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ABSTRACT  
 
The question of the formants in saxophone sounds involves several paradoxes. The analogy 
with "cylindrical saxophones", i.e. cylindrical tubes excited at a given proportion of the length, is 
classical and can be extended to the bowed string. This analogy leads to an approximation of 
the spectrum of the pressure inside the mouthpiece valid only at low frequencies. Nevertheless 
it gives good results even at higher frequency, this paradox being now understood. The 
spectrum of the external pressure contains formants which are different from that of the internal 
spectrum. The question of what is the cause of the formants remains open.  

1. Introduction  
 
A formant (resp. an anti-formant) can be defined as a reinforced (resp. attenuated) frequency 
band whatever the played note. It is usually assumed that it is an important characteristic of the 
tone colour, especially for conical reed instruments. Formants need to be distinguished from 
other timbre characteristics, such as the weakness of harmonics of a given rank (e.g. the even 
harmonics in the clarinet sound). If formants (or anti-formants) exist, by definition their 
frequencies cannot depend on the total equivalent length of the tube for a given note, but either 
on other geometrical parameters (input radius, apex angle of the truncated cone, dimensions of 
the mouthpiece) or excitation parameters. The present paper is devoted to the study of the 
dependence of formant frequencies to the geometrical parameters.  
 
The statement of the problem is ancient. As examples we can cite the works by Smith and 
Mercer (1974) or Benade (1980), who wrote: I should comment here that much of the formant 
structure traditionally attributed to formant spectra (to the extent that the               
measurements are correct  at all) is in fact due to the rise and fall of the spectrum          
envelope  produced by the beating reed.  We  recall  that  the  strict  usage of the word formant 
refers to the  enhancement of certain portions  of a  sound  spectrum  that  is             
associated  with   more   or   less   invariable   resonance   or   radiation   maxima   in   the   air
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column. It is worthwhile to look forward here to one of the conclusions we will reach in the course of 
this lecture. There is in fact almost no simple formant behaviour to be recognized in the sound 
production of wind instruments. Some studies on the psycho-acoustical aspects can be found in 
Gridley (1987) and Nykänen et al (2009). The existence of characteristic frequencies in the spectrum 
of conical reed instruments is closely related to the existence of characteristic times. For bassoon 
sounds, Gokhstein (1979) showed both experimentally and theoretically that the duration of closure of 
the reed is independent of the played note, i.e. of the equivalent length of the resonator. This duration 
is related to the round trip of a wave over a length equal to this of the missing part of the cone, 

denoted in what follows 1x  (see Fig. 1).  

 

 
 
Figure 1. A truncated cone (on the left) and the equivalent “cylindrical saxophone'” (on the right). For 
the latter, the mouthpiece is placed on the side of the cylinder. 

 
Figure 2. Periodic signal of barytone saxophone, and the approximation by a rectangle signal. The 
signal is the internal pressure for two notes, which are the lowest and the highest of the first register. 
The duration of the of negative pressure state, which corresponds to the reed beating, is common to 
the two notes. 
 

This paper deals with this result, and its aim is to discuss some paradoxes and open questions. It is 
limited to the first register of these instruments, and simplifies the effect of toneholes in a limitation of 
the effective length of the truncated cone. 
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2. Analogy and paradoxes 

Fig. 2 shows the measured signal of internal pressure for two notes of a baritone saxophone, 

corresponding to two values of the equivalent length l . The measurement is done with a microphone 
inside the mouthpiece. If the shape is caricatured as a rectangle signal, the idea is to consider that the 
saxophone is equivalent to a bowed string instrument. The episode of negative pressure corresponds 

to the beating reed, and its duration does not depend on the played note, i.e. their equivalent length l
. The analogy between the sound pressure in the mouthpiece of conical reed instruments and the 
velocity of the violin string was proposed by Dalmont et al (2000), and Olivier et al (2004), showing 
that it should be possible to replace the conical instrument by what they called a “cylindrical 

saxophone” (see Fig.1), i.e. a cylinder of length 1x+l  open at the two ends excited at the distance 

1x  from the left end. The idealized pressure signal looks like the well known Helmholtz motion, which 

is an idealization of the velocity of the violin bowed string.  
 
