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SMALL VOLUME OF BALLS, LARGE VOLUME ENTROPY

AND THE MARGULIS CONSTANT

STÉPHANE SABOURAU

Abstract. In his seminal work about bounded cohomology, M. Gro-
mov showed that, under some topological conditions, every closed Rie-
mannian manifold of small volume has large volume entropy. In this
article, we strengthen some aspects of this result using an alternative
approach. More precisely, we prove that, under some similar, yet differ-
ent, topological assumptions, every closed Riemannian manifold whose
volume of balls is small has large volume entropy. Along the proof of this
result, we establish a new systolic inequality involving the commutator
systole and a new curvature-free estimate relating the filling radius to
the Margulis constant.

1. Introduction

The volume entropy of a closed Riemannian manifoldM , denoted by Ent(M),
is defined as the exponential growth rate of the volume of balls in the uni-
versal Riemannian cover M̃ of M . More precisely,

Ent(M) = lim
R→∞

log[volB̃(x̃, R)]

R

where B̃(x̃, R) is the ball of radius R centered at any point x̃ of M̃ . Here,
and throughout this article, all manifolds are supposed to be connected.

The following classical result of M. Gromov relates the volume entropy –
normalized by the volume – to the simplicial volume, a nonnegative topo-
logical invariant which does not vanish for closed manifolds admitting a
negatively curved Riemannian metric.

Theorem 1.1 ([Gr82]). Let M be a closed Riemannian n-manifold. Then

Ent(M)n vol(M) ≥ cn ||M ||

where ||M || is the simplicial volume of M and cn is an explicit positive
constant depending only on n.

In short, if the volume is small then the volume entropy is large. The
proof of this theorem relies on the notions of simplicial norm and bounded
cohomology, and more specifically on the technique of diffusion of chains. A
sharp estimate on the (scale invariant) product Ent(M)n vol(M) has been
established by G. Besson, G. Courtois and S. Gallot for closed negatively
curved locally symmetric Riemannian manifolds, cf. [BCG]. The proof of
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2 S. SABOURAU

their result rests a different argument, namely the construction of a volume-
descreasing map via the barycenter method.

In this article, we strengthen some aspects of M. Gromov’s result, at least
for closed manifolds admitting a negatively curved Riemannian metric, by
relying on a yet different approach. More precisely, we prove the following.

Theorem 1.2. Let M be a closed n-manifold admitting a negatively curved
Riemannian metric. Then, there exists δ > 0 such that for every Riemann-
ian metric on M , if the volume of every ball B(R) of radius R in M satisfies

volB(R) ≤ anRn

then

Ent(M) ≥ δ

R
where an is an explicit positive constant depending only on n.

In short, if the volume of every ball of small radius is small, then the
volume entropy is large. Therefore, this condition ensures a large volume
entropy even if the volume of the whole manifold is large. Note that for

R ≥ vol(M)
1
n , we recover a lower bound on the product Ent(M)n vol(M)

to be compared with Theorem 1.1. Actually, the conclusion of Theorem 1.2
holds for a larger class of manifolds, including manifolds which do not admit
nonpositively curved Riemannian metrics, cf. Corollary 4.6. This class of
manifolds is described in terms of the topology of the loop space of their
classifying spaces, see Definition 3.1 for further details.

The proof of this theorem relies on the notion of filling radius and fill-
ing techniques introduced by M. Gromov in the context of systolic geome-
try, cf. [Gr82]. The filling radius of a closed Riemannian manifold M is a
geometric invariant denoted by FillRad(M), see Definition 4.4, related to
the volume through the following fundamental bounds of M. Gromov and
L. Guth.

Theorem 1.3 ([Gr83, Main Theorem 1.2.A], [Gu11, Theorem 1]). Let M
be a closed Riemannian n-manifold. Then

(1)

vol(M) ≥ cn FillRad(M)n

where cn is an explicit positive constant depending only on n.
(2) For every R ≤ FillRad(M), there exists a ball B(R) of radius R

in M with

volB(R) ≥ anRn

where an is an explicit positive constant depending only on n.

