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Relative controllability of linear difference equations

Guilherme Mazanti*

April 29, 2016

Abstract

In this paper, we study the relative controllability of linear difference equations with multiple
delays in the state by using a suitable formula for the solutions of such systems in terms of their
initial conditions, their control inputs, and some matrix-valued coefficients obtained recursively
from the matrices defining the system. Thanks to such formula, we characterize relative controlla-
bility in time 7 in terms of an algebraic property of the matrix-valued coefficients, which reduces
to the usual Kalman controllability criterion in the case of a single delay. Relative controllability
is studied for solutions in the set of all functions and in the function spaces L” and C*. We also
compare the relative controllability of the system for different delays in terms of their rational
dependence structure, proving that relative controllability for some delays implies relative con-
trollability for all delays that are “less rationally dependent” than the original ones, in a sense that
we make precise. Finally, we provide an upper bound on the minimal controllability time for a
system depending only on its dimension and on its largest delay.

1 Introduction

This paper characterizes the relative controllability of the controlled difference equation
N
Y(A,B,A): x(1) =Y Ajx(t — Aj)+Bu(r), (1.1)
j=1

where x() € C¢ is the state, u(t) € C™ is the control input, N,d,m € N*, A= (Ay,...,Ay) € (0, o)V
is the vector of positive delays, A = (Ay,...,Ay) € Myz(C)" is a N-tuple of d x d complex-valued
matrices, and B € My ,,(C) is a d x m complex-valued matrix.

The study of the autonomous difference equation

N
x(1) =Y Ajx(t—Aj) (1.2)
j=1

has a long history and its analysis through spectral methods has led to important stability criteria
[1,7,8,12,15,19] (see also [13, Chapter 9] and references therein). In particular, it has been shown
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that uniform asymptotic stability and exponential stability for (1.2) are equivalent, and they are both
equivalent to the condition

sup {Re A

N
det (Idd -y e“fAj> = 0} <0 (1.3)
j=1

(see, e.g., [7, Lemma 3.1], [13, Chapter 9, Theorem 3.5], or [15, Theorem 3.2]). The left-hand side of
(1.3) is in general not continuous with respect to the delays Ay,...,Ay, which means that stability of
(1.2) 1s not preserved in general under perturbations of the delays [15,19]. A well-known criterion by
J. K. Hale and R. A. Silkowski characterizes the N-tuples of matrices A = (Ay,...,Ay) for which (1.2)
is stable and its stability is preserved under arbitrary perturbations on the delays (a property known as
strong stability, see, e.g., [1, Theorem 5.2], [13, Chapter 9, Theorem 6.1], or [28]), stating that this is
the case if and only if pys(A) < 1, where

(61,-...6n)€[0, 2]V

J

N .
pus(A) = max p <Z %A j> (1.4)
=1

and p denotes the spectral radius. Hale—Silkowski criterion actually says more, namely the strik-
ing fact that uniform asymptotic stability of (1.2) for some choice of rationally independent delays
A1,...,Ay is equivalent to strong stability. A generalization of the Hale—Silkowski criterion to the
case of delays satisfying some rational dependence structure has been provided in [4,20]. The stabil-
ity of (1.2) with time-varying matrices A; has been considered in [4,21], with a generalization of the
Hale—Silkowski criterion to this case provided in [4, Corollaries 3.29 and 3.35]. Stability issues for
time-varying delays A ; have been considered in [9].

A major motivation for analyzing the stability of (1.2) is that it is deeply related to properties of
more general neutral functional differential equations of the form

d N
- (x(t) —j_Z’lij(t —Aj)) = f(x)

where x; : [-r,0] — C¢ is given by x,(s) = x(t +s), r > maxc(y,. N}y Aj, and f is some function
defined on a certain space (typically C¥([—r,0],C¢) or WKP((—r,0),C%)) [7,8,12,21], [13, Section
9.7]. Another important motivation is that, using d’ Alembert decomposition and classical transfor-
mations of hyperbolic PDEs into differential or difference equations with delays based mainly on the
method of characteristics, some hyperbolic PDEs can be put under the form (1.2) [4,6,11,18,29]. In
particular, this has been done in [4] in order to obtain stability results for transport and wave equa-
tions on networks with time-varying parameters from corresponding stability results for (1.2) with
time-varying matrices A ;.

Several works in the literature have addressed the questions of control and stabilization of neutral
functional differential equations [14,22,23,25,27], including for controlled difference equations of
the form (1.1). In [14], for instance, the authors prove that (1.1) can be stabilized by a linear feedback
control u(t) = 21};1 K;x(t — Aj), with the resulting system being strongly stable, if and only if there
exists € > 0 such that, for every A € C with ReA > —¢, one has

N
ik (B d;— Y A J-e“f) =d. (1.5)

j=1

This criterion is a reminiscent of Hautus test for controllability (see, e.g., [30, Lemma 3.3.7]).
Concerning the controllability problem, due to the infinite-dimensional nature of the dynamics of
neutral functional differential equations, several different notions of controllability can be used, such
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as exact, approximate, spectral, or relative controllability [5,27]. Relative controllability has been
originally introduced in the study of control systems with delays in the control input [5, 17, 24], but
this notion has later been extended and used to study also systems with delays in the state [10, 26]
and in more general frameworks, such as for stochastic control systems [16] or fractional integro-
differential systems [2]. The main idea of relative controllability is that, instead of controlling the state
x; : [—r,0] — C? of (1.1), defined by x;(s) = x(¢ +5), in a certain function space such as C*([—r,0],C%)
or LP((—r,0),C%), where r > max (... N} /Aj, one controls only the final state x(¢) = x;(0). We
defer the precise definition of relative controllability used in this paper to Definition 3.4, after having
proved in Theorems 3.1 and 3.2 criteria for several equivalent or closely related notions of relative
controllability.

Despite the long history of the study of relative controllability, up to the author’s knowledge, no
general criterion allowing to characterize the relative controllability of (1.1) is available in the litera-
ture. The goal of this paper is to fill this gap by providing necessary and sufficient conditions for the
relative controllability of (1.1) in some different function spaces. We also discuss the dependence of
such controllability on the delays A1,...,Ay, and, more precisely, on their rational dependence struc-
ture, and provide an upper bound on the minimal time for controllability in terms of the dimension d
of the system and its largest delay. Notice that some of these questions have already been addressed
for particular systems under the form (1.1) in the literature (see, e.g., [10,26]). The main results of
this paper generalize those of these works.

The main tool used in the analysis of the relative controllability of (1.1) in this paper is a suitable
representation formula for its solutions, describing a solution in time ¢ in terms of its initial condition,
the control input, and some matrix-valued coefficients computed recursively (see Proposition 2.8).
A similar formula has been used in [3] to analyze the stability of a system of transport equations
on a network under intermittent damping and in [4] to obtain stability criteria for (1.2) with time-
varying matrices A j, which in particular provide a generalized version of the Hale—Silkowski stability
criterion.

The plan of the paper is as follows. After some general discussion on the well-posedness of (1.1)
and the derivation of the explicit representation formula for its solutions in Section 2, we characterize
relative controllability for some fixed final time 7 > 0 in Section 3 in the set of all functions and in
the function spaces L” and CX. For given A = (Ay,...,Ay) € My(C)Y and B € My, (C), Section 4
compares the relative controllability of (1.1) for different delays Ay,...,Ay and Ly, ..., Ly in terms of
their rational dependence structure. Finally, Section 5 provides a uniform upper bound on the minimal
time for the relative controllability of (1.1).

