf. bibliography of M. KUCZMA).

A very special case of Theorem 4.5 (on R |, with X = La b:l and f continuous)
\ appeared in :

S. GOLAB, L. LOSONCZIi- Uber die Funktionalgleichung der Funktion
Arccosinus | Die Pokalen LYsungen
Publ. Math. Debrecen 12 (1965) p. 159-174

A special case of Theorem 4.3 with G‘=F'=ﬂl and X= ['0,00[ appeared in :

L ' .
J. ACZEL, P. ERDHS - The non existence of a Hamel basis and the general solution
of Cauchy's functional equation for non negative numbers
Publ. Math. Debrecen 12 (1965) p. 259-265

In the setting of vector spaces over a commutative field, and for positively
homogeneous function, Theorem 4.3 was investigated in :

- Some remarks about additive functions on cones
Aeq. Math. 4 (1970) p. 303-306

M. KUCZMA

Theorem 4.3 with X generating G, but also in some very special cases of non
abelian groups appeared in :

Js ACZEL J.A. BAKER - Extensions of certain homomorphlsms of semi- groups to
D.7. ﬂJOKOVIC homomorphisms of groups
PL. KANNAPAN, F.RADD Aeq. Math. 6 (1971) p. 263-271

Hamel bases were invented long ago :

G. HAMEL - Eine Basis aller Zahlen und die unstetigen LYsungen der
Funktionalgleichung f(x4y)=f(x)+ f(y)
Math. Ann. 60 (1905) p. h59—462A

Such bases often provide nice counterexamples in functional equatlons For more. -
about Lebesgue measures and Hamel bases, see :

P. ERDYS - On some'prOperties of Hamel bases
Fund .Math. Vol X Fasc. 2 (1963)

We have tried to exhibit strange behaviours of.such bases.

/2
J. ACZEL, P. ERDUS

~

or 4 and some of the counterexamples are due to J.

. L
J. SMITAL
and,
Cd .
J. SMITAL

- On boundedness

- The non existence of a Hamel basis and the general solution
of Cauchy's functional equation for non negative numbers

Publ. Math. Debrecen 12 (1965) p.259- 265

Converse theorems for Cauchy solutions bounded somewhere both in “1\
SMITAL in two papers:

Fund. Math. 76 (1972) p. 245-253

- A necessary and sufficient condition for continuity of

additive functions
Czeck Math. J. (1976) Vol 26 p. 171-173

The theorems given here are slightly modified versions.

Propositions 4.4 and 4.5 are in the already quoted paper of Marcin E.

Other relevant references fainly counterexamples) are to be found in two papers

R. GER, M. KUCZMA

R. GER

Jensen convex functions have a long history.

J.L.W.V. JENSEN

- On the boundedness

additive functions
Aeq. Math. (1970) Vol 4 p. 157-162

- Some remarks on convex functions

Fund. Math (1970) Vol 66 p. 255-262

- Sur les fonctions convexes et les inégalités entre les

valeurs moyennes
Acta Math. 30 (1906) p. 175-193

Then Proposition 4.7 with an open subset of (2N

F. BERNSTEIN
G. DOETSCH

- Zur Theorie der konvexen Funktionen

Math. Annalen 76 (1915) p. 514-526

Then proposition 4.7 in i

A. OSTROWSKI

That continuity of Jensen functions comes from measurability was proved independently

by :
H. BLUMBERG

W. SIERPINSKI

- Zur Fheorie der konvexen Funktionen

Comm. Math. Helv. 1 (1929) p. 157-159

- On convex functions

Trans. Amer. Math. Soc. 20 (1919) - p. 40-Lki

- Sur les fonctions convexes mesurables
Fund. Math. 1 (1920) p. 125-129

- .
Proposition 4.7 in X came with :

E. MOHR

- Beitrag zur Theorie der konvexen Funktionen
Math. Nach. 8 (1952) p. 133-148

Another reference is :

and discontinuity of additive functions

and continuity of convex functions and -

First their introduction i
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Theorem 4.13 (i) in A |, but with 2E appeared in :

S. KUREPA - Convex functions
Glasnik Mat. 11 (1956) p. 89-93

Theorem 4.13 (i) in 128 appeared in :