These estimates make any lower bound on the filling radius highly desir-
able, as it would provide a universal lower bound on the volume of the man-
ifold. In the context of curvature-free geometry, such lower bounds exist for
the injectivity radius [Gr83] (and more generally, for the local contractibility
function [GP92]), the length of the shortest noncontractible closed geodesic
(i.e., the systole) on essential manifolds [Gr83] and the length of the shortest
closed geodesic on the two-sphere [Sa04].
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In this article, we establish another curvature-free lower bound in terms
of the commutator systole. Here, the commutator systole of a closed Rie-
mannian manifold M , denoted by sys0(M), is defined as the length of the
shortest loop representing a nontrivial element in the commutator sub-
group [π1(M), π1(M)] of π1(M). That is,

sys0(M) = inf{length(γ) | [γ] 6= 0 ∈ [π1(M), π1(M)]}.
Clearly, the commutator systole is bounded from below by the systole, that
is, sys0(M) ≥ sys(M).

We obtain the following filling radius estimate.

Theorem 1.4. Let M be a closed n-manifold admitting a negatively curved
Riemannian metric. Then every Riemannian metric on M satisfies

FillRad(M) ≥ 1

32
sys0(M).

In particular,

(1)

vol(M) ≥ cn sys0(M)n (1.1)

where cn is an explicit positive constant depending only on n.
(2) For every R ≤ sys0(M), there exists a ball B(R) of radius R in M

with

volB(R) ≥ anRn

where an is an explicit positive constant depending only on n.

As previously, this result holds for a larger class of manifolds formed of
essential manifolds. However, it fails for some essential manifolds, even for
closed nonpositively curved manifolds (e.g., the product of a closed hyper-
bolic surface with a small circle). Actually, this theorem is a consequence of
a similar estimate, cf. Theorem 4.5, relating the filling radius to the Margulis
constant defined in Definition 4.1.

Theorem 1.4 is related to a more general problem in systolic geometry
connected to the notion of subgroup systole as follows. For every normal
subgroup H � π1(M), we define the H-systole of M as

sysH(M) = inf{length(γ) | [γ] 6= 0 ∈ H}.
By definition, sys0(M) = sysH(M) when H = [π1(M), π1(M)]. We say that
a closed n-manifold M satisfies a systolic inequality for H if there exists a
positive constant cM depending only on the topology of M such that

vol(M) ≥ cM sysH(M)n

for every Riemannian metric on M . From [Gr83] and [Ba93], a closed mani-
fold M satisfies a systolic inequality for H = [π1(M), π1(M)] if and only if M
is essential (e.g., aspherical). A natural question is to determine which man-
ifolds M satisfy a systolic inequality for a given proper normal subgroup H
in π1(M). For the notion of relative systole related to the quotients of the
fundamental group (and not to its subgroups), the general theory of systolic
inequality applies, cf. [Gr83], [Ba93], and yields necessary and sufficient
topological conditions for the existence of (relative) systolic inequalities.
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Unfortunately, this does not work for normal subgroup systoles and a gen-
eral theory for systolic inequalities for normal subgroups still needs to be
developed. Indeed, except for the commutator subgroup, see the inequal-
ity (1.1) in Theorem 1.4, we do not know when such inequalities hold. (For
surfaces, we actually have a stronger systolic inequality for the commutator
subgroup, which is asymptotically optimal with the genus, cf. [Sa08].) Thus,
Theorem 1.4 can be seen as a first step in the direction of a more general
theory.

2. Review of algebraic and geometric entropies

In this short section, we introduce some definitions regarding algebraic
and geometric entropies, and recall classical results relating the two notions
without proof.

Definition 2.1. Let d be a left-invariant metric on a group Γ = 〈S〉 gener-
ated by a finite set S. Denote by e the neutral element of Γ. The metric d
induces a norm | · | on Γ defined as

|α| = d(e, α)

for every α ∈ Γ. Define the entropy of (Γ, | · |) as

Ent|·|(Γ) = lim inf
R→∞

log #{α ∈ Γ | |α| ≤ R}
R

(2.1)

In the special case where Γ = 〈α, β〉 is a two-generator group and d is the
word distance with respect to the generating set {α, β}, we simply write
Ent(α, β) and refer to it as the algebraic entropy of the pair α, β.