Notice that all the results in this paper also hold, with the same proofs, if one assumes A =
(A1,...,An) € My(R)N and B € M,,(R) with the state x(¢) € R? and the control u(t) € R™. We
choose complex-valued matrices, states, and controls for (1.1) in this paper following the approach
of [4], which is mainly motivated by the fact that classical spectral conditions for difference equations
such as (1.3), (1.4), or (1.5) are more naturally written down in such framework.

Notations. We denote by N and N* the sets of nonnegative and positive integers, respectively. For
a,b € R, we write the set of all integers between a and b as [a,b] = [a,b] NZ, with the convention
that [a,b] = 0 if a > b. The cardinality of a set N is denoted by #N. For & € RY, we use &y, and
Emax to denote the smallest and the largest components of &, respectively. For & € R, the symbol | |
is used to the denote the integer part of &, i.e., the unique integer such that § — 1 < [ ] < €.

The set of d x m matrices with coefficients in K C C is denoted by M ,,(K), or simply by M, (K)
when m = d. The identity matrix in My (C) is denoted by Id,; and the zero matrix in My, (C) is
denoted by 0y, or simply by O when its dimensions are clear from the context. We use ey,...,e4
to denote the canonical basis of C¢. For p € [1,+oo], |-| , indicates both the £7-norm in C“ and the
induced matrix norm in My, (C). The range of a matrix M € My ,,(C) is denoted by RanM, and
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rk M denotes the dimension of Ran M.

2  Well-posedness and explicit representation of solutions

This sections establishes the well-posedness of (1.1) and provides an explicit representation formula
for its solutions. The proofs of the main results of this section, Propositions 2.2 and 2.8, are very
similar to the ones given in [4] for the corresponding uncontrolled system. We start by providing the
definition of solution used in this paper.

Definition 2.1. Let A = (Ay,...,Ay) € My(C)Y, B € My,n(C), A= (Ay,...,An) € (0,+)N, T >0,
X0 : [~Amax,0) = C?, and u : [0,T] — C™. We say that x : [~ Amax, T] — C? is a solution of £(A, B, A)
with initial condition x¢ and control u if it satisfies (1.1) for every ¢ € [0,T] and x(¢) = xo(t) for
t € [~Amax,0). In this case, we set, fort € [0, T, x; = x(t + )| [ZA,0)-

Notice that this definition of solution contains no regularity assumptions on xg, u, or x. Nonethe-
less, this weak framework is enough to guarantee existence and uniqueness of solutions.

Proposition 2.2. Let A = (Ay,...,Ax) € My(C)N, BE€ My (C), A= (Ay,...,An) € (0,+0)N, T >
0, X0 : [~Amax,0) = C¢, and u : [0,T] — C™. Then £(A,B,A) admits a unique solution x : [—Amax, T|
— C4 with initial condition xy and control u.

The proof of Proposition 2.2 is very similar to that of [4, Proposition 3.2], we provide it here for
the sake of completeness.

Proof. Let T* > 0 be such that 7% < T and T* < Ap,. It suffices to build the solution x on [—Apax, T*]
and then complete its construction on (7%, 7| by a standard inductive argument.

Suppose that x : [—~Apax, T*] — C¢ is a solution of £(A, B, A) with initial condition xq and control
u. Then

x(t) =

N
Aixo(t—A;)+Bu(t), if0<r<T*
L Aot =A)) +Butt) o

Xo(l), lf _Amax S t < O.
Since the right-hand side is uniquely determined by xo, u, A, and B, we obtain the uniqueness of the

solution. Conversely, if x : [—Amax, T*] — C¢ is defined by (2.1), then (1.1) clearly holds for t € [0, T*]
and thus x is a solution of £(A, B, A). |

Remark 2.3. Let T > 0. If x,X0 : [~Amax,0) — C¢ and u,u : [0,T] — C™ are such that xo = %
and u = u almost everywhere on their respective domains, it follows from (2.1) that the solutions
X,X [~ Amax, T] = C? of £(A,B,A) associated respectively with xo, u, and Xo, #, satisfy x = X al-
most everywhere on [—Apax,7|. In particular, one still obtains existence and uniqueness of solu-
tions of X(A,B,A) (in the sense of functions defined almost everywhere) for initial conditions in
LP((—Amax,0),C%) and controls in LP((0,T),C™) for some p € [1,-+oo]. Moreover, it follows eas-
ily from (2.1) that, in this case, solutions x of £(A,B,A) satisfy x € L”((—Amax, T),C?), and hence
X, € LP((—Amax,0),C¥) for every t € [0, T].

Remark 2.4. If xg € C¥([~Amax,0),C) and u € ([0, T],C™) for some k € N, it follows from (2.1)
that the corresponding solution x of £(A, B, A) belongs to C*([—Amax, T], C?) if and only if x and u
satisfy the compatibility condition

N
timaf (1) = Y A (—Aj) +Bu(0),  Vre 04, (2.2)
=1

where x(()r) and u(") denote the r-th derivatives of xy and u, respectively.
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Due to the compatibility condition (2.2) required for obtaining solutions x in the space ck ([—Amax,
T],C%), we find it useful to introduce the following definition.

Definition 2.5. Let A = (Ay,...,Ay) € My(C)N, B € Myu(C), A= (A1,...,Ay) € (0,+)N, xq :
[—Amax,0) — C?, and k € N. We say that xq is C¥-admissible for system £(A, B, A) if xg € C*([—Amax,

0),C%) and, for every r € [0,k], lim, o x(()r) (t) exists and

t—0

N
limx(()r) (1) — Zij(()r)(—Aj) € RanB.
j=1
In order to provide an explicit representation for the solutions of £(A,B,A), we first provide a

recursive definition of the matrix coefficients =, appearing in such representation.

Definition 2.6. For A = (Aq,...,Ay) € My(C)N and n € ZV, we define the matrix Z, € My(C)
inductively by

0, ifne ZN\ NV,
_ Id,, ifn=0,
En=1 (2.3)
ArEn_e,, ifmeNV\{0}.
k=1

Remark 2.7. It follows from [4, Proposition 3.8] that, for n = (ny,...,ny) € NV \ {0}, the matrices
&n also satisfy the recurrence relation

M=

“n = Qn—ekAk

k=1

and they can be explicitly computed from A = (Ay,...,Ay) by

—n = Z AleV2 o .AV‘“|1 )

vEVn
where V, = {v € [1,N]m1 | for every k € [1,N], #{j € [1,|n|,] |v; = k} :nk}.

We now provide an explicit representation for the solutions of £(A, B, A), which is a generalization
of [4, Lemma 3.13] to the case of the controlled difference equation (1.1).

