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Analytical solution and numerical simulation
of thermocapillary convection in floating zones

G. CHEN and B. ROUX

Institut de Mécanique des Fluides, UMR 34
1, rue Honnorat, F-13003 Marseille, France

ABSTRACT

The thermocapillary driven flows in a floating zone radially heated by a ring heater are numerically
studied in the presence of an axial magnetic field. A closed-form solution(without magnetic field) is
obtained by solving a linear(Stokes-type) problem. Steady axisymmetric flows are presented through
numerical simulations with a finite-difference method applied to a velocity-pressure-temperature
-formulation. This work investigates the free surface deformation and its effect on the flow field. The
results indicate that the amplitude of free surface deviation from its original shape linearly increases
respectively with capillary force and buoyant force. The surface shapes are found to change from
convex(curved inward) to concave(curved outward) when Marangoni number exceeds certain value. The
effect of magnetic field on the thermocapillary convection is also investigated in this work. The
convection intensity can be reduced by a magnetic field. In the presence of a strong axial magnetic field,
thermocapillary convection is confined into a thin layer near the free surface.

INTRODUCTION

Thermocapillary convection is a fluid motion driven by surface-tension gradients along a liquid-gas
interface, due to the temperature dependence of surface tension. This type of convection plays an
important role in the containerless processing of crystals, such as the so-called floating zone method.
Theoretical, experimental and numerical efforts have been performed to understand this convection,
essentially heat and mass transfer processes driven by temperature gradients. Experimental investigations
include those of Chun and Wuest /1/, Schwabe and co-workers /2,3,4/, Kamotani et al. /5/. One of the
main observation of these investigations has been the transition from steady axisymmetric to time-
dependent flow under some conditions in the half-floating zone experiments. Numerical studies for
steady axisymmetric flows have been conducted by Chang and Wilcox /6/, Kobayashi /7/, Fowlis and
Roberts /8/. The time-dependent axisymmetric flow in Si melt floating zone allowing for the free
surface deformation has been studied numerically by Kazarinoff and Wilkowski /9/. Three-dimensional
time-dependent numerical simulation in a half floating zone configuration has been carried out by Rupp,
Miiller and Neumann/10/, in which the critical Marangoni numbers defining the the transition from
steady to time-dependent thermocapillary convection have been determined for a wide range of Prandtl
numbers. Recently Shen et al. /11/ computed the energy stability limits of thermocapillary convection
in a cylindrical half-floating zone configuration by means of energy stability theory.

This work involves the theoretical and numerical investigation of the thermocapillary driven flows in a
full floating zone filled with low Prandtl number melts. The aim is to determine a basic state solution
which will be further applied in the bifurcation calculation for locating the onset of oscillatory
convection /12/. Most of the calculations are for Si melt with Pr=0.023, and Marangoni numbers are

limited to 300 in order to avoid oscillatory regimes according to the results of Rupp, Miiller and
Neumann /10/,
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PROBLEM FORMULATION

The numerical modelling of the floating zone configuration is based on the geometry of a liquid bridge
as shown in fig.1. The melt zone is heated at the mid-height by an external ring heater with a specified
ambient temperature distribution and subjected to the action of a constant axial magnetic field of
induction B. The flow may occur in the floating zone from driving forces such as buoyancy force,
surface tension(capillary force), and pulling which is ignored in this work. The computational model is
developed for an ax1symmemc configuration and the free surface(melt-gas interface) is allowed to be
deformable. The problem is governed by the hydrodynamic equations(continuity, Navier-Stokes) coupled
with energy equation involving Boussinesq approximation. The dimensionless form of these equations
for the velocity U=(u,w), the pressure p and the temperature T are
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with the following boundary conditions

-at the solid-melt interfaces (z= -1, 1)

u=w=T=0, (5)

-at the symmetric axis (r=0)

_ow _aT _
u=3-=5=0. ©

The boundary conditions on the free surface are described hereafter.