Let (M, g) be a closed Riemannian manifold. Fix x0 ∈ M and a lift x̃0

of x0 in the universal cover M̃ . The group Γ = π1(M,x0) acts on the

universal Riemannian cover (M̃, g̃) by isometries. The geometric norm on Γ
induced by g is defined as

|α|g = dg̃(α · x̃0, x̃0)

for every α ∈ Γ. The geometric norm | · |g depends on the basepoint x̃0.
However, it is a classical result that the geometric entropy Ent|·|g(Γ) agrees
with the volume entropy Ent(M, g) defined in the introduction. That is,

Ent|·|g(Γ) = Ent(M, g).

We denote by Ent|·|g(α, β) the entropy of the subgroup 〈α, β〉 of Γ with
respect to the restriction of the geometric norm on Γ induced by g. We refer
to it as the geometric entropy of the subgroup 〈α, β〉.

In the sequel, we will only consider the algebraic and geometric entropies
(for which the liminf in (2.1) is a limit by submultiplicativity of the counting
function up to some constant shift). We recall the following classical esti-
mates regarding the algebraic and geometric entropies of a pair of elements
in the fundamental group of a closed Riemannian manifold (the proofs are
straightforward and are left as an exercice).

Proposition 2.2. Let α, β ∈ Γ and φ : Γ→ G be a group homomorphism.
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(1)

Ent(φ(α), φ(β)) ≤ Ent(α, β)

(2)

Ent|·|g(α, β) ≤ Ent(M, g)

(3) If |α|g ≤ L and |β|g ≤ L for some positive real L, then

Ent(α, β) ≤ L× Ent|·|g(α, β).

In particular,

Ent(α, β) ≤ L× Ent(M, g).

(4) If α and β commute then

Ent(α, β) = 0.

3. Free loop space of Eilenberg-MacLane spaces

In this section, we describe the topology of the loop space of the Eilenberg-
MacLane spaces corresponding to discrete groups satisfying some algebraic
features. The topology of these loop spaces will play a crucial role in our
arguments.

We first need to introduce some group-theoretical properties.

Definition 3.1. Let G be a discrete group. Consider the following algebraic
property.

(P0) The centralizer

Cα = {β ∈ G | αβ = βα}

of every nontrivial element α of G is an infinite cyclic subgroup.

Consider also the following algebraic property with δ > 0.

(Pδ) The algebraic entropy of every pair α, β of elements of G which do
not lie in the same infinite cyclic subgroup is at least δ. That is,

Ent(α, β) ≥ δ.

From Proposition 2.2.(4), the property (Pδ) implies (P0) and can be viewed
as a quantitative version of (P0).

Example 3.2. Torsion-free Gromov hyperbolic groups satisfy the prop-
erty (P0), cf. [Gr87]. In particular, this is the case for the fundamental
group π1(M) of every closed Riemannian n-manifoldM of curvature κ ≤ −1.
Actually, the fundamental group π1(M) also satisfies the stronger prop-
erty (Pδ) for some δ uniformly bounded from above in terms of natural
Riemannian invariants of M . More precisely, this holds true in either of the
following cases:

(1) for every δ ≤ δ(n, λ), where λ is a (negative) lower bound on the
curvature, cf. [BCG11];

(2) for every δ ≤ δ(n, i0), where i0 is a lower bound on the injectivity
radius, cf. [BCG].
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Definition 3.3. A nontrivial element α in a discrete group G is primitive
if it cannot be written as the power of any element in G. That is, if α = ωm

for some ω ∈ G and m ∈ Z then m = ±1.

The following lemma underlines some algebraic consequences of the prop-
erty (P0).

Lemma 3.4. Let G be a discrete group satisfying the property (P0). Let α
and β be two nontrivial elements in G. Then

(1) The group G is torsion-free.
(2) The generators of the (infinite cyclic) centralizer Cα are primitive.
(3) If α and β commute then Cα = Cβ. In particular, every nontriv-

ial element of G lies in a unique maximal infinite cyclic subgroup,
namely its centralizer.