S. MARCUS - Critére de majoration pour les fonctions sous additives
convexes ou internes
Comptes Rendus Acad. Sc. Paris (1957) p. 244, p. 2270-2272

vy .
Theorem 4.13 (i) in A , and Theorem 4.12 (iii) appeared independently in :

S. MARCUS - Généralisation aux fonctions de plusieurs variables, des
théoré&mes de A, Ostrowski et de M. Hukuhara concernant les
fonctions convexes (J).
Journal Math. Soc. Jap. Vol 11 No. 3 (1959) p.171-173

and in :
A. CSASZAR - = On convex sets and functions
Mat. Lapok 9 (1958) p. 273-282
Theorem 4.13 (iji) appeared in the already quoted paper of S. Marcus and in
M. KUCZMA - Note on convex functions
Ann. Univ. Sc. Budapest 2 (1953) p. 25-26
Theorem 4.13 (ii) appeared in :
M.R. MEHDI - Some remarks on convex functions

J. London Math. Soc. 39 (1964) p. 321-326

AN
A Jensen convex function, defijned on an open and bounded subsetCT’ofﬂz and bounded
below on a subset of positive Lebesgue measure, is bounded below on O but not
necessarily continuous. See for n =1 :

M. HUKUHARA - Sur la fonction convexe

Proc. Jap. Acad. (1954) 30 p. 683-685
and for any n the already quoted paper from S. Marcus.
See also,
J. SM?TAL - On convex functions bounded below

Aeq. Math. 14 (1976) p. 345-350
Generalizations of Jensen convex functions appeared in :

E. DEAK = Uber konvexe und interne Funktionen, sowie eine gemein.
same Verallgemeinerung von beiden -
Ann. Univ. Sc. Budapest 5 (1962) p.109-154

and in :

V. KLEE - Solutions of a problem of E.M. WRIGHT oﬁ c6nvex function
Amer. Math. Monthly 63 {(1956) p.106-107

See also for Th. 4.13 (ii)

M. KUCZMA - Convex functions :
in Functional equations and inequalities
Ed. Cremonese Roma 1971 p. 195-213
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The study of conditional Cauchy equations linked with additive functions
in number theory was done by :

C. PISOT, J. SCHOENBERG Arithmetic problems concerning Cauchy's functional eq.
111, J. Math. 8 (1964) p. 40-56

See also :

Z. DAR6CZY, K. GYORY - Die Cauchysche Funktionalgleichung uber diskrete Mengen
Publ. Math. Debrecen 13 (1966) p. 249-255

The material for Theorem 4.17 comes from. :

K. SUNDARESAN - Orthogonality and non linear functionals on Banach spaces

Proc. Amer. Math. Soc. Vol 3% no. 1 (1972) p. 187-190

See also for special Banach spaces :

L. DREWNOWSKI - On orthogonally additive functionals

W. ORLICZ . Bull. Amer. Math Soc 16 (1968) p. 883-888
and, . .

K. SUNDARESAN - Additive functionals on Orlicz spaces

‘Studia Math 32 (1969) p. 269-276

A related result is stated without proof in

F. VAJZOViE - ﬁber ein Funktional H mit der Eigenschaft
{x,y)= 0 =3 Hix+y)+H(x-y)= 2(H{x) + H(y))
Aeq. Math 1 (1968) p. 141

See also for less regularity assumptions

S. GUDDER - A converse to Pythagora's'ﬁheorem
D. STRAWTHER Amer. Math.Monthly 1977, p. 551-553

/ Chapter V /

The first treatment of Mikusinski's equation (Th 5.1, 5.2 and 5.3)
appeared in :

L. DUBIKAJTIS, C.FERENS On Mikusinski's functional equation
R."GER, M. KUCZMA Ann . Polon. Math. 28 (1973) p. 39-47

Soon thereafter, quite a number of papers dealt with various improvements.
We mention the paper wherein Theorem 5.5. was proved :
K. BARON, R. GER - On Mikusinski-Pexider functional equation
Coll. Math 28 (1973) p. 307-312
See also :