The free surface S which is represented by a function ¢(z) is not known a priori . To determine this

function, we have to impose: i) dynamic boundary condition corresponding to the stress balances, ii)
thermal boundary condition involving imposed heat flux due to external radiation and convection. It
should be stressed that free surface conditions strongly influence the bulk flow, mainly when
thermocapillarity generates surface forces.

The normal stress condition is

U _2H Bo

—p+2arl Ca (1~CaT)~Caz. Q)
The tangential stress condition is

dUu oUu _ dT
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The thermal boundary condition is

g}; Si(Ta - T), with Ta = exp(- 22/d2) . ©
The kinematic condition is

Uen=90. 10
Finally, attachment condition for the free boundary at the meli-solide interfaces is specified:

(-1 =0(1)=1/A. (11
The liquid volume in the floating zone is constant and verifies

1
2 2
f¢®&ﬂM, (12)
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where n, T denote the unit outward normal vector and tangent vector on S, respectively. H is the mean
curvature of the surface, defined by

T
(1+¢'2)3/2 ¢(1+¢'2)1/2 ’

(13)

where ' denotes d/dz.
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Fig.1 Schematic of ﬂoating zone configuration and associated coordinate system

These equations have been made dimensionless by reference to the following scales for length, velocity,
pressure (p + pgz), and temperature (T - Try)

L*=1L, (14a)
AT
* = GTu , (14b)
G'T AT .
P* = I (14c)
T* = AT . (14d)

The dimensionless parameters appearing in the above equations are listed in Tab.1.

TABLE 1 Dimensionless Parameters

Aspect ratio A =LR

Reynolds number Re = 67 ATL/uv
Marangoni number Ma=RePr

Grashof number Gr = BgL3ATNV?
Prandtl number Pr=v/ia

Stark number Sk=4¢€ o*(Tm) L/x
Capillary number Ca=o7AT/og

Bond number Bo = pgl.%/ag,
Hartmann number Ha = BL(ce/pv)1/2

Here B is the induction, g is the acceleration due to gravity, L is the half zone height, R is the crystal radius,
Tm is the melting point temperature, AT is the temperature difference between the maximum heater and
melting point temperature, o is the thermal diffusivity, B is the volume expansion coefficient, € is the
emissivity, k is the thermal conductivity, W is the viscosity, Vv is the kinematic viscosity, p is the density,
O is the electrical conductivity, G, is the surface tension, o is the temperature coefficient of surface
tension, 6* is the Stefan-Boltzmann constant.

ANALYTICAL SOLUTION

Due to the non-linear character of a free boundary problem, most of the solutions found in the literature
are of numerical nature. Only one closed form solution has been given by Da-Riva and Pereira /13/ for
the half-zone configuration for linearized equations(small Marangoni number). Here we look for a closed
form solution in the case of a full floating zone for the purpose, i) to reveal the essentially dynamics of



the linear flow, and ii) to use this analytical solution as the basic solution for a bifurcation analysis in
view of calculating the critical point of transition from steady to time periodic flow.

Analytical solution is found by linearizing eqs(2)-(4). The non-linear terms in the Navier-Stokes and
energy equations are neglected. This implies that the analytical solution will be valid only for small
Marangoni velocities, By introducing an axisymmetric stream function y, such as

u=%\zg,andw=-%;g-}g, (15)

we have ) '
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with the following boundary conditions
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In the case of Ha=Gr=0, equation(16) reduces to a biharmonic differential equation which can be solved
in terms of biorthogonal series of eigenfunctions /14/.
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where is ¢: (z) is the odd eigenfunctions, associated with the eigenvalues Sn which are the non-zero roots
of sin(25n)-28n=0, I is the modified Bessel function of first order. The odd functions are defined in
/14/. Cn are the coefficients determined by the boundary conditions (17) and (18).