Proof. The centralizers of the nontrivial elements of G are infinite cyclic
subgroups and so are torsion-free. It follows that G itself is torsion-free
since any nontrivial element of G lies in its own centralizer.

Let α0 be a generator of Cα. Suppose that α0 = ωm for some ω ∈ G
and some integer m. Clearly, ω commutes with α, that is, ω ∈ Cα = 〈α0〉.
Thus, ω = αk0 for some integer k. Therefore, α0 = αkm0 . Now, since G is
torsion-free, we deduce that km = 1, and so m = ±1.

Let α0 and β0 be some generators of Cα and Cβ. Since β ∈ Cα = 〈α0〉, we

have β = αj0 for some integer j. Thus, α0 commutes with β, that is, α0 ∈ Cβ.
Therefore, the centralizer Cα, which is generated by α0, is a subgroup of Cβ.
Switching the roles of α and β, we derive Cα = Cβ. �

Definition 3.5. Let G be a discrete group and BG = K(G, 1) be the
Eilenberg-MacLane space of G. Denote by Λ(BG) = Map(S1, BG) the free
loop space of BG and by Ω(BG) the space of loops based at the same fixed
point ∗ in BG. Both spaces are endowed with the compact-open topology.

The homotopy type of the free loop space of BG is closely related to
the algebraic properties of G. We refer to [Bur89] and references therein
for a description of the homology group of the free loop space in terms of
the Hochschild homology of the group ring Z[G]. In our case, we will need
the following simpler description of its connected components which results
from [H74].

Proposition 3.6. Let G be a discrete group. Then the connected compo-
nents of Λ(BG) are in one-to-one correspondence with the conjugacy classes
in G.

Moreover, if G satisfies the property (P0) then

(1) the connected component of Λ(BG) containing the constant loops is
homotopy equivalent to BG;

(2) the connected components of Λ(BG) not containing the constant
loops are homotopy equivalent to the circle S1 = R/Z.

Proof. The first statement of the proposition is classical. We will focus on
the topological description of the connected components of the free loop
space following the argument of [H74]. Fix a loop γ∗ in Ω(BG) with base-
point ∗ ∈ BG and consider the connected component of Λ(BG) contain-
ing γ∗. All homotopy groups will have the point ∗ or the loop γ∗ as their
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basepoint. The natural Serre fibration

Ω(BG) ↪→ Λ(BG)
p−→ BG

γ 7−→ γ(0)

induces the long exact sequence

· · · → πn+1(BG)→ πn(Ω(BG))→ πn(Λ(BG))→ πn(BG)→ · · · → π0(BG).

Now, from the adjoint relation, cf. [Ha02, p. 395], we have πn(Ω(BG)) =
πn+1(BG) for every n ≥ 0 (hence the homotopy equivalence Ω(BG) ' G)
and πn(BG) = 0 for n ≥ 2. Thus, for n ≥ 2, we obtain

πn(Λ(BG)) = 0

while for n = 1, we derive the inclusion

p# : π1(Λ(BG)) ↪→ π1(BG).

We claim that π1(Λ(BG)) agrees with the centralizer C[γ∗] of the homotopy
class [γ∗] of γ∗ in π1(BG). Indeed, every element α in π1(BG) lies in the
image of p# if and only if there exists a map

S1 × S1 → BG

such that

• the loop c1 : S1 × {0} → BG agrees with γ∗;
• the loop c2 : {0} × S1 → BG represents α.

In this case, the homotopy classes of c1 and c2 commute. That is, α ∈ C[γ∗].
Conversely, given a loop c whose homotopy class α commutes with [γ∗], we
can construct a map

S1 × S1 → BG

such that S1 × {0} → BG and {0} × S1 → BG agree with γ∗ and c by
contracting the commutator loop γ∗cγ

−1
∗ c−1 to the basepoint ∗.

Therefore, the connected component Λγ∗ of Λ(BG) containing γ∗ is an
aspherical space with fundamental group the centralizer C[γ∗].