Proposition 2.8. Let A = (Ay,...,An) € My(C)N, B€ My ,u(C), A= (Ay,...,An) € (0,400)V, T >
0, X0 : [~Amax,0) = C4, and u : [0,T] — C™. The corresponding solution x : [—Amax, T] — C¢ of
Y(A,B,A) is given fort € [0,T] by

x(t) = Y  EaeAixo(t—A-m)+ Y EuBu(t—A-n). (2.4)
(n,j)eNN x[1,N] neNV
—Aj<t—An<0 An<t

Proof. By linearity, it suffices to show that the function x; defined by

) En—eAjxo(t—A-m), if0<r<T,

_ ) (. )eNVX[1.N]
xi(t) = 4 “A;<t-AnZo

XO(I), if _Amax S < O,



is the solution of £(A, B, A) with initial condition x( and control 0, and that the function x, defined by

Y EnBu(t—A-m), if0<r<T,
N
x(t) = ¢ RS (2.5)

07 if _Amax S 1< O,

is the solution of X(A,B,A) with initial condition 0 and control u. The first part has already been
shown in [4, Lemma 3.13], we are thus left to show that x; satisfies (1.1) for ¢ € [0, T].
Let j € [1,N]. Fort € [0,T], we have

xt—Aj)= Y EnBu(t—Aj—A-m)= Y = Epn_Bu(t—A-m),
neNV meNVY
A-ngt—Aj A-m<t, ij]

where we extend u by zero outside the interval [0, T']. Hence, using (2.3), we obtain that

N N N
ZAsz(l —Aj> = ZAj Z Em_ejBu(t —A-m) = Z Z AjEm_ejBu(t —A-m)
j=1 i—1

J meNV meNV j=1
Am<t,mi>1 Am<tm;>1
= Y EmBu(t—A-m)=ux(r)—Bu(t),
meNV\ {0}
A-m<t
which shows that x; satisfies (1.1). n

Remark 2.9. When A = (Ay,...,Ay) and B are time-varying matrices, i.e. A :[0,T] — My(C)Y
and B : [0,T] — My,,(C), the counterpart of Proposition 2.2 also holds with the same proof, and
Remark 2.3 also applies, in the sense that solutions corresponding to A, B and AV,E are equal almost
everywhere if A = A and B = B almost everywhere. The conclusion that x € L?((—Amax, T),C¢)
when xg € L”((—Amax,0),C?) and u € LP((0,T),C™) holds under the extra assumption that A €
L=((0,T),M4(C)N) and B € L™((0,T),My,,(C)). Moreover, the explicit formula from Proposition
2.8 becomes

x(t) = ) E,’}_ejytAj(t—A-n+Aj)x0(t—A-n) + Y EMB(E—A-mu(t—A-n), (2.6)
(n,j)eNVx[1,N] neNY
—Ajgt—A-n<0 An<t

where the matrix coefficients EQJ are defined forA = (Aq,...,Ay) : R — My (CN, A= (Ay,...,AN) €

(0,+00)¥, n€ ZN, and t € R as in (2.3), the third case being replaced by EQJ = IkvzlAk(l)Eﬁ—ek,z—Ak-

Remark 2.10. Let p € [1,+o0|. Fort > 0, we define the bounded linear operator S(z) : L? ((—Amax, 0),

(S(t)x0)(s) = Z En—e;Ajxo(t +5—A-m).
(n,j)ENY < [1,N]
—Aj<t+s—An<0

The operator S(¢) maps an initial condition xo to the state x; = x(¢ + )| _, o), Where xis the solution
of £(A, B, A) at time 7 with initial condition xo and control 0. For p € [1,+oc0), the family {S(¢)};>¢ is
a strongly continuous semigroup in L” ((—Amax,0),C?) (see, e.g., [4, Theorem 3.5]).
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The controllability results we establish in Section 3 are based on the explicit representation for
the solutions from Proposition 2.8. Notice that the control u only affects the second term of (2.4).
Since, in this term, u is evaluated only at times  — A - n, one should pack together coefficients =,
corresponding to different n,n’ € N for which A-n = A-n’, in the same manner as in [4, Definition
3.10].

Definition 2.11. Let A = (Ay,...,Ay) € (0,+)". We partition NV according to the equivalence
relation ~ defined by writing n ~ n’ if A-n = A-n’. We use [-|5 to denote the equivalence classes of
~ and we set Ny = NV/ ~. The index A is omitted from the notation of [-]5 when the delay vector A
is clear from the context. We define R
Eﬁﬂ =) Eu. (2.7)
n’en
Thanks to Definition 2.11, the representation formula (2.4) for the solutions of £(A,B,A) can be
written as

x(t) = Y  EaAmo(t—A-m)+ Y EfBu(t—A-m). (2.8)
(n,j)eNN x[1,N] [n]eN,
—A;j<t—A-n<0 An<t

3 Relative controllability criteria

This section presents the main relative controllability criteria from the paper, Theorems 3.1 and 3.2
below. Theorem 3.1 provides a criterion for relative controllability in the set of all functions and in the
L? spaces, whereas the criterion in Theorem 3.2 characterizes relative controllability in the Ck spaces.
Both algebraic criteria we obtain are expressed in terms of the coefficients Ef}l] and the matrix B and
are generalizations of the usual Kalman condition for the controllability of a discrete-time system.
Their proofs are based on the explicit representation for solutions (2.8).

Theorem 3.1. Let A = (Ay,...,An) € Mg(C)N, B€ My ,u(C), A= (Ay,...,Ax) € (0,+)N, T >0,
and p € [1,+o0]. Define Eﬁl] as in (2.7). Then the following assertions are equivalent.
(a) One has

~
—

Span{:ﬁﬂBw‘[n] €Ny, An<T, wecm}zcd. 3.1)

(b) For every xo : [—Amax,0) — C¢ and x| € C¢, there exists u : [0,T] — C™ such that the solution
x of £(A, B, A) with initial condition xo and control u satisfies x(T) = x;.

(c) There exists & > 0 such that, for every € € (0,€y), X0 : [~Amax,0) — C%, and x; : [0,€] — C,
there exists u : [0,T + €] — C™ such that the solution x of X(A,B,A) with initial condition x
and control u satisfies x(T + -)|[07£] = X1.

(d) There exists € > 0 such that, for every € € (0, &), X9 € L” ((—Amax,0),C¢), and x; € LP((0,€),
C4), there exists u € LP((0,T 4 €),C™) such that the solution x of £(A, B, A) with initial condi-
tion xo and control u satisfies x € LP((—Amax, T +€),C?) and x(T + -)][0’6} = X].

Proof. For T > 0,let N7 = {[n] € N5 |A-n < T} and ny = #NT. The proof is carried out as follows.
Clearly, (c) = (b). We will show the equivalences by proving that (b) = (a), (a) = (c) and
(d), and (d) = (a).

Assume that (b) is satisfied, which shows, using (2.8) and considering a zero initial condition,
that, for every x; € C¢, there exists u : [0,T] — C™ such that

=A —A- — zA —A-n) =
(EnB) o T =AM = [H}EZNT‘_.[H]BM(T A-n)=x, (3.2)



where (i&B) T denotes the d X mny matrix composed of the n7 blocks @f;]B of size d x m and

LIS
(u(T —A-m)) N denotes the mny x 1 matrix composed of the ny blocks u(T — A-n) of size m x 1.

This means that the map C"™"7 5 U (i&B){ T U € C4 is surjective, and thus (a) is satisfied.
njc

Assume now that (a) is satisfied and let

€) = min min |A-n—A-n", min (A-n—T) ; >0.
('], [n]eN” neNV
('] [n] An>T

Let € € (0,&), X0 : [~Amax,0) = C%, and x; : [0,€] — C?. Thanks to (a), the map C"™7 > U

(@ﬁB) UecC4is surjective, and hence the d X mny matrix (iﬁB) admits a right inverse
M/ njeNt "/ m]enT
mn m NT 1
M € My, 4(C). Let U = (U[“]>[n}eNT : [0,€] — C™71 = (C™)™ be given by
U(t) =M xl(t) — Z En,ejAjX()(T —|—t—A~n) . 3.3)

(n,/))eENVX[1,N]
7Aj§T+I*A-n<O

Define u: [0,T + €] — C" by
0 {U[n](A-nth—T), ifr € [T—A-n,T —A-n+g] for some [n] € N7,
u(t) =

) (3.4)
0, otherwise.

