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Summary
From accurate measurements of bore profiles of various reed and brass instruments, a common and
simplified geometrical model made of three parts totalizing seven geometrical parameters is proposed.
From this geometry, it is shown that a good approximation of the input impedance can be obtained
by a combination of two lumped elements gathered in series and parallel with a distributed element.
Each element is approximated and discretized in order to end up with costless digital filters represent-
ing the impedance impulse response. These filters require the order of twenty multiplication/additions
per sample and their coefficients are analytically expressed as functions of the geometrical param-
eters. The choice of the geometry and the time discretization schemes are validated both through
comparison with continuous models and through the estimation of the geometrical parameters via a
global optimization procedure, using measured input impedance curves.

PACS no. 43.75.Ef, 43.75.Pq

1. Introduction

This paper aims at providing simple, yet accurate,
digital models of the input impedances of conical
woodwinds and brass instruments, for use in the con-
text of real-time sound synthesis.

Many studies have been devoted to the modeling of
acoustic bores. In the context of the direct problem,
consisting in calculating the input impedance from a
measured geometry, Caussé et al. [5], have shown a
very good accordance between models and measure-
ments in the case of brasses. In the context of the
inverse problem, consisting in reconstructing a bore
profile [1, 18] from measurement, many methods have
been developped, some of them leading to commercial
devices citekausel.

The underlying physical model of the instrument
bore calls the use of transfer matrices represent-
ing the geometrical assembly constituting the in-
strument. Unfortunately, for many elements citebe-
nade1,scavone1,kergomard1, the conversion of the
models [20] or the measurements [8] in terms of stable
and costless digital filters usable for real-time sound
synthesis is not straightforward. Most attempts, based
on the wave variables representations [19, 21] have
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been devoted to the accurate digital modeling of spe-
cific elements and their assembly rather than on sim-
plified models of the whole bore.

The scope of this paper is to focus on the synthe-
sis rather than on the simulation point of view. Some
specific requirements of the synthesis approach can be
summarized as follows: The resonator of the instru-
ment is just one part of the whole functioning model
which also includes flow models and excitor-dynamics
models (see e.g. [17] ). In this context, the success
of a synthesis process is mostly based on a subjec-
tive judgement involving both playability and timbre
naturalness. Finally, from a digital instrument design
point of view, the simplicity of the model and its small
number of degrees of freedom are important features
which prevent the loss of generality and facilitates its
handling and timbre extrapolation.

This paper investigates both the direct and inverse
problems by providing digital impedance models fully
defined from coarse and flexible geometries and by
validating the use of these geometries and the dis-
cretization schemes from the analysis and synthesis
of measured impedances.

The paper is organized as follows: Section 2 briefly
presents the fine geometries of three saxophones and
one trumpet and how they can be gathered into more
global elements. In section 3, simplified digital models
for conical bores and Bessel horns are presented and
an assembly of the main bore and the mouthpiece,
common to saxophones and brasses is proposed. Sec-
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Figure 1. From top to bottom: bore profiles of a tenor,
an alto and a soprano saxophone. Vertical axis: radius, in
m. Horizontal axis: length, in m. Right panels: blow-up of
left panels on the first 0.2m. The stars correspond to the
measured values (after Nederveen).

tion 4 deals with the estimation of the model param-
eters from measured impedance curves.

2. Simplified geometrical models

In this section, from geometrical measurements made
by Nederveen [13] and Caussé, a simplified geomet-
rical model of saxophone-like and brass-like instru-
ments is presented.

2.1. Saxophone model

The left panels of figure 1 show in dotted lines, from
top to bottom, the measured radii of tenor, alto, and
soprano saxophone. The right panels show a blow
up on the first 0.2m of each bore. For both panels,
straight solid lines correspond to a hand-made sec-
tionning of the whole bore into three parts. The first
part represents the mouthpiece and will be considered
as an acoustic compliance. The second part, called the
backbore along this paper, represents the part of the
main bore surrounded by a cork on which the mouth-
piece is plugged. It is a cone of small length, with a top
angle smaller than that of the main bore. The third
and main part of the bore is made of a long conical
bore. The short bell ending the conical bore will be
ignored, as well as the tonehole network.