To conclude, we need to examine two cases depending whether the ho-
motopy class [γ∗] of γ∗ is trivial or not. In the first case, its centralizer C[γ∗]

is the whole group G and the connected component Λγ∗ is homotopy equiv-
alent to K(G, 1) = BG. While, in the second case, its centralizer C[γ∗] is
isomorphic to Z and the connected component Λγ∗ is homotopy equivalent
to the K(Z, 1)-space S1. �

Example 3.7. Let M be a closed negatively curved Riemannian manifold,
see Example 3.2. The Birkhoff curve shortening flow gives rise to a deforma-
tion retract of the free loop space. This curve shortening flow retracts each
noncontractible loop of M to the unique closed geodesic in its free homotopy
class. It also retracts contractible loops of M to points.

We conclude this section with the following important consequence of
Proposition 3.6, key to the proof of the filling radius estimate of Theorem 1.4.

Remark 3.8. Let G be a discrete group satisfying the property (P0). Every
noncontractible loop γ in BG is homotopic to the iterate γk0 of a loop γ0

whose homotopy class [γ0] generates the centralizer C[γ] and so is primitive
from Lemma 3.4. The primitive loop γ0 is unique up to orientation and
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homotopy. It can be chosen to depend only on the maximal infinite cyclic
subgroup C[γ] generated by [γ], cf. Lemma 3.4.

From Proposition 3.6, there exists a deformation retract of the unpa-
rameterized free loop space Π(BG) = Λ(BG)/O(2), which homotopes con-
tractible loops to points and noncontractible loops γ to the iterate γk0 of the
primitive loop γ0 modulo O(2). We will fix such a homotopy once and for
all, and refer to it as the deformation retract of the (unparameterized free)
loop space.

Note that this property fails for the torus T2, which obviously does not
satisfies the property (P0). Indeed, the free homotopy class of a noncon-
tractible unparameterized loop γ of T2 is homotopy equivalent to S1 (the
S1-family of closed geodesics homotopic to γ for any given flat metric, for
instance). Therefore, there is no canonical representative – up to homotopy
– to which the whole class of γ deformation retracts, instead, there is a
whole family of natural representatives parameterized by S1.

4. Filling radius and Margulis constant

In this section, we establish a universal geometric inequality, cf. Theo-
rem 4.5, between the filling radius, cf. Definition 4.4, and the Margulis con-
stant, cf. Definition 4.1, for closed Riemannian manifolds satisfying some
topological properties, cf. Proposition 3.1. As a consequence of this inequal-
ity, we derive a lower bound on the volume entropy in terms of the volume
of small balls, cf. Corollary 4.6.

We first need to introduce the definition of the Margulis constant.

Definition 4.1. LetM be a closed Riemannian manifold and φ : π1(M)→ G
be a group homomorphism. For every x ∈M and ` > 0, denote by

Γ`φ,x = 〈φ([γ]) ∈ G | x ∈ γ, φ([γ]) 6= e and length(γ) ≤ `〉

the subgroup of G generated by the φ-image of the homotopy classes of the
loops based at x of length at most `. Observe that Γ`

′
φ,x is a subgroup of Γ`φ,x

for every `′ ≤ `. Hence, if Γ`φ,x is cyclic, the same holds for Γ`
′
φ,x.

Define

`φ(M) = sup{` | Γ`φ,x is a cyclic subgroup of G for every x ∈M}.

The Margulis constant can be defined as

`0(M) = `id(M).

It is minimal among the `φ(M). More precisely, we have the following.

Proposition 4.2. Let M and φ be as above. Then

`0(M) ≤ `φ(M).

Proof. Let ` < `0(M). By definition of the Margulis constant, for ev-
ery x ∈M , the subgroup Γ`id,x is cyclic. Since every homomorphic image

of a cyclic group is cyclic, the subgroup Γ`φ,x = φ(Γ`id,x) is cyclic too. There-

fore, ` ≤ `φ(M) and the desired inequality follows. �
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The Margulis constant is related to the commutator systole through the
straightforward bound.

Proposition 4.3. Let M be a closed Riemannian manifold whose funda-
mental group satisfies the property (P0). Then

sys0(M) ≤ 4 `0(M).