R. GER . - On some functional equationswith a restricted domain
| Fund.Math. 89 (1975) p. 131-149
Il Fund.Math. to appear

The method used in those two papers is discussed in.§ 6 and see the bibliography

for the end of the chapter.
fFor other geneﬁa]izations of Mikusinski 's equation,we have to quote :

P1. KANNAPPAN - On a functional equation related to the Cauchy equation
M. KUCZMA Ann. Polon. Math. 30 (1974) p. 49-55 /
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where Theorem 5.5 and 5.8 were prbved and :

R. GER - On an alternative functional equatidn
Aeq. Math 15 (1977) p. 145-162

where Theorem 5.9 is proved and general solutions provided for the functional
equation dealt with in Theorem 5.9 (G, abelian group; F,integral domain of
characteristic zero). :

Propositions 5.3 and 5.4 are broved in the already quoted paper of R. GER.

A generalization (Proposition 5.5) was given in:

Marek KUCZMA. - On a theorem of Roman GER
: Prace Matematycjne VI (1975) p. 73-76 N. 87

Theorem 5.6 was announced :

P. FISCHER - Sur 1'équivalence des équations fonctionnelles
Flxvy)=f()+Fly) et (F(x+y)) 2 = (£(x)+ fly))?
Annales de la Fac.Sc. Toulouse (1968) p.71- 73

but a corrected proof appeared in :

M. KUCZMA - On some alternative functional equations
Aeq. Math 17 (1978) p. 182-198

For a generalization of Theorem 5.6 to other kinds of functional equatlons, outside
the previous paper, see the following paper and its bibliography:

H. SWIATAK ' - On alternative functional equations
- Aeq. Math 15 (1977) p. 35-47
The dual equation of Mikusinski's was first considered in the already quoted paper :
J. DHOMBRES, R. GER - Conditional Cauchy Equations
Glasnik Mat. Vol 13 (33) 1978 p. 39-62
Subsequent generalizations or related results appeared in :

R. GER - On a method of solving of conditional Cauchy equations
Univ. Beograd Publ. Elektro. Fak. Ser. Mat. Fiz.
No. 544-576 (1976) p. 159-165

In this paper, R. GER exhibits a nice methad which may eventually lead to the general
solution of type 1V.2.

R. GER ‘.' -~ On some functional equations with a restricted domain
Bull. Acad. Polon. Sci. Sér. Sc. Maths Astro. Phys. 24
(1976) L29-432

E. VINCZE - Ubereine Klasse der alternativen Funktionalgleichungen

Aeg. Math. 2 (1969) p. 364-365

R. GER, M. KUCZMA - On inverse additive functions
Bull. Un. Mat. ital. (4) 1t (1975) p. 490-495

Conditional Cauchy equations of type V were first asked as an open question by
P. ERDUS (p. 310 Coll. Math. 7 (1960) p. 311) with & being the family of subsets -
of ® of Lebesgue measure zero.
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A partial solution was found by :

S. HARTMAN - A remark about Cauchy's equation
Colloquium Math. 8 (1961) p. 77-79

Then the problem wasvsolved indgpendently by :

W.B. JURKAT - On Cauchy's functional equations
Proc. Amer. Math. Soc. 16 (1965) p. 683-686
N.G. de BRUIJN - On almost additive functions
: Colloquium Math. 15 (1966) p. 59-63
and, '
J.L. DENNY - Sufficient conditions for a family of probabilities to be

exponential
Proc. Nat. Acad. Sc. USA 57 (1967) p.1184-1187

De BRUIJN noticed that his proof can be generalized to the setting of proper linearly
invariant ideals in abelian groups. This was generalized to arbitrary groups in: -

R. GER - Note on almost additive functlons
Aeq. Math.

Generalizations were provided in various papers due to R. GER and already quoted
See also:

J. TABBR - Solution of Cauchy's functional equatlon on a restricted
domain
Colloquium Math. (to appear)

Nice generalizations are also proved in:

St. PAGANONI-MARZEGALLI- Cauchy's equation on a restricted domain
Bull. Uni. Mat. Ital. A(5) 14 {1977) no. 2 p. 398-408
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/~ Chapter VI /