Thanks to the definition of &, u is well-defined, and one has u(7 +¢ — A -n) = Uy (t) for every
[n] € N7 and ¢ € [0, €]. Hence, it follows from (3.3) that, for every ¢ € [0, ],

x1(t) — ) En—e,Ajxo(T+1t—A-n) = (%B) (u(T+t—A-n))MeNT
(mj)ENVx[1.N] Imjent
—Aj§T+t—A~n<0
= Y ENBu(T+t—A-m)= Y ENBu(T+t—A-m), (35)

[n]eNT [n]€NA
An<T+t

where we use that, thanks to the definition of &, one has
N ={n]eNA[An<T+r},  Vre(0,el. (3.6)

It now follows from (2.8) and (3.5) that the solution x of £(A,B,A) with initial condition xy and
control u satisfies x(7 + ‘>|[0,s] = x1, and hence (c) holds. Notice moreover that, if we assume xq €
LP((—Amax,0),C%) and x; € LP((0,¢€),C?), it follows from (3.3) that U € LP((0,€),C™7), and thus,
by (3.4), u € LP((0,T +¢€),C™). Hence, the solution x of X(A,B,A) with initial condition xy and
control u satisfies x € LP ((—Amax, T + €),C¢), thanks to Remark 2.3, and x(T + -)|[O7£} = x1, which
shows that (d) also holds.

Finally, assume that (d) holds, take & > 0 as in (d) and fix € € (0,&p). Then, considering a zero
initial condition, for every constant final state x; € C¢, there exists u € L”((0,T + €),C™) such that,
for almost every ¢ € (0, &), one has, as in (3.2),

=A —A- -
<“[H}B) [m]eNT ((T +21 A n))[n]ENT b

where we use that (3.6) holds, up to choosing a smaller € € (0, &). Hence, as in (3.2), one also obtains

that the map C""7 5 U +— <§ﬁ]]B>[ exT U € C? is surjective, and thus (a) is satisfied. [ |
nje



The next result presents a relative controllability criterion for €* solutions of X(A,B,A), which
is slightly different from (a) in Theorem 3.1 due to the compatibility condition (2.2) required for the
existence of X solutions.

Theorem 3.2. LetA (A1,...,AN) € M4(C)N, B€ My m(C), A= (A1,...,An) € (0,+)N, T >0,
and k € N. Deﬁne H | as in (2.7). Then the following assertions are equivalent.

(a) One has
Span{ Bw‘ ]€Np, An< T, weCm}:Cd. (3.7

(b) For every xo C*-admissible for (A, B, A) and x| € C%, there exists u € C*([0,T],C™) such that
the solution x of £(A, B, A) with initial condition xo and control u satisfies x € C*([—Amax, T],
C%) and x(T) = xy.

(c) There exists & > 0 such that, for every € € (0,€&)), xo C*-admissible for L(A,B,A), and x; €
Ck([0,€],CY), there exists u € CX([0,T + €],C™) such that the solution x of X(A,B,A) with
initial condition xo and control u satisfies x € C*([—Amax, T +€],C?) and x(T + MNio.e) = *1-

Proof. Let N7 = {[n]y € Nj |A-n < T} and n} = #NI. We begin the proof by noticing that (c)
implies (b). Assume now that (b) holds and let us show that (a) is satisfied. For every x| € C4, there
exists u € C¥([0,T],C™) such that the solution x of (A, B, A) with zero initial condition and control
u satisfies x € C*([—Amax, T],C?) and, from (2.8),

Y EfBu(T—A-m)=x. (3.8)
[D]GNA
An<T

Moreover, since x € Gk ([ Amax ,T] ), it follows from Remark 2.4 that (2.2) is satisfied, and thus,
for every r € [0,k], Bu")(0) = 0. Thus (3.8) becomes

Z ifl\ﬂBu(T —A-n)=x,
[n]ENA
An<T

and we conclude, as in the proof of Theorem 3.1, that the map C"™r 53U — (@&B) e UeC?is
n|eN!

surjective, and thus (a) is satisfied.
Finally, assume that (a) is satisfied and let

1
g=-min¢ min |A-n—A-n'|, min [A-n—T|} >0.
[0'],[n]eNT neNV
) Ant1

Let € € (0,&), xo Ck-admissible for £(A,B,A), and x1 € C¥([0,¢],C%). Since xq is C-admissible,
there exists g € C%([0,&],C™), with a compact support inside [0, €), such that, for every r € [0, 4],

li Ay (—Aj)+Bp(0 3.

[f(l)xo Z JxO )+ Bu(0). (3.9)

If T = A-n for some n € NV, we set 7 = 1 and 7 = [n]; otherwise, we set 67 = 0 and T = [0]. As

in the proof of Theorem 3.1, it follows from (a) that the d x mn7 matrix <_.[ n] ){ T admits a right
EN
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inverse M € M,z 4(C). LetU = (U[n]) :[0,€] = C™r = ((C’")N’Z be given by

(] N

U@t)=M | x1(1)— Y En—e,Ajxo(T +1—A-n) — SrEXBu(r) | . (3.10)
(n,j)ENVx[1,V]
7Aj§T+Z*A'n<O
Notice that the sum in (3.10) can be taken over the set

Gi(t) ={(n=(ny,...,ny),j) ENV < [I,N] | =A; <T+t—-A-n<0,n; > 1},

since Z, = 0 if n € Z" \ NV. Moreover, thanks to the definition of &y, one has Gi(t) = G;(0) for
every t € [0, €], and thus U can be written for ¢ € [0, €] as

Uty=M|xi()— Y EneApo(T+t—A-n)—SrEXBu(t)

(n,))eENVx[1,N]
—A‘]‘ST—[\~H<0

In particular, one obtains that U € €¥([0,&],C™*). We extend U into a C¥ function on the interval
£

[—£, 3] with a compact support in (—%,3£). Define u : [0, + €] — C™ by

Un(A-n+t—T), ifte[T—A-n—5T—A n+3%£] for some [n] € NT,

u(t) = u(t), ift €0, €],
0, otherwise,

which is well-defined thanks to the choice of &, and satisfies u € C¥([0,T + &],C™) thanks to the
construction of U and y1. Moreover, one has u(T 4+t — A-n) = Uy, (t) for every [n] € N7 and, thanks
to (3.9), it follows from Remark 2.4 that the unique solution x of (A, B,A) with initial condition x
and control u satisfies x € C*([—Amax, T + €],C%). It follows from (3.10) that, for every ¢ € [0, €],

xl(t) — Z El’l*@jAj'xO(T—i_t _A'n>
(n,j)ENY < [1,N]
—A;<T+t—A-n<0
_ 5.0 2 A
= rEBu(r) + (),B) weny VAT HE =AM e

= Y EfBu(T+i—A-m)= Y ELBu(T+i—A-n),
[H]ENA [H]GNA
An<T A-n<T+t

and thus the solution x of £(A, B, A) with initial condition xo and control u satisfies x(7' + )| ¢ = X1,
which shows that (c) holds.