Proof. By definition of the Margulis constant, there exist two loops γ1 and γ2

based at the same point of length at most `0(M) whose homotopy classes α1

and α2 do not lie in the same (infinite) cyclic subgroup. From (P0), the ho-
motopy classes α1 and α2 do not commute, that is, the commutator [α1, α2]
is nontrivial. By construction, this commutator can be represented by a
loop of length at most 4 `0(M), namely γ1γ2γ

−1
1 γ−1

2 . Hence, the commuta-
tor systole of M satisfies the bound sys0(M) ≤ 4 `0(M). �

Let us recall the notion of filling radius introduced by M. Gromov in [Gr83]
to established systolic inequalities on essential manifolds.

Definition 4.4. Let (M, g) be a closed Riemannian n-manifold. Denote
by dg the distance on M induced by the Riemannian metric g. The map

i : (M,dg) ↪→ (L∞(M), || · ||)
defined by i(x)(·) = dg(x, ·) is an embedding from the metric space (M,dg)
into the Banach space L∞(M) of bounded functions on M endowed with
the sup-norm || · ||. This natural embedding, also called the Kuratowski
embedding, is an isometry between metric spaces. We will consider M
isometrically embedded into L∞(M).

The filling radius of (M, g), denoted by FillRad(M, g), is the infimum of
the positive reals ρ such that

(iρ)∗([M ]) = 0 ∈ Hn(Uρ(M);k)

where iρ : M ↪→ Uρ(M) is the inclusion into the ρ-tubular neighborhood
of M in L∞(M), and [M ] ∈ Hn(M ;k) is the fundamental class of M . Here,
the homology coefficients are in k = Z, if M is orientable, and in k = Z2,
otherwise.

The following filling radius estimate, which holds, for instance, for every
closed manifold admitting a negatively curved Riemannian metric, cf. Ex-
ample 3.2, is key to all the volume and volume entropy bounds in this article.

Theorem 4.5. Let M be a closed n-manifold with n ≥ 2. Consider a
group homomorphism φ : π1(M) → G to a discrete group G satisfying the
property (P0). Suppose that the classifying map Φ : M → K(G, 1) induced
by φ satisfies Φ∗[M ] 6= 0 ∈ Hn(G;k). Then every Riemannian metric on M
satisfies

FillRad(M) ≥ 1

8
`φ(M).

In particular,

(1)

vol(M) ≥ cn `0(M)n

where cn is an explicit positive constant depending only on n.
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(2) For every R ≤ `0(M), there exists a ball B(R) of radius R in M
with

volB(R) ≥ anRn

where an is an explicit positive constant depending only on n.

Proof. By definition of the filling radius, the fundamental class [M ] of M
vanishes in the ρ-neighborhood Uρ(M) ofM in L∞(M), where ρ > FillRad(M).
Therefore, there exists a continuous map σ : P → Uρ(M) defined on an
(n+ 1)-dimensional simplicial complex P such that the restriction σ : ∂P →M
represents [M ] in Hn(M ;k), that is,

σ∗[∂P ] = [M ] ∈ Hn(M ; k). (4.1)

Suppose that ρ < 1
8`φ(M). We would like to construct a continuous map

F : P → K which agrees with Φ◦σ on ∂P . Combined with (4.1), this would
yield the relation Φ∗[M ] = F∗[∂P ]. Hence a contradiction with Φ∗[M ] 6= 0.
Actually, it might not be possible to construct such a map F . Still, we will
show how to adapt the arguments to obtain a contradiction.

Denote by P k the k-skeleton of P . Subdividing P if necessary, we can
assume that the diameter of the images by σ of the simplices of P is less
than ε > 0, with ε < 1

4`φ(M)− 2ρ. We first define a map

f̄ : P 0 ∪ ∂P →M

with f̄|∂P = σ by sending each vertex pi ∈ P to a nearest point σ(pi) in M ,
as we wish. Since the inclusion i : M ↪→ Uρ(M) is isometric, every pair
pi, pj of adjacent vertices of P satisfies

dM (f̄(pi), f̄(pj)) ≤ dL∞(f̄(pi), σ(pi)) + dL∞(σ(pi), σ(pj)) + dL∞(σ(pj), f̄(pj))

≤ r

with r = 2ρ + ε < 1
4`φ(M). We extend the map f̄ to P 1 by taking the

edges of P \ ∂P to minimizing segments in M joining the images of their
endpoints, as we wish.