The explanation of this analogy is based upon the assumption that the length of the missing part of 
the cone is small compared to the wavelength. Thus the input admittance of the truncated cone 
(without mouthpiece) can be approximated as:  
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ck /w=  is the wavenumber, where fpw 2= is the angular frequency, S1 is the input cross section 

area of the tube, c the speed of sound and ρ the air density. We believe that the basis of this analogy 
was given first by Irons (1931), who concluded that the first resonance frequency is given by 

Lcf 2/1 = where 1xL += l . This expression is a first approximation of the playing frequency. His 

explanation was completed by Benade (1959) and Nederveen (1969), with the result that the analogy 
is improved when the mouthpiece has a volume equal to that of the missing part of the truncated 
cone. 
Similarly to what happens for the violin, the admittance given by Eq. (2) leads to several solutions for 
the self-sustained oscillation. One of these solutions is called the Helmholtz motion, which is a 
rectangle signal (when losses are ignored). This analogy leads to useful conclusion concerning 
important features of the sound production (regime of oscillation, amplitude), but accurate insight of 
the tone colour cannot be expected. A first evidence is the triangular shape during the closure state 
(see Fig. 2), differing from the rectangular shape of the pure Helmholtz motion. Nevertheless spectra 
of the internal pressure (i.e. the pressure in the mouthpiece) of saxophones exhibit anti-formants, at 

frequencies roughly corresponding to the harmonics of the fundamental frequency 12/ xc . On the one 

hand it is an argument in favour of the analogy with the Helmholtz motion, while on the other hand this 

result is paradoxical, because if the frequency corresponds to a round trip over length 1x , the 

wavelength is by definition of the order of magnitude of this length, thus the analogy fails. This will be 
discussed hereafter. 
Because of the necessity to provide a mouthpiece, a perfect cylindrical saxophone is difficult to be 
built. A simple reasoning is the following: a truncated cone has a positive inharmonicity  (because the 
series of resonances is intermediate between 1, 2, 3, etc and 1, 3, 5, etc.). As explained above, the 
mouthpiece partly corrects this inharmonicity by creating negative inharmonicity. Therefore for a 
cylindrical saxophone, the addition of the mouthpiece creates an inharmonicity whose sign is inverse  
of that of a conical instrument. However it was shown by Dalmont et al (2000) that a stepped cone 
with appropriate dimensions is equivalent to a perfect cylindrical saxophone, and with this device 
there is no problem with the mouthpiece. This instrument seems to be very similar to a true 
saxophone, when looking at the signal shape for the internal pressure. In particular, the episode of 
negative pressure has a similar triangular shape (and is not a constant, as for the pure Helmholtz 
motion). This is also paradoxical, because the input impedance is very close to that defined by Eq. 

1211



(2).  
Recent numerical simulation of the sound production by a reed conical instrument (Kergomard et al 
2012) showed that this triangular shape is obtained with the simplest model without losses and reed 
dynamic. Moreover it is obtained with a discontinuity of the derivative of the nonlinear function relating 
the pressure difference and the flow rate, i.e. with a brutal beating. Thus the triangular shape is not 
due to a smooth closure of the mouthpiece by the reed.  
 
 

3. Theoretical results for the ideal case of a cylindrical saxophone: Internal and external 
pressure signals. 

In this section, we consider the simplest approximation of a conical instrument, i.e. a perfect 
cylindrical saxophone, and the particular solution of the Helmholtz motion. We will obtain little 
information about the spectrum, because we ignore the losses. But some behaviour can be explained 
thanks to this simplified model. The great advantage is that the shape of the internal pressure signal is 

a priori known. We consider a periodic solution of period cLT /2= . The pressure and the flow rate 

have the frequencies Lncfn 2/= as only possible components, and they satisfy 0sin =kL (this 

can include the dc component).  

The internal pressure signal )(tp  has the following spectrum: 
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Lp  is the pressure value during the longer episode and its value is related to the excitation 

parameters. )/( 11 xx += lb  is the ratio of the lengths on the two sides of the reed, using the 

classical notation for the bowed string.  The flow rate )(tu  at the input is constant. As it is well 

known for a bowed string, if b  is rational, the quantity nXsin  can vanish, and some harmonics are 

missing (the harmonics for which b/mn = , m  and n  being integers. If b is irrational, there are 

anti-formants for frequencies with nXsin  close to 0. The frequency of the nth harmonic is given by: 
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3.1 Transfer function from input to extremity l   

