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Compressive sensing is a powerful tool to efficiently 
acquire and recontruct an image even in Diffuse Op-
tical Tomography (DOT) applications. In this work a 
time-resolved DOT system based on structured light il-
lumination, compressive detection and multiple views 
acquisition has been proposed and experimentally val-
idated on a biological tissue-mimicking phantom. The 
experimental scheme is based on two Digital Micromir-
ror Devices (DMD) for illumination and detection mod-
ulation, in combination with a time-resolved single el-
ement detector. We fully validated the method and 
demonstrated both imaging and tomographic capabil-
ity of the system, providing a state of the art reconstruc-
tion quality.

OCIS codes: (170.6960) Tomography; (110.0113) Imaging through 
turbid media; (170.6920) Time-resolved imaging

In the last decade the possibility to quantitatively recon-
struct absorbing, scattering and fluorescent inclusions within
in vivo organisms has attracted a great interest for diagnostic
purposes (e.g. tumor detection)[1], functional studies (e.g. brain
oximetry)[2] and molecular imaging on small animals (e.g. phar-
macological research)[3]. The general measurement scheme con-
sists of illuminating the sample and detecting the diffused light
exiting from it. Then, by solving the inverse problem, based on a
model of photon propagation through the biological tissue, the
optical parameters in each point of the sample can be quantita-
tively reconstructed. It is usually referred to these modalities as
Diffuse Optical Tomography (DOT) and Fluorescence Molecular
Tomography (FMT) when the absorption/scattering or fluores-
cence properties are reconstructed, respectively.

DOT/FMT performance is mainly characterized by its ca-
pability to resolve the position and shape of inhomogeneities
inside the tissue, and, consequently, improving the quantifica-
tion capability of their optical parameters. Previous studies

have demonstrated the importance of a dense source/detector
[4] and multiple views measurement scheme [5, 6] in order to
increase the tomographic spatial resolution. Moreover, further
data, such as spectral and temporal information, are crucial
[7, 8]. Temporal information provides three main advantages: i)
better disentanglement of absorption/scattering properties; ii)
temporal encoding of photons depth; iii) fluorescence lifetime
quantification in the case of FMT. Spectral information (i.e. differ-
ent excitation/detection wavelength) allows one to discriminate
among tissue chromophores. Hence, DOT/FMT turns out to
be a highly multidimensional problem with the drawback to
generate a huge data set. This represents a practical limitation
of these techniques because of the extremely long acquisition
and computational times, which are not typically compatible
with clinical and pre-clinical needs. Hence, a reduction of the
acquired data set by preserving the spatial resolution, or more
generally the data set information content, is highly desirable.

Following this concept, different studies have recently ex-
ploited the fact that a highly scattering medium (such as bio-
logical tissue) behaves as a low pass filter in the spatial domain.
Hence, few illumination patterns, instead of the more typical
raster scanning approach, can be adopted without losing signifi-
cant spatial information [8–10]. This in turn leads to a reduction
of the data set dimension and, consequently, of the acquisition
and computational time. Recent studies have exploited such
approach both in imaging and tomographic schemes and detec-
tion is generally carried out by a parallel detector such as CCD,
CMOS or gated cameras [11]. Moreover, the use of a wide field
approach (such as the case of structured illumination) allows
one to illuminate the sample with high power without exceed-
ing light density safety limits. This improves the signal-to-noise
ratio.

Recently a patterned detection [12], following the single-pixel
camera scheme [13], has been proposed for DOT/FMT applica-
tions, as well as for PhotoAcoustics [14]. Basically, the image
of the diffused light exiting the sample is spatially modulated
and subsequently focused on a single element detector. By re-
peating the measurement at different (source and/or detector)
modulating patterns, the sampling is carried out in the spatial
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frequency domain rather than in the case of a point detection
as it is for a parallel detector or the raster scan. Due to the fact
that a highly scattering medium acts as a low-pass filter in the
spatial frequency domain, just few frequencies are needed.