Remark 3.3. When N = 1, the controlled difference equation (1.1) becomes x(z) = Ax(t — A) + Bu(t),
with A = A; and A = A;. It follows from Definitions 2.6 and 2.11 that, for n = n € N, one has iﬁ]] =
A", and thus condition (a) from Theorem 3.1 reduces tork (B AB A?B --- AlT/AIB) =d, which
is the usual Kalman condition for controllability of discrete-time linear systems (see, e.g., [30, Theo-
rem 2]). Moreover, condition (a) from Theorem 3.2 reduces totk (B AB A?B --- AlT/Al=1p) =
d, which is the same as the previous one when T /A ¢ N*.
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Notice that (b), (¢), and (d) from Theorem 3.1 and (b) and (c¢) from Theorem 3.2 could all be
used to define relative controllability in different function spaces. Motivated by the equivalences
established in Theorems 3.1 and 3.2, we provide the following definition.

Definition 3.4. Let A = (A1, ...,Ay) € My(C)N, B € My ,,(C), A € (0,400)V, and T > 0.

(a) We say that X(A, B, A) is relatively controllable in time T if

~
—

Span{af}l}Bw ‘ M €Ny, A n<T,we (C’"} =,

(b) If £(A, B, A) is relatively controllable in some time T > 0, we define the minimal controllability
time Tpin for £(A,B,A) by Tiyin = inf{T > 0 | X(A, B, A) is relatively controllable in time T'}.

Remark 3.5. Contrarily to the situation for linear control systems of the form x() = Ax(r) + Bu(r)
or x(t) = Ax(t — 1) + Bu(t), relative controllability for some time 7' > 0 does not imply stabilizability
by a linear feedback law. Indeed, as recalled in Section 1, [14, Theorem 3.1] proves that £(A, B, A)
can be strongly stabilized by a linear feedback law u(z) = ZI;’:I Kx(t — A) if and only if there exists
€ > 0 such that, forevery A € C withReA > —¢, (1.5) is satisfied. For N =d =2 and m = 1, consider
the system X(A,B,A) with A = (A1,A;), B, and A = (A, A;) given by

1-¢

o —o 0 1 0
w=(G %) wm(oo) 5= (1)
Al:17 A2:€7

with £ € (0,1) and & > 1. Clearly, X(A, B, A) is relatively controllable in time 7 > ¢ since Span{B,
AB} = C2. However, for A € C, one has

Id, —Ale_’1 —Aze_M = (1 —aeh et - eM)

0 1

and the first row of this matrix is zero for A = In a. Hence (1.5) does not hold for A = Ina > 0, which
shows in particular that X(A, B, A) cannot be strongly stabilized by a linear feedback law.

4 Rational dependence of the delays

This section compares relative controllability of X(A,B,A) for different delay vectors A in terms of
their rational dependence structure. We start by recalling the definition of rational dependence and
commensurability.

Definition 4.1. Let A = (Aq,...,Ay) € RV,

(a) We say that the components of A are rationally dependent if there exists n € Z" \ {0} such that
A -n = 0. Otherwise, the components of A are said to be rationally independent.

(b) We say that the components of A are commensurable if there exist A € R and k € Z" such that
A= Ak.

Notice that the set Z" can be replaced by Q" in Definition 4.1 without changing the definitions
of rational dependence and commensurability. We next introduce a preorder in the set of all possible
delay vectors (0,+o)", which describes when one delay vector is “less rationally dependent” than
another.

11



Definition 4.2. For A € (0,+c0)", we define Z(A) = {n € Z" | A-n = 0}. For A,L € (0,+)", we
write A < L or, equivalently, L = A, if Z(A) C Z(L). We write A~ Lif A< Land L < A.

If A € (0,4o0)" has rationally independent components, then one immediately computes Z(A) =
{0}, and hence A < L for every L € (0,+o0)V, that is, delay vectors with rationally independent
components are minimal for the preorder <. Notice also that, for A € (0, +o0)", the set Z(A) encodes
the structure of the equivalence classes [n] forn € NV, in the sense that, forn’ € NV, one has n’ € [n]
if and only if n’ —n € Z(A), which shows that [n]5 = (n+Z(A)) NNV, We recall the following result
from [4].

Proposition 4.3 ([4], Proposition 3.9). Let A = (Ay,...,An) € (0,4+)N. There exist h € [1,N],
0= (ly,...,4y) € (0,+00)" with rationally independent components, and M € My ,(N) with tk M = h
such that A = M{. Moreover, for every M as before, one has

RanM = {LGRN | for everym € Z(A), one has L-n=0}.

In particular, it follows from Proposition 4.3 that the set of all L € (0,+o)" such that L = A is
RanM N (0, +o0)V. The next proposition gathers some immediate properties that follow from Defini-
tion 4.2.

Proposition 4.4. Let A,L € (0,+)N. If A < L, then, for every n € NV, one has [n]5 C [n], and

z (4.1)

(x1)
) ™~
Il
[x]

TEN)
TC[n]

In particular, if A ~ L, then, for every n € NV, one has [n|5 = [n]; and @f}l} = iﬁl]

Proof. If A < L and n € NV, the inclusion [n]5 C [n]; follows immediately from the fact that Z(A) C
Z(L) and that [n]; = (n+Z(1))NNY for every n € N¥ and A € (0,+o0)". Moreover, the set {7 €
Na | T C [n].} is a partition of [n]., since, for every n’ € [n]z, one has [n']5 C [n']; = [n]; and all
equivalence classes in Ny are disjoint. Hence

=A — — =L
) =) Ew= ) =n' = )

TEN) TeEN) NeT n’en,
7C[n]g TCnjg
The statements in the case A ~ L follow immediately. |

The first main result of this section is the following theorem.

Theorem 4.5. Let A = (Ay,...,Ay) € My(C)N, B € Myn(C), A,L € (0,+)", and T > 0 be such
that A < L. Set K = max e[ n] /L\—j’ IfX(A,B, L) is relatively controllable in time T, then X(A,B,A) is
relatively controllable in time xT.

. : Aj Ljn;

Proof. Notice that, for every n = (nj,...,ny) € NV\ {0}, one has £ = ):1}’:1 7128 < i, and thus
J

A-n < kL-n for every n € NV, Using Proposition 4.4, one obtains that

~
—

Span{:ﬁﬂBw ‘ meNL, L-n<T, we Cm}

= Span Z EMBw | eN, Ln<T, weC"
TEN)
’CC[I‘I]L
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C Span{ié‘Bw"cENA, TC[nj, mjp €N, L-n<T, WE(C’"}
= Span{@ﬁl]Bw ‘ m] €Ny, L-n<T, wGCm}
C Span{@f\ Bw ‘ m] € NA, A-n < kT, we(Cm},

which proves the statement. |

Theorem 4.5 proves that relative controllability of £(A, B, L) implies that of £(A, B, A) for all delay
vectors A such that A < L (with different controllability times). The converse of this result does not
hold, as illustrated in the following example.

Example 4.6. Consider the system X(A,B,A) with N =2,d =3, m=1, A= (1,A) for some A €
(0,1), and

00 —1 010 0
Al=10 0 0 ], Ay=10 0 1], B=10
00 O 0 00 1
One has A| = —A% and hence one immediately computes
(Id3, 1fn:(0,0),
Ay, ifn=(1,0),
Ea=< Az, ifn=(0,1),
A3, ifn=(0,2),
0, otherwise.

If A ¢ Q, one has if;] = &, forevery n € N2, and thus, for every T > 1,

~
—

Span{aﬁl}Bw ‘ M €Ny, An<T, we (C} = Span{EnB ‘n = (n,n) €N, ny +Any < T}
D Span{Z,0)B,E(1.0)B, E0.1)B} = C°,
which shows that (A, B, A) is relatively controllable for every T > 1 when A ¢ Q. However, for
A= %, one computes
Ids, if [n] =[(0,0)],
By = A2, if ] =[(0,1)],
0, otherwise.