In order for the analogy to be consistent, the cylindrical saxophone is assumed to radiate by the end 

l  only. The output flow rate RU , which is assumed to be a monopole source radiating in the 

surrounding space, is related to the input pressure by the following standard relationship valid for 
planar waves: 

).(sin)( w
r
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In order to use the knowledge of the spectrum (Eq. (3)), the following equations can be written for the 
harmonic n :  
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Therefore for the harmonic n  Eq. (3) can be rewritten as:  
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3.2 External spectrum 

Using Eqs. (3) and (5), except if 0sin =nX , the following result is obtained:  
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For the case 0sin =nX , the solution is undetermined. This happens when pmX n =  and 

nm /=b  is rational. For that case, it is possible to use the other transfer function, considering that 

the flow rate at the excitation point is divided into two parts, on the two sides of the reed: 
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For a Helmholtz motion, the flow rate )(tu  is a constant, therefore for non-zero frequencies of the 

signal: 
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As a consequence, using Eq. (3): 

 jpL1n cosXn
Xn

S
c  1n cosXnURn .   #   

 

This leads again to the result (6). Therefore the spectrum of the output flow rate at extremity l is

complete. No harmonics are missing in the external spectrum; neither formants nor anti-formants are 
expected, in opposition to the internal spectrum. The signal is a saw-tooth signal, as noticed by 
Cremer (1984) for the analogous problem of the bowed string. Assuming a monopole radiation, the 
external pressure is proportional to the time derivative of the output flow rate (with a certain delay). 

Omitting the delay, the relationship between the external pressure at distance d and the output flow 
rate is the following: 
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Using Eq. (6), the spectrum of the radiated pressure is that of a Dirac comb: 
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3.3 The particular case of clarinet-like instruments 

The previous result seems to be valid for the clarinet, a particular case of the cylindrical saxophone for 

which 2/1=b ; but it is not. This requires some explanation. The clarinet is equivalent to a cylindrical 

saxophone of cross section 2/S  ( S  being the cross section of the clarinet), of length l2 excited at 

its middle and radiating by the two ends. It is easy to show that the flow rates 1RU and RU  at 

extremities 1x  and l , respectively, satisfy the following relationship:  

.)1( ,,1 nR

n

nR UU --=  

Therefore because in practice the two extremities are at the same location, the sum of the flow rates 
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is zero for the even harmonics (for the odd harmonics, it is twice this of one end). It can be noticed that 
more generally a true cylindrical saxophone, which would radiate by both ends, should have a 
complicated spectrum and directivity pattern, similar to that of a Boehm flute.  
 
 

4. The spectrum of conical instruments 
 
The question of the relation between the conical shape and the sound spectrum remains largely 
open, in particular for the radiated sound. As explained previously, the hypothesis that it is equivalent 
to a cylindrical saxophone has a limited frequency range, because the length of the missing cone, 

denoted 1x , is assumed to be small compared to the wavelength. We have seen that the pressure 

signal during the episode of reed beating is common to the different notes, and we can conjecture that 
characteristic frequencies common to different notes exist in the spectrum, including higher 
frequencies, and a consequence is the apparition of formants or anti-formants. For the lowest ones, 
the common frequencies are close to those of a cylindrical saxophone. 

4.1 Internal spectrum 

Let us consider first the spectrum of the internal pressure at low frequencies. We can imagine without 
rigorous proof that the maximum of this spectrum is linked to that of the input impedance. The latter 
can be determined by using a formula which gives the envelope curve of the impedance peaks for a 
truncated cone (Chaigne 2008). The envelope is proportional for all notes of the following curve: 
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A simple calculation gives a rough estimation for the position of this maximum: .31 =kx  A formant 

can be found around the corresponding frequency. For instance, for a soprano saxophone, it is 670  
Hz. This approach should be confirmed by a more complete analysis. For the lowest notes of an 
instrument, there are few harmonics 1 or 2 in the spectrum because of the shape of the input 
impedance curve. This is particularly true for a bassoon. 
 