Theorem 6.1 appeared without proof in :
J. DHOMBRES - pApplications associatives ou commutatives
Comptes rendus Acad. Sc. Paris t. 281 (1975) p.809-812

Linear iteration of order two was discussed in groups in :

J. DHOMBRES - |tération linéaire d'ordre deux

Comptes rendus Acad. Sc. Paris t. 280 (197%)
and in @ ‘
J. DHOMBRES - jtération linéaire d'ordre deux

Publ. Math.Debrecen 2k (1977) p. 277-287-

(a special bibliography is given there for Euler's functional equation)

on R , the general continuous solution of alg(x)=alg(x) + B2 + ¥ is given in :

S. NABEYA - On the functional equation £ (prgx + rt(x)) zasbxick (x)
Aeq. Math, 11 (1974) p. 199-211

The functional equation of linear iteration of order two is a special case of
functional equations, onﬂl treated by :
D. BRYDAK - Sur une équation fonctionnelle

| Ann. Pol.-Math.15 (1964) p. 237-251}
11 Ann. Pol. Math.21 (1968) p. 1-13°

Theorem 6.5 is proved in :

P. VOLKMANN - Eine Character|5|erung der positiv definiten quadratischen

Formen )
Aeq. Math.Vol 11, 1974 p. 174-181

In this paper lemmata 6.3 and §.1 are proved without the assumption Lim qx) = + o0

= =) oo
Theorem 6.5 was first proved by :

A.F. FICKEN - Notes on the existence of scalar products in normed linear
spaces

Annals of Math Il Sec 45 (194k4) p. 362- 366
Theorem 6.6 was first proved amongst many other results in :

E.R. LORCH - On some implications which characterize Hilbert space
' "Ann. of Math. 49 (1948) p. 523-532

See also : .
N. ARONSZAJN - Caractérisation métrique de |'espace de Hilbert
Comptes Rendus Acad. Sc. Paris 20] (1935)
1 p.811- 813
11 p.873-875

-~

in fact, Theorem 6.5 can be generalized with the same conclusion to the following
situation :

For each x, y in E such that WxW@ = [ly}l . there exists a ¥,0L¥ ¢t
aed  fmay U =Wxxyll
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A proof using some sophisticated results about the geometry of convex subsets of
RZ% can be found, with many other results in :

M.M. DAY - Normed spaces
Springer Verlag 3rd ed. 1973

For § 4, the general solution of the functional equation dealt with in
Th. 6.7, is to be found in two forms. The one given here appeared in :

P. JAVOR - On the general solution of the functional equations

Boxtey PO = B Bly)
Aeq. Math. 1 (\968) p. 235-238

and another equivalent form appeared in :

S. WOLODfKO - Solution générale de 1'équation fonctionnelle
Py F0) = £, E(y)
Aeq. Math. 2 (1968/69) p. 12-29

For regularity assumptions, see also :

P. JAVOR ’ - Contlnuous solutions of the functional -equation
B lxey () =£). F(y)

Proc. Int. Symp.on Topology and its applications Herceg Novi 1968

For the occurrence of the functional equation in Theorem 6.7 for the research of
subgroups of a centro-affine group, see :

S. GOLAB, A.SCHINZEL -~ Sur 1'équation fonctionnelle f(xsy f (x))z Q (x) Q(y)
Publ. Math. Debrecen 6, 113-125, (1959)

and,

J. ACZEL, S.GOkAB - Remarks on one parameter subsemigroups of the affine group

and their homo and isomorphisms
Aeqg. Math. Vol 4 (1970) p.1-10

For its appllcatlon to the theory of geometric objects, see :

J. ACZEL - BeitrHge zur Theorie der geometrisdre Objekte 11, 1V
Acta Math, Acad. Sc. Hung 8 19-52 (1957)

For §!5, references up to 1976 are to be found,with the proofs of
Theorems 6.8, 6.9 and of some related results for other functional equations,in :

J. DHOMBRES - Solution générale sur un groupe abélien de 1'éauation

fonctionnelle ?(:w -f\\)\ Q@(ﬂ* \Q
Aeq. Math.15 no. 2/3 (1977) p. 173-193

For a first treatment :