2.2. Trumpet model

The left panel of figure 2 shows in dotted lines, the
measured radii of a trumpet with respect to the dis-
tance from the bore input. The right panel shows a
blow up of the measured values on the first 0.2m.
The main bore is assumed to be a cylinder prolon-
gated by a Bessel horn. The mouthpiece is made of
a short divergent bore, the input radius of which is
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Figure 2. Bore profile of a trumpet. Vertical axis: radius,
in m. Horizontal axis: length, in m. Right panel: blow-up
of left panel on the first 0.2m. The stars correspond to the
measured values (after Caussé).

much smaller than that of the cylinder, and a conver-
gent bore whose input radius is much larger than that
of the cylinder (see e. g. [15] ).

3. Digital impedance models

3.1. Main bore models

Continuous input impedance models and their digital
versions are presented in the case of conical bores and
Bessel horns.

3.1.1. Saxophone bore
Continuous model: The main bore is assumed to
be conical with input radius R2, top angle θ2 and
whose effective length L2 corresponds to that of the
first open tonehole. Its input impedance denoted Z2

is classically written:

Z2 = Zc2

1
1

j tan(kL2)
+ 1

jkxe

(1)

where xe = R2/ sin(θ2/2) is the length of the missing
part of the cone and Zc2 = ρc/(πR2

2) is the character-
istic impedance. The wavenumber k = k(ω) includes
viscothermal losses [14].

For various lengths, top angles and input radii, us-
ing stepped cone models made of an association of
one thousand small cylinders, it has been determined
that the radius R used to compute the losses could be
taken as the radius corresponding to the average losses
while the losses in the term 1/(jkxe) could be ignored:
L2
R =

∫ L2+xe

xe

dx
R(x) which gives, since R(x) = R2x/xe:

R =
R2

μ2

L2

xe ln
(
1 + L2

xe

) (2)

where the control parameter μ2 is used as an addi-
tional mean to adjust the losses.

Discrete model: The digital model of the main
conical bore is built according to [9]. The losses are
modelled with a first order low-pass filter. If Fe is the
sampling rate and z = exp(jω/Fe), exp(−2jkL2) is
approximated by the filter: b0

1−a1z−1 z−D and the ele-
ment jkxe is discretized with the bilinear transforma-
tion: jkxe � 2Fe(1 − z−1)/(1 + z−1)xe/c.
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Figure 3. Geometry of the Bessel horn.

3.1.2. Brass bore
It is assumed that the radius of the horn part of the
bore is modelled by: R(x) = R2x

ν
e/xν and that this

bore is prolongated by a cylindrical bore of length lc.
The discussion is limited to the case ν ∈ [−1, 1]. As
depicted in figure 3, xe and xs denote the coordinates
of the input and the output, respectively, and xa = 0
is the asymptote. The input radius R(xe) is denoted
R2.

Continuous model: In the divergent case (ν >
0), it is assumed that xs is close to the asymptote
xa = 0. If kxe is large, by ignoring the radiation
impedance and denoting Zc = ρc/(πR2

2) the charac-
teristic impedance, the input impedance can be writ-
ten as [6]:

Ze = jZc tan
(
k(xe + lc) − ν

π

2

)
(3)

This shows that for positive frequencies, the input
impedance is a translated version of −νc/(4le) of the
input impedance of a cylindrical bore with length
le = lc + xe.

As it has been done for the cone case, frequency-
dependent losses are taken into account through a
modification of the input radius of the horn part of
the bore, yielding:

R =
xe − xs∫ xs

xe

dx
R(x)

=
R2

μ2
(1 + ν) (4)

Discrete model for ν < 0: It is worth noting
that Ze is the impedance of a cylindrical bore element
with length le terminated at xs in an element with a
purely imaginary impedance: Zt = jZc tan(−νπ/2).
Since for positive values of ν, Zt is negative and the
impulse response associated to Ze contains increasing
exponentials [20], only the case ν < 0 can insure a
passive discrete system and this is why the discrete
time model is built first from the case ν < 0.