Thus, for every T > 0,
Span {iﬁ]]Bw ‘ m eNpy, An<T,we C} C Span{B,A,;B} ¢ C°,

and hence £(A, B, A) is not relatively controllable for any 7 > 0 when A = %

Even if the converse of Theorem 4.5 does not hold in general, one can still obtain that relative
controllability with a delay vector A € (0,4o0)" implies relative controllability for another delay
vector L = A with commensurable components and sufficiently close to A.

Theorem 4.7. Let A = (Ay,...,Ay) € My(C), B € Myu(C), A= (A,...,Ay) € (0,4)", and
T > 0. For every € > 0, there exists L= (Ly,...,Ly) € (0,4)" with commensurable components
satisfying L = A and 1 < /L\—j’ < 14¢ forevery j € [1,N] such that, if (A, B, A) is relatively control-
lable in time T, then X(A, B, L) is also relatively controllable in time T.
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Before proving Theorem 4.7, let us show the following result.

Lemma 4.8. Let A = (Aq,...,Ay) € (0,+0)N and T > 0. For every € > 0, there exists L= (L1, ...,
Ly) € (0,+o0)N with commensurable components such that L = A, 1 < /L\—j’ < 1+¢forevery je[1,N],
and, for everyn,n’ € NY with A-n < T, one has A-n=A-n' ifand only if L-n=L-n'.

Proof. Write A = M/, with M = (mjk)je[[l N ke[1a] € My »(N) for some i € [1,N] and £ = (¢4,...,
¢,) € (0,4o0)" with rationally independent components, chosen according to Proposition 4.3. For
n € N*, we define L") = (Lgn),...,Ll(\f‘)) € [0,400)N by LW = 1M [nt], where |nt] = (|nt1],...,

|nly,]). We claim that L") satisfies the required properties for n € N* large enough.

Notice first that, if n > 1/€pmin. then all the components of [nf| are positive, and hence L") €
(0, +o0)N. Moreover, L™ ¢ QV, and thus L™ has commensurable components. If n € Z(A), one
has A-n = 0, which yields nTM/¢ = 0 and, since ¢ has rationally independent components and the
row vector nT M has integer components, one obtains that nTM = 0, which implies that L™ .n =
InTM |nt] =0, and hence n € Z (L"), proving that L") = A.

For j € [1,N], since nl; — 1 < Lnﬁ jJ < nl;, one obtains from the definition of L™ that Lg.”) =
IZZ 1ka |nlr] < Aj and that LE.”) >Aj— %Zﬁzlmjk > Aj— M|, /n. Hence, for n > 1/{;,, one
has 1 < ’ <1+ ‘M‘“)’. Notice that, by construction, for every j € [1,N], one has L(-”) — Aj as

L J

J ]

n — +oo. Hence there exists N1 > 1/lmin such that, for n > Ny, L( " > A;/2 for every j € [1,N].
Thus, for n > Ny, one has 1 < ( ) <1+ 2|M|°° <I1+3% 2|M|°° . Letting N> > N be such that N, > 2|M|°°

one obtains that 1 < =% L 7 < 1+8 for every j € [1,N] and n > N;.
J
To prove the last part of the lemma, notice that, for every n > 1/, since A < L("), ifn,n’ € NV

are such that A-n = A-n’, thenn—n’ € Z(A) and thus L") .n = L .n'. Let J denote the finite set
F={neNV|A-n<(1+¢€)T} and define

=min{|[A-n—A-n'| lnn'€F, A-n#£A-n"} >0.

Since L™ — A as n — +oo and F is finite, there exists N3 > N, such that, for n > N3, one has

LW .n—A-n| < % for every n € F. Let n > N3. Assume, to obtain a contradiction, that n,n’ € NV

are suchthat A-n<T,A-n#A-n, and LW .n=L" .0/, Then, using that 1 < L 7 < 1 + € for every
J

j € [1,N], one computes A-n’ < (1+€)L"W .n' = (14&)L" -n< (14+€)A-n < (1+€)T, which

shows that n’ € J. But

25
§<|A-n-— An{<‘An L ‘—k‘L n—L". n' —A-n <3

which is a contradiction since 0 > 0. Hence, if n,n’ € N¥ are such that A-n <7 and A-n #A-n'
one has L") .n £ L [ |

Proof of Theorem 4.7. Let € > 0 and take L as in Lemma 4.8. If n € N¥ is such that A-n < T, then
[n]o = [n]z, since it follows from Proposition 4.4 that [n]5 C [n]; and, if n’ € [n];, Lemma 4.8 shows
that n’ € [n]A since A-n < T. In particular, the only equivalence class from N, contained in [n];, is
[n] . Hence, Proposition 4.4 shows that, for n € NV with A-n < T, one has



and thus
Span{if;]Bw ‘ M eNp, An<T,we Cm} :Span{iﬁ]]Bw ’ne NV An<T,we C’"}

CSpan{iﬁl]Bw‘nENN,LngT, WEC’"},

since L-n < A-n for every n € NV, Hence relative controllability of £(A,B,A) in time T implies
relative controllability of £(A,B,L) in time T. |

S Minimal time for relative controllability

As stated in Remark 3.3, when N = 1 and (1.1) is written as x(¢) = Ax(t — A) + Bu(t), relative control-
lability in time 7 is equivalent to Kalman condition rk (B AB A2B ... AlT/Al B) =d. Thanks to
Cayley-Hamilton Theorem, tk (B AB A?B --- AU/AB) =1k(B AB A’B --- AY"!B) for
every T > (d — 1)A. Hence, if the system is relatively controllable for some time 7 > 0, it is also
relatively controllable in time T = (d — 1)A, which proves that its minimal controllability time Ty,
satisfies Tiin < (d — 1)A. The uniformity of this upper bound on the matrices A and B is important
for practical applications, since, if one is interested in finding out whether a given system is relatively
controllable for some time 7 > 0, it suffices to verify whether it is relatively controllable in time
T = (d — 1)A, which can be done algorithmically in a finite number of steps upper bounded by a
constant independent of A and B. The goal of this section is to generalize this upper bound on the
minimal controllability time T;, for systems with larger N.

We start by considering the case of systems with commensurable delays. In this case, by consid-
ering an augmented system in higher dimension, one can characterize the relative controllability of
Y(A,B,A) in terms of a certain output controllability of the augmented system, as shown in the next
lemma.

Lemma 5.1. Let A = (Ay,...,An) € My(C)N, B € Myn(C), A= (A1,...,An) € (0,+)", and
T > 0. Assume that A has commensurable components and let A > 0 and ky, ..., ky € N* be such that
(A1,...,AN) = A(ky,...,ky). Denote K = max jepy ny kj- Then Y(A,B,A) is relatively controllable in
time T > 0 if and only if, for every Xy : [~A,0) — CX9 and x| € C4, there exists u : [0,T] — C™ such
that the unique solution X : [—A,T] — CK? of

{X(t):AX( —A)+Bu(r), t€[0,7], 5.1)

t
X(t) =Xo(t), t €[—4,0),

satisfies CX (T) = x1, where the matrices A € Mg4(C), B € Mkam(C), and Ce Mg ka(C) are given
by

Al Ay Ay - Ag B
d; 0 0 - 0 0
A\: 0 Idy 0 -~ O GMKd<C), B\: 0 GMKdm((C)a
0 0 - Idy 0 0 (52)
N
C=(dg 0 0 - 0)€Myga(C), A=Y A; forke[l,K],
j=1
ki=k
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Proof. It is immediate to verify that x : [—Amax,T] — C¢ is the solution of £(A,B,A) with initial
condition xg : [~Amax,0) — C¢ and control u : [0,7] — C™ if and only if the function X : [-A,T] —
CK4 defined by

x(r)

x(t—2)
X(@)=| xr-22)

x(t—(K—=1)A)
is the solution of (5.1) with control u and with initial condition Xy : [A,0) — CX given by
xo(t)
X0 (l‘ — /1)
Xo(r) = xo(t —2A)

xolt — (K~ 1))

Since CX () = x(t) for every ¢ € [—A,T], the statement of the lemma follows immediately from
Theorem 3.1. |

Since (5.1) is a controlled difference equation with a single delay, we use Lemma 5.1 to charac-
terize the relative controllability of X(A, B, A) in terms of a Kalman rank condition.