J. DHOMBRES : - Functional equations on semi-groups arising from the
theory of means

Nanta Math. 5 (3) 1972 p. 48-66

For an introduction of the functlona] equations of § 5, from an harmonic analysis
point of view, see :

-J. DHOMBRES - Interpolation linéaire et équations fonctionnelles

Ann.Polon. Math. 32 (3) 1975 p. 287-302
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and from an algebra point of view, see :

- Sur 1'équation fonctionnelle-&(X‘-g(y)): (x)-£ (y)
5

Y. MATRAS Acad. Roy. Belg;Bull. Cl. Sc. 55(5) 1969 p. 731-751

More references for the multiplicative symetry shall be given in Chapter Vil.

The related equation : f(x-kf(y)): f (x)f (y) is the subject of :
C.F.K. JUNG . - On the functional equation Flx+fly))=f (x) f (y)
V. éoéNYASOMBAT Aeq. Math, 14 (1976) p. L1-48

G. BARBANGON
F.R. JUNG

For Eq(5) on A with a continuity assumption, see :

7 DAROCZY - Uber die Funktional gieichung CP(q>(X)Y

)= B 6P (y)
Acta Univ. Debrecen Ser. Fiz. Chem 8 (1962)

p. 125-132

Seé.also, for some generalizations,
E.R. JUNG, C.F.K.JUNG - Functional equations of Cauchy-Pexider~Jensen Type
G. éARBANéON . Nanta Math.Vol 8 no. 1 p. 92-98 )

. BOONYASOMBAT . )
\F/{el:te'd functional equations of the fofm .e(x f.Q(Y))+ .e(y -\—g(x)) [ (g(x)yg(y))
are treated in : ‘

- ltération linéaire d'ordre deux
. DHOMBRES Publ. Math, Debrecen 24 (1977) p. 277-287

: ' at . i- ups, see :
For the functional equation _ﬁ(x; y) = g-(gix) * g»(y)) on semi-group

zahlentheoretische Funktionen, die

=P (R(x) +§(y)) erfulien
MittT*MZth ng. Giessen 111 (1974) p. 80-86

W. SCHWARZ, J.SPILKER - Ubelz
J.N. SIMONE - On number theoretic functions which satisfy
Giry)= 2 EG)EE())
Math. Mag. 46 (1973) p. 213-215

‘ - Ub i i 1gleichung
. DHOMBRES,J.SPILKER - Uber die Funktigna
’ (Bix x£ v))=k{x % y)
Manuscripta Math (1976) 18 p. 371-390

For cdrollary 6.7, see :

jativi 1 axis
S - Associativity on the rea
- DHOMBRE GlasnikMat. 11 (31) (1976) p. 37-40
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/ Chapter VII /

Reynolds operators have a long history. The first introduction was by:

0. REYNOLDS - On the dynamical theory of incompressible viscous fluids
and the determination of the criterion
Phil. Trans. of the Royal Soc. of London 186
- (1895) p. 123-164

An almost exhaustive list of references, before 1964, is to be found in a paper by:

G.C. ROTA " - Reynolds operators
Proc. Symp. Appl. Math. 16 (1964) p.70-83

For Reynolds operators over periodic functions and generalizations to almost periodic
functions, see:

J.G. DHOMBRES - Some averaging process )
Kyungpook Math. J. 12, no. 2, (1972) p. 229-243

For both Reynolds, D{d), averaging operators and for multiplicatively symmetric
operators in general, see:

J.G. DHOMBRES - Sur les opérateurs multiplicativement 1iés
Mémoire de la Soc. Math. de France
no. 27 (1971) 156 pages

For averaging operators on almost periodic functions,see:

J.G. DHOMBRES - Sur une classe de moyennes
Annales de 1'Institut Fourier 17 (1967) p. 135-156

For multiplicatively symmetric operators in the finite dimensional case, see:

J.G. DHOMBRES - Sur les opérateurs multiplicativement liés dans les algébres
de dimension finie .
Ann. Institut H. Poincaré Vol. 8, no. 4, 1972, p.333-363

Theorem 7.6 on derivation operator, appeared for the first time in:

1.M. SINGER, J.WERMER =~ Derivations on commutative normed algebras
Math. Annalen 129 (1955) p. 260-264