By construction, the boundary of every 2-simplex of P is sent by f̄ to a
loop of length at most 3r. If the length was less than the systole of M , the
loop would be contractible in M . We could define a map P 2 ∪ ∂P →M ex-
tending f̄ to the 2-simplices of P . The composition of this map with Φ could
then be extended to a map F : P → K by asphericality of K leading to the
desired contradiction. This is the original argument developed by Gromov in
the proof of the systolic inequality on essential manifolds, cf. [Gr83]. How-
ever, in our case, the boundary of some 2-simplex of P might be mapped to
a noncontractible loop of M . Indeed, we only know that it is sent to a loop
of M of length at most 3r, not necessarily shorter than the systole of M .

Consider the composite map

f = Φ ◦ f̄ : P 1 ∪ ∂P → K

Let us introduce the following definition. Given a k-simplex ∆ of P , we will
say that ∆ extends well to K if the image f(∂∆2) of the boundary ∂∆2 of
every 2-simplex ∆2 of ∆ is contractible in K. As noticed above, for such a
simplex, the map f : P 1 ∪ ∂P → K extends to ∆ by asphericality of K.
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For other simplices, we need to make use of the far-reaching consequences
of the property (P0) summarized in Proposition 3.6 and Remark 3.8. Specifi-
cally, we proceed as follows. Let ∆ be a 2-simplex of P which does not extend
well to K, that is, f(∂∆) is homotopically nontrivial in K. The deforma-
tion retract of the loop space of K given by Proposition 3.6 and Remark 3.8
gives rise to a homotopy from f(∂∆) to a closed curve depending only on
the nontrivial homotopy class of f(∂∆). This closed curve is the iterate
of a primitive loop γ∆, namely the generator (up to reparametrization) of
the unique maximal infinite cyclic subgroup containing the homotopy class
of f(∂∆). In particular, the image f(∂∆) is freely homotopic to γk∆ for some
integer k.

At this point, we want to emphasize that our construction strongly relies
on the deformation retract of the loop space of K given by Proposition 3.6
and Remark 3.8. In particular, all the loops in a homotopically nontrivial
class – here, the homotopy class of f(∂∆) – naturally deform to the same
loop up to homotopy. This will allow us to extend the map f to the sim-
plex ∆ in a way compatible with an extension to the 3-skeleton P 3, and
ultimately to the whole complex P .

Define the cellular complex

X = K ∪

(⋃
∆∈C

D∆

)
by gluing a 2-cell D∆ along γ∆ for every 2-simplex ∆ of P such that f(∂∆)
is noncontractible in K. By construction, every loop f(∂∆) is contractible
in X. More precisely, every loop f(∂∆) is contractible in

K∆ ∪D∆

where K∆ is the cover of K with fundamental group the subgroup of G
generated by the homotopy class of γ∆. By definition of γ∆, this subgroup
is isometric to Z. Thus, the space K∆ has the same homotopy type as
S1 = K(Z; 1). It follows that the space K∆ ∪ D∆ is homotopy equivalent
to D∆ and so to a point. Therefore, the map

f : P 1 ∪ ∂P → K ↪→ X

extends to

f : P 2 ∪ ∂P → X.

Now, contrary to K or K∆ ∪ D∆, the whole space X might not be as-
pherical (it is not difficult to construct such examples). Therefore, we need
to rely on other arguments to show that f : P 2 ∪ ∂P → X extends to P .

Let ∆1 and ∆2 be two 2-simplices of P lying in the same (n+ 1)-simplex.
These two simplices can be connected by an edge e = [p1, p2] of P (which
may be empty if they have a vertex in common) whose endpoints pi are
vertices of ∆i. The edge e decomposes into two segments e1 = [p1, p] and
e2 = [p2, p] with a common endpoint p such that the arcs f̄(e1) and f̄(e2)
have the same length in M . By construction, the two loops

f̄(ei) ∪ f̄(∂∆i) ∪ f̄(ei)
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of M based at f̄(p) are of length at most 4r. Since 4r < `φ(M), the image
by Φ of these two loops generate a cyclic subgroup in homotopy. In partic-
ular, if none of the loops f(∂∆i) is contractible in K, then γ∆1 = γ∆2 up to
reparametrization. This observation is key for our argument.