This approach has the great advantage of exploiting the su-
perior characteristics of a single detector (e.g higher temporal
resolution and larger spectral bandwidth) and lower cost with
respect to a parallel device. Moreover, comparing with raster
scanning, a further advantage is the acquisition speed given
by a wide field detection analogous to structured illumination
approach. Finally, it is worth mentioning that both structured
illumination and detection open the possibility to get images
and reconstructions with increasing spatial details by increasing
the number of measurements.

In this work we propose a multiple-view time-domain com-
pressed sensing DOT system exploiting Hadamard patterns
both in the illumination and collection plane, and applicable
to non-planar geometries. The system has been experimentally
validated on tissue phantoms with absorbing inclusions, demon-
strating both imaging and tomographic capabilities.

The experimental set-up is schematically sketched in Fig. 1.
The sample is illuminated by a pulsed structured light while
detection is carried out either by a time-resolved Single Pixel
Camera (SPC) or a Continuous Wave (CW) parallel detector.
The sample is placed on a rotational stage to allow different
view acquisition. By means of an acousto-optic tunable filter,
light pulses at 650 nm are spectrally selected from a ps pulsed
supercontinuum (rep. rate of 80 MHz) laser source (SuperK Ex-
treme, NKT). Structured illumination is carried out by a Digital
Micromirror Device (DMD Discovery kit 1100, Vialux), which
spatially modulates the light, and an objective lens (f=50 cm)
to create the image over an area of 3x3 cm2 of the sample. The
diffused light, exiting the sample over an area of about 2x2 cm2,
is imaged by a lens (f=60 cm) on a second DMD (DMD Discovery
4100, Vialux). A flip mirror allows us to image the DMD plane
either on a low noise 16-bit cooled CCD camera (Versarray 512,
Princeton Instruments) or a single element detector. The latter
consists of a long working-distance objective (10X/0.25) which
focuses the light reflected by the second DMD on a 1 mm diame-
ter optical fiber. The light exiting the fiber is finally detected by a
photomultiplier (PMT) (HPM-100-50, Becker & Hickl) connected
to a Time-Correlated Single Photon Counting (TCSPC) board
that samples the temporal profile of the diffuse light. The system
is fully computer controlled by a home-made LabView software
enabling an automated acquisition of the whole data set (illumi-
nation/detection patterns, sample rotation and acquisition).

The sample is a cylindrical tissue mimicking phantom
(∅=20 mm, height 45 mm) made of an epoxy resin, TiO2 (as
scatterer) and toner (as absorber). By means of a time-resolved
spectroscopy system [15] the optical parameters were measured:
µa about 0.2 cm−1 and µs about 10 cm−1. Two holes, drilled into
the sample (∅=1.6 mm), allowed us to insert either one or two
cylindrical absorbing inclusions as hereafter specified.

Initial calibration measurements are carried out, by means of
the CCD camera on the detection side and of a low-cost camera
on the illumination side, to localize the illumination/detection
area over the sample. Then 360 shadows of the object (every 1◦)
have been acquired to create the mesh [6]. It is worth empha-
sizing that precise calibration is critical to achieving an accurate
simulation of the forward problem, which in turn is a prerequi-
site to obtain a high quality tomographic reconstruction.

Measurements have been performed on the phantom with
and without the absorbing rods. The acquisition procedure is
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Fig. 1. Experimental set-up.

carried out by a complete 360◦ rotation of the sample with steps
of 45◦ (8 views). For each view 8x8 ordered Walsh-Hadamard
(WH) patterns have been used for both illumination and detec-
tion. Each WH pattern consists of two states (-1 to +1). Hence
two positive patterns (ranging from 0 to +1), complementary
to one another, have been acquired and properly subtracted to
obtain the desired WH pattern. Acquisition time for each pattern
is 1 s. A full-pixel image can be recovered by applying the fast
Walsh-Hadamard inverse transform to the detected data [16].