The temperature problem reduces to the solution of the axisymmetric conduction problem with
boundary conditions (5) and (9). The solution is straightforward and can be expressed as

400
2n+1 2n+1
T(z) = 2 a, L 5 Tr)Ccos( >, (20
0
where I is the modified Bessel function of zero order , the &, are Fourier coefficients, given by

1
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The deviation of the free surface from its cylindrical position for the first order approximation can be
deduced from the normal-stress condition(7) and the boundary conditions(11) and (12). The final
expression is too complicated to be written down here, only some results will be presented hereafter.

NUMERICAL SIMULATION

Finite-difference method with an altemating-direction implicit formulation(ADI) is used to obtain steady
solution. The physical region where the fluid flow occurs is mapped into a rectangular domain by means
of a body-fitted coordinate transformation. To give adequate resolution in the boundary layers near the
free surface and near the endwalls, a non-uniform mesh is specified as shown in fig.2. The dependent
variables(u,w,p,T) are represented by their values on a staggered grid.

Pressure field is obtained from the continuity equation. The total pressure at the previous iterations is
used as a first approximation to update the velocity variables. The velocity divergence is then calculated
and used to obtain a new pressure field which is then used to correct the velocity. This new pressure
field satisfies a Poisson-like equation, which is solved using the sparse-matrix routine DGSS of the
ESSL IBM's Scientific Library.
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Fig.2 (a) 21x41 finite difference non-uniform grid in the physical domain (r,z); (b) corresponding
21x41 finite difference uniform grid in the transformed domain({,n), with A{=An

The computational procedure is as follows:
--outer loop iterations(m) for the free boundary function ¢(z)
1. Free boundary function, velocity and scalar fields are known at time t, denoted by ¢™, Umk
pm,k, Tm.k,
--inner loop iterations(k) for velocity and scalar fields
2. Advance time to t"+1 = {7 + At, compute predicted velocity U*mk+1 from eqs(3) (4) with
boundary conditions (5), (6), (8) and (10),
3. Obtain velocity divergence V- UMK+ and corrected pressure p™k+1 by solving

Vz(pm,k+1 _ pm.k) = 22? v- U*m.k+1, ©2)

At
4. Correct velocity from UMk+] = ymk+1 _ 5 V(pmk+l _ pmky (23)

5. Solve energy equation(4) with boundary conditions (5),(6) and (9) to obtain T k+1

6. Repeat process (2)-(5) until the convergence condition is satisfied,

7. Calculate a new free boundary functions ¢™*1 from eq(7) using the current values with
boundary conditions (11) and (12),

8. Repeate the process (1)-(7) until the convergence condition is satisfied.

Note that a time-dependent solution can be obtained from process(2)-(6), if the free boundary function
9(2) is fixed(¢(z)=1/A, for example, which implies that the surface is cylindrical).

Convergence is achieved for the outer loop in typically less than 10 iterations for a relative error of 10-3
for the free boundary function ¢(z). For the inner loop from 200 to 5000 total iterations for a relative
error of 10-4 for variables (u,w,p,T) can be required, depending on the parameters of the problem and
the mesh employed. All the numerical results presented in this paper were obtained using a 31 x
61(radial x axial mesh points) non-uniform grid. The CPU time required to calculate a steady solution
for a moderate Marangoni number on an IBM 3090-VF computer for the 31x61 non-uniform mesh
using double-precision arithmetic is about 80 seconds.

RESULTS
Analytical Results
The flow patterns and temperature fields obtained analytically are presented in fig.3. Two counter-

rotating toroidal flow cells appear . The fluid flows from the center to each interface along the free
surface and returns along the axis with each cell center near the free surface. The flow cells are



symmetric about the mid-height between two interfaces and do not mix each other, this is due to the
symmeitric thermal condition of ambient temperature distribution. This typical flow configuration is
well known from experimental work and other numerical simulations. The temperature field is, of
course, the conduction solution alone, which is not coupled with the velocity field. To check this
analytical solution, we first computed an effectively linear flow by taking a small temperature difference
AT=0.01K, corresponding to a Marangoni number Ma=16, for Ha=Gr=0. Identical results were obtained
for the temperature field. Very good agreement was obtained for the velocity field and the pressure.
Comparison of the analytical and numerical results for A=1, 2L=2cm, Sk=2 and Gr=0 at Ma <300 is
given in fig4. For Ma>30, The relative difference of the maximum axial velocity between the
analytical and numerical results is more than 25%, but the temperature fields are still conduction
dominant in a wide range of Marangoni numbers as shown in fig.4(b), Therefore, for Ma>30, this
analytical solution no longer represents quantitatively the flow fields, numerical simulations are needed.