Corollary 5.2. Let A = (Ay,...,An) € My(C)Y, B € My ,u(C), A= (Ay,...,An) € (0,4)", and
T > 0. Assume that A has commensurable components. Then £(A,B,A) is relatively controllable in
time T if and only if

tk(CB CAB CA?B --- CAU/MB)=d, (5.3)
where A, B, C, and A are as in the statement of Lemma 5.1.
Proof. Notice that, by Proposition 2.8, the solution X : [-A4,T]| — CKd of (5.1) with initial condition
Xo : [~A,0) — CK4 and control u : [0,T] — C™ is given by

. P /A

X(r) = Al+l/Alx, (r— (1 + LID A) + Y A"Bu(t —nh).
n=0

Hence

- . lT/A)
CX(T) = CA"+T/Ax, (T— (1 + EJ ) /1) + Y CA"Bu(T —n2). (5.4)
n=0

If £(A,B,A) is relatively controllable in time 7', then, by Lemma 5.1, taking Xo = 0, one obtains
that, for every x; € CY, there exists u : [0,7] — C™ such that ¥ T/ A A"Bu( —nA) = x1, which
shows that (5.3) holds. Conversely, if (5.3) holds, then the matrix (CB CAB --- CAlT/ ’”1/3\) admits

a right inverse M € M(|7/3|+1)ma(C). For Xo : [-A,0) — CKd and x; € C9, let U = (Uj)}ig)u €
CT/A]+Dm be given by
Uo
v | | 2wy cariray, (T - (1 + H ) a)]
Ulr/a)
and take u : [0,T] — C™ satisfying u(T —nA) = U, for every n € [0, |T /A |]. It follows immediately

from (5.4) that the solution of (5.1) with initial condition X and control u satisfies Cx (T)=xi, and
hence, by Lemma 5.1, £(A, B, A) is relatively controllable in time 7. [ |
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Thanks to Cayley—Hamiltion Theorem, Corollary 5.2 allows one to obtain an upper bound on the
minimal controllability time for X(A, B, A) with commensurable delays.

Lemma 5.3. Let A = (Ay,...,An) € My(C)N, B € My,(C), and A = (Ay,...,An) € (0,+o0)N.
Assume that A has commensurable components. If there exists T > 0 such that ¥(A,B, A) is relatively
controllable in time T, then its minimal controllability time Ty, satisfies Tin < (d — 1) Amax-

Proof. For j € [1,K], set
Ci=(04j-na¢ 1da Oy (k—ja) € Maka(C).

In particular, 61 — C. For every j € [2,K], one has (?JK = 6j_1, and thus C = 61(2’(_1. Hence, for
every k € N, one has

(CB CAB CA*B ... CA'B) = (CeAX"'B CyAkB CeAK™B ... CrdKH15).
Moreover, since éKXi = 61(_ j forevery j € [0,K — 1], one computes, for j € [0,K — 2], aazl\fﬁ =
Ck_ j§ = 0, which shows that

tk(CB CAB CA2B ... CA'B)=rk(CxB CxAB CxA2B - Ced—1). (55

Let T > 0 be such that £(A, B, A) is relatively controllable in time 7. If T < (d — 1) Amax, one has
immediately that T, < (d — 1)Amax. If T > (d — 1) Ajax, one has, by Corollary 5.2 and (5.5), that

k(CcB CxAB CxA - CxANIASIE) = a.
By Cayley-Hamilton Theorem, since A € Mkaq(C), this implies that
d—1k(CeB CxAB Col’B - CeARHTAB) — 1k (B CedB Cx®B - Crdkd1B)

since K+ |T/A] —1 > Kd — 1. Hence, by Corollary 5.2 and (5.5), it follows that £(A,B,A) is
relatively controllable in time 7 = K(d — 1)A = (d — 1) Amax, Which yields Tiyin < (d — 1)Apax. B

Now that Lemma 5.3 has established a uniform upper bound on the minimal controllability time
for £(A,B,A) with commensurate delays, one can use Theorems 4.5 and 4.7 in order to deduce a
uniform upper bound for all delay vectors A € (0, +oo)V,

Theorem 5.4. Let A = (Ay,...,An) € Ma(C)N, B€ My ,u(C), and A = (Ay,...,Ay) € (0,4)V. If
there exists T > 0 such that X(A, B, A) is relatively controllable in time T, then its minimal controlla-
bility time Ty, satisfies Trin < (d — 1) Amax-

Proof. Let £ > 0 and choose L € (0, +o0)N according to Theorem 4.7. Then X(A,B, L) is relatively
controllable in time 7. Thanks to Lemma 5.3, the minimal controllability time Tn(fg for X(A,B,L)
satisfies 75 < (d — 1)Lmax, and, in particular, £(A, B, L) is relatively controllable in time (d — 1) Liax.

min
Hence, by Theorem 4.5, £(A, B, A) is relatively controllable in time (1 + €)(d — 1)Lmax, which proves
that the minimal controllability time Ty, for £(A, B, A) satisfies Tin < (1 4+€)(d — 1)Lmax < (1+

€)(d — 1)Amax- Since € > 0 is arbitrary, one concludes that Tii, < (d — 1) Amax. [ |
Remark 5.5. The statements and proofs of the results from this section and the previous one can be
slightly modified to show that, for every A = (Ay,...,Ax) € My(C)N, B € My u(C), A= (Ay,...,AN)
€ (0,4o), and T > (d — 1) Amax, one has

Span{Eﬁl]Bw ‘ M eNp, An<T,we (Cm}
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- Span{iﬁﬂBw ‘ ] € Na, A n < (d—1)Amax, W E Cm} .

The set V = Span{@ﬁl]Bw ‘ ] € Npa, A n < (d—1)Amax, W € (C’"} is the set of all states x; € C¢
that can be reached by the system L(A, B, A) after time T > (d — 1) Apax starting from a zero initial
condition.