For the reconstruction of the absorption map in the volume,
the following objective function has been constructed:

Ψ(x) =
1
2 ∑

n

[
yn − fn (x)

fn (x)

]2
+ τR (x) (1)

where x is the absorption coefficient in every mesh element, yn
is the measurement, fn is the forward model, τ is the hyper-
parameter, R is a regularization functional and n is the measure-
ment index. The software TOAST, a finite-element based solver
[17], has been used to calculate fn (x). In order to minimize the
objective function in Eq. (1) a damped Gauss-Newton method
based on a one dimensional line-search algorithm [18] has been
implemented. A Total Variation (TV) regularization functional
has been used. In the calculation of both the forward model and
the Jacobian, the IRF has been taken into account by convolution
in time.

First measurements have been carried out to demonstrate the
imaging capability of the system and to estimate the number
of patterns to be used in the tomographic reconstruction. In
particular time-resolved data acquired by SPC have been inte-
grated over time to obtain CW data and compared with the CCD
images. An example of the images acquired by the CCD and
the ones based on SPC (by spatially modulating the detection) is
shown in Fig. 2. We observe a good agreement between the two
images which improves by increasing the number of adopted
patterns as reported in Fig. 2, where the Root Mean Square Er-
ror (RMSE) is reported as a function of the WH pattern order.
In particular, we do not observe a significant improvement for
WH pattern order higher than 8. Moreover, it is possible to
observe that the RMSE plot for the inhomogeneous phantom
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Fig. 2. Comparison between CCD and SPC images. First row:
example of a CW image outcoming from the phantom with-
out inhomogeneity measured with CCD (left) and SPC (right)
using 16x16 WH patterns. The RMSE as a function of the WH
order is also plotted for the eight views. Second row is anal-
ogous to the first row but the image is outcoming from the
phantom with one vertical inclusion. For all the images the
scale is normalized between 0 and 1.

presents a higher variability among the different views with
respect to the homogeneous case. It is worth stressing that the
number of required patterns strongly depends on the optical
parameters/shape of the sample and position/dimension of the
inclusions. In order to explore the imaging capability of the
proposed method, the contrast provided by one inclusion, both
in the CCD and SPC images, are reported in Fig. 3. In particu-
lar three cases are reported: i) the sample is illuminated with
16x16 ordered WH patterns while detection side has a uniform
square pattern (first line of Fig. 3); ii) the sample is illuminated
with a uniform square pattern while detection side is spatially
modulated by 16x16 ordered WH patterns (second line of Fig. 3);
iii) CCD images by using uniform square illumination pattern
are also reported (third line of Fig. 3). In all cases the relative
contrast, calculated as the difference between heterogeneous
and homogeneous images divided by the homogeneous one is
shown for 8 different views.

The second (modulation of detection) and third (CCD) cases
show good agreement, in particular the presence of the absorb-
ing inclusion can be clearly observed when it is located, during
sample rotation, closer to the detector (CCD or SPC). On the
contrary, for the other views, the inclusion cannot be observed
because of the scattering. In the first case (modulation of illumi-
nation) there is no correspondence between the images acquired
by the CCD and SPC. In particular we observe that by spatially
modulating the illumination we can better observe the presence
of the inclusions for the views where the inclusion is closer to the
illumination source. In fact, the SPC approach measures the in-
tegral of the signal, then the imaging capability is not influenced
by the scattering events followed by photons after impinging
on the inclusion as occurs for a position sensing device like the
CCD [19]. These examples demonstrate the imaging capability
of the proposed method and in particular the importance of the
choice of the illumination/detection patterns according to the
view, the sample (shape and optical parameters) and inclusions,
for both imaging and reconstruction. As a first demonstration
of the tomographic capability of the proposed system, a time-
resolved tomographic reconstruction by using either an early or
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Fig. 3. Relative contrast, shown as the difference between het-
erogeneous and homogeneous images divided by the homo-
geneous one, for different rotation views (columns) in the
case of spatially modulated illumination (first line), spatially
modulated detection (second line) and CCD images by using
uniform square illumination (third line).