i~

Fig.3 Analytical solution for the stream function(right half) and temperature contours(left half),
Vinax=8-89x10-3, y1in=-8.89x103, T1,05=0.575, Tppjn=0. The contours in these figures, as in

all the contour plots presented in this paper, are equally spaced between the maximum and the -
minimum values of the variable concerned
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Fig.4 Comparison of analytical and numerical results for A=1, Bo=Gr=0, Ca=1.0x10"3 versus

Marangoni numbers, (a) Maximum temperatures(above the melting point) on the free surface; (b)
Maximum velocities on the surface



Since the zone is subjected to the heat flux condition and the melt gains the energy through heat
exchange from the heater, influence of Stark number on the temperature field is obviously strong, its
influence on the velocity field is also expected to be the same as on the temperature field, since only the
surface tension which is connected directly with the surface temperature distribution is the driving force
of flow. In fig.5 (a) and (b) the temperature distributions and the axial velocities along the surface are
presented for different Stark numbers. B '
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Fig.5 Influence of Stark number on (a) dimensionless surface temperature distributions; (b)
dimensionless axial velocities along the surface, for A=1
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Fig.6 Surface deviation F(z) from its original cylindrical shape, for Azi, Sk=2, (a) Bo=0, F(z) is
divided by capillary numbers; (b) Ca=1.0x10-3, F(z) is divided by Bond numbers

The surface shape based on the pressure distribution obtained from flat surface calculations is presentedin
fig.6, in which F(z) is the surface deviation from its original cylindrical position, defined as F(z)=¢(z)-
1/A. In the absence of gravity, i.e. Bo=0, the surface is convex(curved inward) in the center of the
zone(hot region) and is concave(curved outward) near the endwalls(cold region), as shown in fig.6(a).
This shape is a typical free surface deformation generated by the surface tension. The amplitude of the -



deviation F(z) linearly increases with the capillary force characterized by the Capillary number, with
maximun amplitade (F(z)/Ca)max=1.52x10"2, and minimun amplitude (F(z)/Ca)min=-2.01x10-2. In
The presence of gravity force, the surface shape is determined essentially by the action of hydrostatic
pressure, while influence of capillary force is relatively small. The surface shape is shown in fig.6(b),
with maximun amplitude (F(z)/Bo)max=6.41x10-2 (in the lower part), and minimun amplitude
(F(z)/Bo)min=-6.41x10-2(in the upper part).

Numerical Results

Numerical simulation has been performed in the following parameter range: 0<Ma<300, 10-4<Ca<0.3,

0< Bo<0.8, Gr<104, while the values of A=1, Sk=2 are fixed in the calculations. Most of the
calculations are for Si melt with Pr=0.023.

The flow patterns and the temperarure field have to some extent the same configuration as obtained by
anlytical solution, but it should be pointed out that as Ma increases, convective effects cause higher
temperature gradients on the surface near the endwalls(cold region), hence creating sharp velocity
gradients there. These sharp temperature and velocity gradients on the cold corner regions require a very
fine mesh to accurate resolution. Another feature of thermocapillary flow at high Marangoni number is
the appearence of secondary vortex near the axis on the cold endwalls and on the mid-plane. As Ma>160,
there appear a counter circulating secondary flow near the axis and the endwalls, When Ma=300, two
counter circulating secondary flow near the axis and endwalls and mid-plane were found. The maximum
of axial velocity on the axis is 10% order of that on the free surface.