  What happens at higher frequencies? Obviously if the quantity 1kx  is of order of p  or larger, the 

assimilation to a cylindrical saxophone has no longer any meaning. Nevertheless it is possible to find 
frequencies which are independent of the notes and for which the input impedance is minimum (and 
also frequencies for which the input impedance is maximum). We first forget the losses. As we have 
seen, the frequency of the first maximum at the input of the mouthpiece is, an excellent approximation 

apart, given by )(2/ 1xc +l , thus p=+ )( 1xk l : we know that it is not exactly the playing 

frequency, because the latter depends on the excitation level, but we assume that it is true. The 
harmonics of this frequency are not necessarily resonance frequencies, because they do not satisfy 

the condition 11 <<kx . However the harmonic n  satisfies: 

 

.cot)cot(cot    thus)( 111 kxkxnknxk -=-==+ pp ll  

 
In other words, for a given frequency which exists in the spectrum, the input admittance of the 
truncated cone (and therefore the admittance projected to the input of the mouthpiece) does not 
depend on the fingering, i.e. on the played note. These admittances exhibit extrema which are 
common to the different notes, as shown in Fig. 3 (the calculation shown includes losses). Thus in the 
spectrum of the internal pressure formants and anti-formants are expected: they are the elements 
common to the different notes that we above mentioned. They can be calculated for a given shape of 
the mouthpiece, but here we do not discuss this matter further. The first anti-formant frequency is 

slightly higher than this of a cylindrical saxophone ( p=1kx ). But these formants and anti-formants 

are less accentuated than those of a cylindrical saxophone, for two reasons: i) because losses make 
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their existence less evident; ii) the harmonics of certain notes are close to such a frequency, but this is 
wrong for other notes, for which these harmonics are less attenuated.  

 

Figure 3. Input impedance for 100 values of l linearly distributed on one octave. The visco-thermal 
losses are taken into account. The points indicate the impedance modulus for the fundamental 
frequency and its harmonics for the notes corresponding to each value of the length. The extrema are 
noticeable, they are common to the different notes. The dimensions are those of a tenor saxophone 

with a mouthpiece. The toneholes are ignored (the change of note is given by a modification of l ) 

4.2 External spectrum 

The previous analysis is concerned by the internal spectrum. What happens for the radiated 
pressure? For the lowest frequencies the previous reasoning can be extended by using directly the 
shape of the input impedance curve. The relative weakness of the lowest frequencies with respect to 
that of the internal pressure is accentuated by the fact that the radiated pressure is the time derivative 
of the output flow rate.  
Unfortunately for the higher frequencies we have no simple insight. Formants and anti-formants seem 
to exist, but they are less evident and their position differs from that observed for the internal 
pressure. For a cylindrical, clarinet-like instrument the issue of the relative amplitude of the even and 
odd harmonics is subtle. We imagine that this subtlety is similar for a cylindrical saxophone for the 
main harmonics versus the missing ones in the internal pressure. The problem becomes more 
intricate for a conical instrument  (remind that this discussion ignores the existence of toneholes, 
which strongly complicate the sound analysis above the cutoff frequency, and moreover the reed 
dynamic is ignored. 
What is clear is that the level difference between formants and anti-formants is much smaller than for 
the internal pressure, similarly to the difference between even and odd harmonics of the clarinet. This 
is due to the difference between the input impedance and the pressure transfer function: the first 
function of the frequency has poles and zeros, while the second has poles only. Nevertheless, 
contrary to some possible hypotheses, the position of the formants is neither directly linked to the 

length 1x  nor to the mouthpiece shape. A consequence can be deduced from the previous analysis: 

if the length 1x  of the missing cone is reduced, and then if for a given length, the apex angle is 
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increased, the first characteristic frequencies increase. Observing the increase of the taper from the 
first saxophones of Adolphe Sax to modern saxophones, it was possible to explain this increase by 
the aim to enrich the timbre (see Kergomard (1998)), as probably requested by the jazz music. 
Comparing with a violin, this would correspond to a play closer to the bridge: it is well known that the 
timbre is richer in harmonics because the first missing harmonic becomes higher (similarly to what 
happens for a guitar, producing free oscillations). Finally we mention the study by Benade and Lutgen 
(1988), who measured the external spectrum averaged in a room and showed for the highest 

frequencies the existence of a frequency above which the spectrum decreases as
3f : after these 

authors, this frequency would be linked to the cutoff frequency of the toneholes lattice. Moreover they 
showed that minima exist in the spectrum of a given note, and that is related to the reed beating.  
 
Perspectives 
 
To our mind many issues remain to deepen about this matter. Some works are in progress 
concerning the use of the simplest model in order to understand the effect of the mouthpiece. 
Experiments with an artificial mouth will be necessary, starting with tubes of different lengths, 
radiating by one orifice only.  
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