When N = 1 and the controlled difference equation (1.1) becomes x(¢) = Ax(t — A) + Bu(t) with
A=A and A = Ay, Kalman decomposition (see, e.g., [30, Lemma 3.3.3]) states that there exists an
invertible matrix P € M, (C) such that

—1_ (A A B,
et (A 4) e ()
withAj; € M,.(C), Ay € My_,(C), By € M,,,(C), where r = dimV, the pair (A, B;) is controllable,
and PV = C" x {0}¢~" = Span{ey,...,e,}.
Such decomposition does not hold for larger N in general, i.e., one cannot find in general, for
A= (Ay,...,An) € My(C)N, B € My,,(C), and A € (0,+o0)" for which (A, B, A) is not relatively
controllable in any time 7' > 0, a matrix P € M4(C) for which one would have, for every j € [1,N],

(1) 40)
papt = (AT AR .,  PB= Bi (5.6)
J 0 A(]) 0
22

withAE’P e M, (C), Aé’; € My—»(C), B € M,,,(C), with r € [0,d — 1] and such that Z(A(lll), . ,Aﬂ’),

By, A) is relatively controllable in time 7 > (r — 1)Apax. Indeed, consider the case N = 2, d = 4,
m=1, A= (1,¢) for some ¢ € (%, 1), and

0 1 00 ;0 -10 0
2 0 00 0 7n+1 1 0
Ai=Lo 7 0 1] A= 0 1 ol B=1y
-3 V2 00 vV3i 0 0 2 1
Notice that

Span{Z,B |n = (n1,n;) € N, ny +fny <3}

= Span{E(O’O)B,E(O’l)B,5(072)3,3(0’3)373(1’0)3,5(171)3,3(1’2)373(2’0)3,5(271)3,3(3’0)3}
0 0 0 0 0 0 0 0
“spand | O] [ 1], [73 m?+4n+7| [0 0 V2 0
oj"fof [ o |’ 0 N1\ w3 | 2P an+T || V2
1/ \2 4 8 0 V2 (5+7m)V2 0
= {0} x C?,

and thus, by the definition of relative controllability and Theorem 4.5, one obtains that X(A,B,A)
is not relatively controllable in any time 7 > 0. We claim that this system cannot be decomposed
under the form (5.6). If it were the case, one immediately verifies from (5.6) that the vector space
V = P~1(C" x {0}*~") would contain B and be invariant under left multiplication by A; and A,.
Such invariance implies in particular that 2,8 € V for every n € N2, and thus {0} x C*> C V. Such
invariance then also implies that

0 1

1 0
VoA 0 = - ,

0 V2
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which shows that V = C*, contradicting the fact that V = P~1(C" x {0}*~") for an invertible P €
M4(C) and r € [0,3]. Hence £(A, B, A) cannot be put under the form (5.6).

Theorem 5.4 shows that, given A = (Aj,...,Ay) € Mu4(C)Y, B € My,,(C), and A € (0,+o0)",
if one wants to check whether (A, B, A) is relatively controllable in some time 7' > 0, it suffices to
verify whether it is relatively controllable in time (d — 1) Apax. i.€., if

Span{iﬁﬂBw ‘ M €Ny, A< (d—1)Amax, W € (Cm} =

or, equivalently, if

Span {Eﬁl]Be j

[n]eNA,A-ng(d—l)Amax,jeﬂl,m]]}:(cd, (5.7)

where e, ..., ey, is the canonical basis of C™. The set whose span is evaluated in the left-hand side of
(5.7) is finite, its cardinality being upper bounded by m#{n € NV | |n|; < (d — 1) Amax/Amin }> Which is
large when Apax /Amin is large. The next results provides a way of improving such upper bound, and
hence reducing the number of elements to be evaluated in order to study the relative controllability of
L(A,B,A).

Theorem 5.6. Let A= (Ay,...,Ay) € My(C)N, B€ My,,(C), and A,L € (0,+o0)N with A < L. Then
Y(A,B,A) is relatively controllable in some time T > 0 if and only if

span { Ey e, ’ 0] € Na, L+n < (d = ey, j € [1,m] } =C*. (5.8)
Proof. If (5.8) is satisfied, then, since A-n < %L -n for every n € N¥, one obtains that
¢! = Span {2y Be; ‘ [n] € Na, Lon < (d = 1)Ly, j € [1m1]}

C Span {if}l]Be j

L

] €NA, A n < (d—1)Apax——, j € [[1,m]]}
Lmin

L ax

max L:‘m , and thus also in

which proves that X(A, B, A) is relatively controllable in time 7' = (d — 1)A
time 7 = (d — 1) Amax thanks to Theorem 5.4.

Let € > 0. Write A = M/, with M € My ;,(N) for some /2 € [1,N] and £ = (¢y,...,0;) € (0,+o0)"
with rationally independent components, chosen according to Proposition 4.3. Since A < L, it follows
from Proposition 4.3 that L € RanM, and thus there exists r € R” such that L = Mr. Take re € R”
with rationally independent components satisfying |r—re|., < €/|M]|.., and set Lg = Mre. Then
|L — L¢|., < € and, in particular, L¢ € (0, —l-oo)N for € small enough. Notice that Lg ~ A, since A < L¢
by construction and, if n € NV is such that L¢ -n = 0, then nTMr, = 0, which implies, from the
fact that re has rationally independent components and that nTM is a row vector of integers, that
n'M=0, yielding A-n = nTM/¢ =0, and thus L. < A. Since A = L, it follows from Theorem 4.5
that X(A, B, A) is relatively controllable in some time 7' > 0 if and only if X(A,B, L) is relatively
controllable in some time, i.e.,

Span{i[LIf]Bej ‘ m] € Np,, Le - n < (d—1)Lg max, J € [[1,m]]} = .
By Proposition 4.4, this is equivalent to

Span {Eﬁl]Be j

] € N, Le 0 < (d— 1)Lemax, j € [[l,m]]}:(cd. (5.9)

Notice that, if £ is small enough, then, for everyn € NV, L -n < (d — 1)L¢ ayx implies L-n < (d —
1)Limax. Indeed, assume that, for every € > 0, there exists ne € NV such that Lg -ng < (d — 1)Le max

19



and L-ng > (d — 1)Lpax. Then (d — 1)Lypax < L-ng < (d — 1)Lg max + (L — L¢) - ng, which implies
that (d — 1)Lmax < L-mg < (d — 1)Liax + €(d — 1+ |ng|,) and so

(d—1)Lnax < L-ng < (d —1)Linax +€(d — 1) (1 + L““a") (5.10)

€ min

Since the set {L-n |n € NV} N[0, 7] is finite for every T > 0, one obtains that, for every K > 0, the
set (n€ NV |K < L-n<K+ 38} is empty if § > 0 is small enough. Hence, since Le max/Le min —
Limax/Lmin as € — 0, one obtains that, for € > 0 small enough, (5.10) cannot be satisfied, which proves
that L -n < (d — 1)L max implies L-n < (d — 1)Lyax for € > 0 small enough.

If X(A,B,A) is relatively controllable in some time, then (5.9) is satisfied. Hence, for € > 0 small
enough,

Cc? = Span{@f}l}Bej ’ m] € Np, Le - n < (d—1)Legmax, J € [[1,m]]}

c span{if}ﬂBej ] € Na, L-n< (d— )Liax, j € [[1,m]]} ,

which proves (5.8). [

Notice that the set whose span is evaluated on the left-hand side of (5.8) has at most m#{n €
NV | In|; < (d — 1)Lmax/Lmin} €lements, which is an improvement with respect to the upper bound
obtained previously for the set whose span is evaluated on the left-hand side of (5.7) as soon as
Liax/Lmin < Amax/Amin- Hence Theorem 5.6 allows one to algorithmically check whether £(A, B, A)
is relatively controllable in less steps than by using (5.7). In particular, since we have A < (1,1,...,1)
for every A € (0,+o0)" with rationally independent components, one obtains the following improve-
ment of (5.7) in this case.

Corollary 5.7. Let A = (Ay,...,An) € My(C)N, B € My,,(C), and A € (0,+0)N. Assume that A
has rationally independent components. Then £(A, B, A) is relatively controllable in some time T > 0
if and only if

Span {E,Be; Ine NV, |n|, <d—1, je[l,m]} =C".
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