In the calculations the emphasis is paid to the surface deformation and its effect on the velocity field,
therefore the results obtained numerically concerning the computation of surface shape will be presented
hereafter.

Calculated shapes of free surface generated by capillary force for Marangoni numbers Ma=1, 5, 10 100
and 200 are presented in fig.7(a) and (b), revealing different free surface deformations when Marangoni
number is varied. The shapes are symmetric about the mid-plane of the zone, and are found to change
from convex to concave when Ma is greater than 5. For Ma<2 the flow is effectively linear, the same
shape as the analytical result presented in fig.6(a) is obtained. As Ma increases, the surface in the center
of zone moves towards outside with maximum deformation there. The maximum amplitude of deviation
F(z)max is found to linearly increas with Capillary number for a given Marangoni number as shown in
fig.8(a). The effect of the surface deformation on the velocity field is presented in fig.8(b) in which the
maximum velocity in the surface(in the bulk, too) (Vmax)4 obtained for deformable surface is divided by
the value (Vmax)p obtained for non-deformable surface. For Ma=300,Ca=10-2, the maximum
dimensionless surface deformation is of order of 10-3, the relative error between (Vmax)q and (Vmax)p
is about 5%, while for Ma=300, Ca=0.3, the surface deformation is significant, causing a relative error
of 17% between (Vmax)q and (Vmax)p. In fig.10(a) we present a typical flow configuration and
temperature field with the free surface deformation for a relative high Marangoni number Ma=300 and a
high Capillary number Ca=0.3. The influence of gravity force on the surface deformation is presented in
fig.9 for Ma=50, 100 and 200, when Ma>300 and Bo>0.8, the solution broke down and non-converged
solution was obtained. The maximum surface deformation has been found to be a linear increasing
function of Bond number. The flow field and the temperature field in the presence of gravity with
Gr=104, and Bo=0.8 for Ma=200,Ca=10-3, is presented in fig.10(b). Notice that the flow is nearly
symmetrical about the mid-plane, although action of buoyancy force in the zone is non-symmetric. This

is true for low Prandtl number melts such as Si with Pr=0.023. For fluids with relative high Prandtl
number, however, this flow configuration would be changed. In fig.11 we present the flow patterns and
the corresponding temperature fields for two different Prandtl numbers, Pr=0.068 in fig.11(a), and Pr=1
in fig.11(b), respectively.
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Thermocapillary Convection with Magnetic Fields

Application of a constant magnetic field is used to reduce the convection intensity in the melt zone.
This technique has been successfully used in a ground-based technology for manufacturing some types
of highly perfect semiconductors and was first carried out on board automatic satellite Cosmos-1841 in
1987 /15/. The effect of magnetic field on the thermocapillary convection is characterized by the
Hartmann number, as defined in Tab.1, due to the magnetic induction B.

Fig.12 shows the flow patterns and temperature fields for various Hartmann numbers at Ma=300,
Pr=0.023. The total kinetic energy of the radial velocity field for various Marangoni numbers divided by
this energy for Ha=0 is presented in fig.13 . One sces that convection intensity is much more reduced
and the temperature ficlds are less distorted when Hartmann number is increased. For Ha>14, the
temperature field becomes conduction dominant, the secondary vortex which appeared in fig.12(a) and (b)
has disappeared. There exist only two counter circulating cells in the upper and the lower half zone,
respectively, and they are concentrated into a small region near the free surface and the cell centers move
lowards the endwalls.
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The effect of magnetic field on the thermocapillary convction in a floating zone configuration has been
numerically studied by Baumgartl et al. /16/ for GaAs melt and Si melt, and by Senchenkov /15/ for Ge
melt. The present results are consistent with their computed results. Following the work of

Senchenkov, magnetic field appreciably influences the convection if Ha > (%3)”3. This criterion is

obtained by estimating a viscous to magnetic forces ratio for a boundary layer at Ha>>1. In our case of
Si melt with Pr=0.023, if Ma is chosen equal to 300, then an appreciable magnetic field would be Ha >
24, which corresponds to a magnetic induction B larger than 0.07 Tesla.