For digital efficiency, it is proposed to terminate
a cylinder of length L in a lumped element, the
impedance of which is a derivator and the associated
reflection coefficient is an all-pass filter. At low fre-
quency, this termination acts as a length increase, the
effect of which is to decrease the frequencies of the
first peaks, therefore corresponding to the case ν < 0.

Let C and P denote the dimensionless impedances
of the cylinder and the termination, respectively:

C =
1 − exp(−2jkL)
1 + exp(−2jkL)

, P = rpjω (5)

Figure 4. Modulus of Ze in dashed-dotted line and of Z̃b

in solid line. Bore parameters: ν = 0.55, xe = 0.5m, xs =
0.01m, R2 = 7mm.

The total impedance is:

Z̃e = Zc
P + C

1 + PC
(6)

In order to approximate Ze with Z̃e, analytic ex-
pressions of rp and L as functions of ν and le can be
obtained using the approximation: arctan(x) � π

2
x

1+x
assuming frequency independant losses. The values of
the parameters are determined so that the frequency
of two selected peaks are the same for the continuous
and the digital models.

Discrete model for ν > 0: The digital impedance
model corresponding to the case ν > 0 is built by
noticing that the impedance of a Bessel horn with ν =
1 is the admittance of a cylinder (or the impedance
of a closed cylinder, hence exhibiting a peak at zero
frequency) to which is substracted a low frequency ap-
proximation of this peak. Indeed, the input impedance
is exactly given by:

Ze =
1

j tan(kle)
− 1

jkle
(7)

This suggests to start from the admittance asso-
ciated to the impedance model proposed for ν < 0
(equation (6)) as the dimensionless impedance for
ν > 0 and to remove its zero frequency peak.

The peak at zero frequency is removed using a first
order Taylor expansion of Z̃e at ω = 0 yielding a total
impedance, denoted Z̃b as:

Z̃b =
1
Z̃e

− 1
d0 + d1D (8)

where D is the bilinear transform.
The coefficients d0 and d1 are determined analyti-

cally by considering the value of the impedance at zero
frequency, that has to be real and positive and the
derivative of the associated reflection function, that
has to be zero in order to ensure continuity. The peak
matching process used previously leads again to ana-
lytical solutions for rp and L.

Figure 4 shows, for ν = 0.55, xe = 0.5m, xs =
0.01m, R2 = 7mm and for frequency independent
losses, the modulus of Ze and Z̃b. The frequencies used
for the matching correspond to those of the second
and sixth impedance peaks.
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3.2. Backbore and mouthpiece models

The backbore is modelled by a small conical element
of length L1 with input radius R1 and top angle θ1.
Its input impedance will be denoted Z1 and is:

Z1 = Zc1

1
1

j tan(kL1)
+ 1

jkxee

(9)

where xee = R1/ sin(θ1/2) is the length of the miss-
ing cone and Zc1 = ρc/(πR2

1) is the characteris-
tic impedance. Using a low frequency approximation
(j tan(kL1) � jkL1) and assuming frequency inde-
pendent losses finaly leads to:

Z1 = Zc1

xee

L1 + xee
(G+jω

L1

c
(1−G)) = Zc1C1(10)

which shows that the conicity of the bore is carried
by the coefficient: xee/(L1 + xee).

The mouthpiece is also modelled by a lossless short
cylindrical element with length L0 and radius R0 with
input impedance:

Z0 = Zc0jkL0 = Zc0C0 (11)

The derivations involved in Z0 and Z1 are dis-
cretized with the bilinear transform. The losses con-
tained in Z1 are taken into account by considering the
value of G for a given frequency, chosen as the reso-
nance frequency ωh of the whole mouthpiece, consti-
tuting a Helmholtz resonator. As it has been done for
the main bores, for the sake of flexibility of the model,
an additional control parameter μ1 is used in order to
allow a better matching of real losses in the backbore.

3.3. Full bore model

In what follows, S2 denotes the dimensionless digital
impedance corresponding either to the conical bore or
to the Bessel horn (Eqs. (1) and (8)).