a late gate of the time-resolved profile has been carried out. For
each view, illumination consists of a squared pattern, detection
of 8x8 WH patterns while the temporal gate has been chosen by
integrating the TR signal on an early and a late gate, respectively.
Early gate has width 300 ps ranging from 1% to 80% of the inten-
sity peak on the rising edge, while late gate width is about 860 ps
ranging from 80% to 1% of the intensity peak on the falling edge.
The mesh used for the forward problem has 108000 elements and
1016 temporal point spread functions (TPSF) have been gener-
ated (127 WH patterns for 8 views) and sampled in 130 temporal
steps of 12 ps width. The computational time for the forward is
about 25 s on a machine mounting a 2.5 GHz quad-cores Intel i7
processor and 16 Gb RAM memory. The reconstruction has been
carried out on a regular grid of 57454 points covering the whole
cylindrical mesh. The Jacobian has been calculated using the
adjoint method [20] implemented with direct and inverse Fast-
Fourier Transform (FFT) to speed-up the temporal convolution
operations. On the same machine this calculation takes about
1.5 hours. By means of the homogeneous measurements, the
data acquired on the inhomogeneous phantom have been scaled
to match the scale of the forward TPSFs. Three Gauss-Newton
iterations have been performed. We have observed that after
this iteration number the reconstruction results did not change.
The overall reconstruction time is about 5 hours.

Fig. 4 shows the tomographic reconstruction of the absorp-
tion coefficient at different vertical slices (b) and 3D rendering
(d) for the reconstruction using the early gate. Due to the limited
field-of-view of both illumination and detection only a part of
the cylinder can be reconstructed (about 18 mm from the top).
We observe a good reconstruction quality concerning both the lo-
calization and relative contrast of the two inclusions. Moreover
in Fig. 4 (e) an example of line profile across the inclusions at
one reconstructed plane (z=17 mm) is reported for both the cases
of early and late gate. As expected, we observe an improvement
in both the localization and shape characterization of the inclu-
sions by using the early gate. Finally, in order to quantify the
localization capability of the reconstruction, the quadratic sum
of the center of mass (COM) error for each inclusion has been
computed at every section:

ε =

√
∑

i

[
(x̂i − xi)

2 + (ŷi − yi)
2
]

(2)
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Fig. 4. Reconstruction of the absorption coefficient using an
early gate. Slices are displayed from z=22.5 mm (top of the
cylinder) to z=3.5 mm at step of 1 mm. The z=0 mm plane is
at the middle of the cylinder; (a) ground-truth; (b) reconstruc-
tion (values are in mm−1). 3D rendering: (c) ground-truth;
(d) reconstructions, a threshold of one-half of the maximum
absorption value has been set. (e) Profile across the line Γ con-
necting the two inclusion’s centers on a plane at z=17.5 mm for
both early (red line) and late (yellow line) gate reconstructions

.

where (x̂i, ŷi) is the expected COM position at the slice i and
(xi, yi) is the calculated COM position at the slice i. The calcu-
lation have been performed on an extended region twice larger
than the inclusions. For the oblique inclusion errors of about
1.0 mm and 2.1 mm have been obtained for the early and late
gate reconstruction, respectively; for the vertical inclusion we ob-
tained 0.7 mm and 2.0 mm for early and late gate reconstruction,
respectively. In conclusion, in this work, a fully tomographic
time-resolved DOT system based on the sampling in the spatial
frequency domain (both illumination/detection space) and mul-
tiple views acquisition has been proposed and experimentally
validated on tissue-mimicking phantom, demonstrating a state
of the art reconstruction quality. Moreover, the imaging capabil-
ity of the system has been validated in CW by comparing SPC
with a standard CCD acquisition, showing the importance of the
choice of illumination/detection patterns for imaging purposes.
Future work will be devoted to the optimization of the data set
(choice of illumination/detection patterns, number of views and
temporal gates) and system improvements (detection efficiency,
calibration procedure) in order to strongly reduce the acquisi-

tion time, while preserving or even increasing the information
content. In particular, adaptive basis scan approaches will be
investigated [21].

This work was partially supported by Cariplo Foundation
under Grant N. 2013–0615 and by the Royal Society International
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