CONCLUSION

We studied theroretically and numerically the thermocapillary convection in a floating zone
configuration with deformable liquid-gas interface. A linear(Stokes-type) problem and conduction
problem were first solved to obtain a closed form solution for the velocity field and the temperature
field. The results were compared with the numerical results obtained by solving the Navier-Stokes and
energy equations with a finite difference method, leading to conclude that this analytical solution is valid
in the range of Marangoni number below 30, but the temperature solutions are valid in a wide range of
Marangoni numbers, typically for Ma<300(for small Pr).

The free surface deformation is numerically computed for a wide range of parameters, such as Marangoni
number, Capillary number and Bond number, the shape has been found to change from convex to
concave when Ma>2, the amplitude of deformation linearly increases respectively with Capillary
number and Bond number. In practice the value of Capillary number is order of 10-3, the simplification
regarding the surface as flat shape would cause a relative error of 5%, but this has been verified only for
steady axisymmetric flow in the present computational model, for time-dependent flow the influence of
surface deformation on the onset of oscillations has not been suifficiently studied.

The importance of oscillatory thermocapillary convection for crystal growth from a melt has been
known for a long time. However, the critical values, such as Marangoni number, aspect ratio, under
which the steady thermocapillary convection becomes time-dependent has not yet been accurately
determined by numerical studies. Experimental studies of low Prandt! number melts are now lacking and
more activity in this area is essential. A detailed work of locating the critical values for thermocapillary
convection in present configuration is being conducted. We use the bifurcation analysis combined with
numerical simulation of steady-state flows which is presented in this paper. This method has been
proved to be an efficient tool /17/.

Aknowledgment

This work is being supported by the Centre National d'Etudes Spatiales(Division Matériaux et
Microgravité). The computations were carried out on IBM 3090-VF of CNUSC.

REFERENCES

@]

h-H. Chun and W. Wuest, Acta Astron. 6, 1073 (1979).

- Schwabe and A. Scharmann, J. Cryst. Growth 52, 435 (1981).

. Preisser, D. Schwabe and A. Scharmann, J, Fluid Mech. 126, 545 (1983).

. Velten, D. Schwabe and A. Scharmann, Phys. Fluids, to appear.

. Kamotani, S. Ostrach and M. Vargas, J. Cryst. Growth 66, 83 (1984).

.E. Chang and W .R. Wilcox, J. Cryst. Growth 28, 8 (1975).

. Kobayashi, J. Cryst. Growth 66, 63 (1984).

-W. Fowlis and G.O. Roberts, J. Cryst. Growth 74, 301 (1986).

9. N.D. Kazarinoff and J.S. Wilkowski, Phys. Fluids, to appear.

10. R. Rupp, G. Miiller and G. Neumann, J. Cryst. Growth 97, 34 (1989).

11.'Y, Shen, G.P. Neitzel, D.F. Jankowski and H.D. Mittelmann, submitted to J. Fluid Mech.” -
12. K.H. Winters, Int. J. Num. Meth. Engng. 25,401 (1988).

13.1. Da-Riva and E.A. Pereira, Acta Astron. Vol. 9, No.4, 217 (1982).

14. D.D. Joseph, L.D. Sturges and W.H. Warner, Arch. Rational Mech. Anal. 78(3), 223 (1982).
15. A.S. Senchenkov, private communication (1990).

16. J. Baumgartl, M. Gewald, R. Rupp, J. Stierlen and G. Miiller, ESA SP-259, 47 (1990).

17. B. Roux, G. de Vahl Davis, M. Deville, R.L. Sani and K.H. Winters, in: Notes on Numerical
Fluids Mechanics, Vieweg ed., Vol.27, 285 (1989).

myY

O <

Z

1.
2.
3.
4.
5.
6.
7.
8.

B3

12