Since Zc1 > Zc2 , the input impedance of the combi-
nation backbore/main bore simplifies as a serial com-
bination of elements. In the same way, the total input
impedance of the whole bore simplifies as a parallel
combination of elements since Zc0 << Zc1 . Hence, the
final model using dimensionless variables is:

Ze =
1

Zc2

1
1

Zc2S2+Zc1C1
+ C0

Zc0

(12)

Equation (12) shows that the combination mouth-
piece/backbore acts as a Helmholtz resonator with
a cavity volume V0 such that C0/Zc0 = jωV0/(ρc2),
terminated in the main bore. As a convention, the
cavity of the Helmholtz resonator will be considered
to be hemispherical, which allows to parametrize it
with a unique radius R0, yielding: C0

Zc0
= jω

2πR3
0

3ρc2 .
For the saxophone case, up to the element of

impedance Z1, which mainly acts as a length correc-
tion at low frequencies, this model is similar to that

discussed by Dalmont et al. [7]. It is also a simpli-
fied version of that discussed in [3] for the oboe case,
where it is shown that the role of the backbore of
impedance Z1 is to improve the inharmonicity correc-
tion provided by the volume of impedance Z0.

For direct use of a synthesis scheme such as that
already presented by the same authors in [9], Eq. (12)
is converted into a difference equation expressing at
each sample n the acoustic pressure pe(n) as func-
tion of ue(n) and the past values of pe and ue. Each
filter coefficient is expressed analytically with respect
to the geometric parameters. The computation cost of
the whole digital impedance model is 21 multiplica-
tions/additions per signal sample for the brass model
and 17 for the saxophone model.

3.4. Examples

The top panel of figure 5 shows, for the tenor saxo-
phone, the impedances obtained with the continuous
and digital models. Geometrical values are obtained
with the profile shown in figure 1 and are: L2 = 1.2m,
R2 = 7.35mm, θ2 = 3.17, L1 = 56mm, R1 = 6.5mm,
θ1 = 1.74. The volume V0 corresponds exactly to
the missing part of the main conical bore, yielding
Rb = 19.3mm. The differences between the contin-
uous and the discrete models are not noticeable for
both the amplitudes and the frequencies (for exam-
ple, the frequency differences for the first and fifth
peak are respectively 0.5Hz and 2Hz).

The bottom panel shows the same quantities for
the trumpet. Geometrical values are obtained from
the profile shown in figure 2 and are: L2 = 1.28m,
R2 = 5mm, ν = 0.5, L1 = 72mm, R1 = 1.85mm,
θ1 = 3.64. The volume V0 is estimated by measuring
the cup volume, yielding Rb = 9.1mm. In the continu-
ous model, the main bore is splitted into a cylindrical
bore (L = 0.62m) and a Bessel horn (L = 0.66m).
The most noticeable difference between the continu-
ous and the discrete models lies in the frequency and
the height of the first impedance peak. The frequency
difference is caused by the choice of the frequencies
leading to the solution for rp and L, corresponding
here to the second and sixth impedance peaks. For
other significant peaks, the largest frequency differ-
ence is obtained for the fourth peak and is 4Hz.

4. Optimization of geometrical param-
eters

The aim of the optimization process is to provide the
geometrical parameters involed in Eq. (12) from a
measured impedance spectrum. The global optimiza-
tion method used is an evolution strategy with covari-
ance matrix adaptation (CMA-ES) [10], distributed
under GNU Public Licence [22]. The optimization
process consists in finding the set of parameters:
• R2, L2, μ2, θ2 or ν, characterizing the main bore.
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Figure 5. Top panel: Impedance modulus of a tenor saxo-
phone; Bottom panel: Impedance modulus of a trumpet.
Dotted line (red): continuous model. Solid line (blue): Dig-
ital model.

• R1, L1, μ1, R0, characterizing the backbore and
mouthpiece.