Let ∆3 be a 3-simplex of P which does not extend well to K. As observed
above, the loops γ∆2 , and so the spaces K∆2 ∪D∆2 , are the same for every
2-simplex ∆2 of ∆3 such that f(∂∆2) is noncontractible in K. We will
denote them by γ∆3 and K∆3 ∪D∆3 , since they only depend on ∆3 and not
on the 2-simplices ∆2. By construction, the map f takes the boundary ∂∆3

of ∆3 to K∆3 ∪D∆3 before projecting it to X. As the space K∆3 ∪D∆3 is
contractible, the map

∂∆3 → K∆3 ∪D∆3

extends to ∆3 and gives rise to a map

f : ∆3 → K∆3 ∪D∆3 → K ∪D∆3 ↪→ X

where the second map is given by the covering map K∆3 → K. Note that
the loop γ∆3 along which the 2-cell D∆3 is attached remains fixed under this
covering map.

This argument carries over by induction on the k-skeleton P k of P as
follows. By induction, the map f : P k−1 ∪ ∂P → X extends to a map
f : P k ∪ ∂P → X, where the restriction of f to every k-simplex ∆k which
does not extend well to K decomposes as

f : ∆k → K∆k ∪D∆k → K ∪D∆k ↪→ X (4.2)

and the second map is given by the covering map K∆k → K. The key
point to extend the map f : ∂∆k+1 → X to ∆k+1 is to observe that the
contractible spaces K∆k ∪D∆k are the same for every k-simplex ∆k of ∆k+1

which does not extend well to K, as previously noticed. We will denote this
space by K∆k+1 ∪D∆k+1 . Thus, the map

∂∆k+1 → K∆k+1 ∪D∆k+1

given by the first map of (4.2) extends to ∆k, which concludes the proof of
the induction.

In conclusion, the map

∂P
σ−→M

Φ−→ K ↪→ X

extends to f : P → X. For n ≥ 3, the composite map M
Φ−→ K ↪→ X

induces a nontrivial homomorphism between Hn(M ;k) and Hn(X;k). This
leads to a contradiction since f∗[∂P ] agrees with the nonzero homology
class Φ∗[M ] in Hn(M ; k) = Hn(X;k). For n = 2, we assume that all the
maps are simplicial. Let B be an open 2-cell in the 2-skeleton K2 of K lying
in the support of the homologically nontrivial 2-cycle given by the image
of M under Φ. Consider the map

K2 ↪→ X2 → S2 = B/∂B

defined by collapsing all the points of X2 lying outside B to a single point.
The pre-composition of this map with Φ induces a monomorphism between
H2(M ;k) and H2(S2; k). Hence a contradiction as above.
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It follows that the closed Riemannian manifoldM does not bound in Uρ(M)
with ρ < 1

8`φ(M). Hence the inequality FillRad(M) ≥ 1
8`φ(M). �

Corollary 4.6. Let M be a closed n-manifold as in Theorem 4.5, where
the group G satisfying the property (Pδ) for some δ > 0 (see for instance
Example 3.2). Then every Riemannian metric on M satisfies

vol(M) Ent(M)n ≥ cn δn

where cn is an explicit positive constant depending only on n.
Moreover, there exists an explicit positive constant an depending only on n

such that if the volume of every ball B(R) of radius R ≤ vol(M)
1
n in M

satisfies
volB(R) ≤ anRn

then

Ent(M) ≥ δ

R
.

Proof. By definition of `φ(M), there exist two loops γ1 and γ2 based at the
same point of M , of length at most `φ(M), such that the images by φ of
the homotopy classes α1 = [γ1] and α2 = [γ2] do not lie in the same infinite
cyclic subgroup of G. From the property (Pδ) and Proposition 2.2.(1)-(3),
we have

δ ≤ Ent(φ(α1), φ(α2)) ≤ Ent(α1, α2) ≤ `φ(M) Ent(M, g).

Now, the desired result follows from a combination of this inequality with
Theorem 4.5 and Theorem 1.3. �
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