The continuity assumpticion the derivation operator was removed in:

B.E. JOHNSON - Continuity of derivations on commutative algebras
Amer. J. Math. 91 (1969) p. 1-10

Theorem 7.6 was considerably generalized to some non abelian Banach algebras and it
was proved that any derivation in a W* algebra is inner. See a survey done in a
chapter of: ’

S. SAKA' - C* algebras and W* élgebras
Springer Verlag 1971
We just mention that the techniques evolved into a cohomology theory for operator

algebra. See:




- Cohomology in Banach algebras

B.E. JOHNSON
Memoirs of the Amer. Math. Soc. no. 127 (1972)

plicatively symmetric operators,

lready quoted for multi
in functional analysis as

h interesting problems

Qutside the references a
we may mention links wit
explained in: )

and their applications
f spaces of continuous

- Linear extensions, linear averaging,

A. PELCZYNSKI
to linear topological classification o

functions
Diss. Math. 58 (1968) 92 pp.

and,
J.G. DHOMBRES

- Linear interpolation and 1inear extension of functions

Proc. Int. Conf. in Functional Analysis
Lecture Notes in Math. no. 399 Springer Verlag 197k

or,

J.G. DHOMBRES - Interpolation linéaire et équations fonctionnelles

Ann. Polon. Math. 32 (3) 1975 p. 287-302

eYezynski and the multiplic-

lence between linear exaves according to A. P

The equiva
ors was first proved in:

atively symmetric operat

- A functional characterization of markovian linear exaves
Bull. Amer. Math. Soc. 81 no. k¥ (1975) p. 703-706

J.G. DHOMBRES

Details appeared in:

- @i“tfﬂﬁy _—\V‘igﬁ%’ %‘Efﬁg—%ip%ﬁlt 3%#63{¥n
vol 1X-no. 2, p. 109-116 (1976)

J.G. DHOMBRES

Nanta Math.

multiplicative symmetry

We already gave a reference for the functional equation of
in general (cf. reference for chapter VI, 5). :

reme points of subsets of

tional equations arising in the study of ext

For the func
s in the survey work of:

operators, see reference

- Qpérateurs extrémaux et sympathiques

thése de 3éme cycle
Université de Nantes. France 1979

'N. BRILLOUET

A first approach was done in:

- Extreme operators in c(K)

R.M. BLUMENTHAL,
Pacif. J. Math. 15 (1966) 747-756

J. LINDENSTRAUSS,
R.R. PHELPS

The study was mainly developed by:

- Extremal structures in operator spaces

M. SHARIR
Trans. Amer. Math. Soc. 186 (1973) p. 91-1H1

and interesting'couﬁter-examples appeared in:
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M. SHARI -
R A counter example in extreme operators
‘lsrael J. Math. 24 (1976) p.320-327
M. i
SHARIR - A non nice extreme operator

Israel J. Math. 26 (1977) p.306-312

The study of extreme operat
Ry iﬁ; ors among doubly stochastic operators on a Lebesgue
J.V. RYFF - i
&xtreme points of some convex subsets of L? [o l:)
roc. Amer. Math. Soc. 18 (1967) p. 1026-1034 ’

“and,

R.C. SHIF -
LETT Extreme Markov operators and the orbits of Ryff‘

Pacific J. Math. 40 (1972) p. 201-206
In the introduction of the special functional equation, see:
J.V. RYFF - i

The functional equation a f(ax)+ bf(bxta)=bf(bx)+af(ax+b)

extensions and almost periodic soluti
3 ‘ tio
Bull. Amer. Math. Soc. 82 (1976) p. 3225327

and an expanded version with proofs and consequences
J.V. RYFF i
~ The functional equation F(
] ax) + F(bx+a)=F(b
Entire and almost periodic solutionsf = (Bx) % Flaxtb)

. pt. . Vv S
ub Dept [e] att Unive t [e] Connecticut
Y

Theorem 7.9 was proved in:

- Some aspects of functional ‘ i
: equations
Lee Kong Chian Institute of Math.
Nan ‘Yang University
Research Report no. 26 (1976) 28 p.

J.G. DHOMBRES
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