According to Eq. (10), the conicity θ1 of the back-
bore is taken into account as a modification of Zc1 . In
addition to these parameters, since the dimensionless
impedance model is normalized with respect to the ra-
dius of the main bore, an impedance gain Gz is used
to ensure a proper scaling with respect to the mea-
surement. The optimization is constrained: the possi-
ble value of each geometrical parameter is bounded.
These constraints insure that the global minimum of
the cost function leading to geometrically relevant pa-
rameters is reached and that the approximations lead-
ing to Eq. 12 are satisfied.

The cost function has been chosen as:

Λ =
(∫ ωM

ωm

||Ze(ω)|p − |Zmes(ω)|p| dω

)1/p

(13)

Zmes(ω) is the measured impedance, p is a real num-
ber (p = 3 in the examples). Its role is to emphasize
the matching of the heights and frequencies of the
highest impedance peaks. The frequencies ωm and ωM

correspond either to the frequency range of the mea-
surements or to a user-defined frequency bandwidth.
Working on the modulus of the impedance rather than
on the complete impedance allows to get rid of possi-
ble phase errors during the measurements.

Figure 6 shows the measured impedance of an alto
saxophone and the digital impedance leading to the
global minimum of the cost function. The minimi-
sation has been performed on the whole frequency
range available in the measure [20Hz − 1600Hz].
The estimated geometrical parameters are: Gz = 1.5,
L2 = 0.97m, R2 = 6.61mm, μ2 = 2.8, θ2 = 3.5,
L1 = 40mm, R1 = 5.52mm, μ1 = 1, R0 = 17.7mm.
The Helmholtz resonance frequency is 770Hz and
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Figure 6. Measured (red dotted lines) alto saxophone
impedance and digital model (blue solid line) leading to
the minimum of the cost function.

is close to the “break frequency” related to the cut-
off frequency of the tonehole lattice measured in [4]
(837Hz). The maximum amplitude and frequency er-
rors correspond to the first peak and are ΔA/A = 25%
and Δf/f = 1.5%, respectively. This is natural since
the chosen value of p emphasizes the accuracy of
the estimation on the higher peaks. For the other
peaks whose frequencies are below 1000Hz, the av-
erage Δf/f is 0.13% while the average ΔA/A is 11%.

Figure 7 shows the measured impedance of a trum-
pet and the impedance yealding the global mininum
of the cost function. The minimisation has been per-
formed on the frequency range [140Hz−1300Hz] and
ignores the first impedance peak since it is not used
during the play. The estimated geometrical parame-
ters are: Gz = 3.2, L2 = 1.5m, R2 = 5.8mm, μ2 = 2.6,
ν = 0.76, L1 = 7.1mm, R1 = 1.51mm, μ1 = 0.4,
R0 = 12.8mm. The Helmholtz resonance frequency
is 815Hz. If the first peak is ignored, the maximum
amplitude and frequency errors correspond to the sec-
ond peak and are respectively ΔA/A = 25% and
Δf/f = 0.9%. For the other peaks whose frequencies
are below 1000Hz, the average Δf/f is 0.2% while the
average ΔA/A is 5%. This last value is smaller than
in the saxophone case since all the peaks roughly have
the same heights.

It can be noticed that, though the frequency and
heights of the impedance peaks have been favored in
the estimations, the values of the frequencies and am-
plitudes of the admittance peaks are also accurately
reproduced below 1000Hz for both the trumpet and
the saxophone. It has been checked that the differ-
ence above 1000Hz is due to the approximation of the
backbore and the mouthpiece with lumped elements.
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Figure 7. Measured (red dotted lines) trumpet impedance
and digital model (blue solid line) leading to the minimum
of the cost function.

5. Conclusion

Flexible and numerically efficient digital impedance
models can be found using the decomposition of bores
of common instruments into three sections. Compar-
isons with continuous models show a very good accor-
dance, even though drastic approximations to reduce
the computation cost are made. The parameters of
the digital models obtained from impedance measure-
ments lead to a plausible intrument geometry and this
validates the approximations made from the synthesis
point of view.

Sound examples are available at:
http://www.lma.cnrs-mrs.fr/∼ guillemain/index.html
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