N

N

Decomposing Cubic Graphs into Connected Subgraphs
of Size Three
Laurent Bulteau, Guillaume Fertin, Anthony Labarre, Romeo Rizzi, Irena

Rusu

» To cite this version:

Laurent Bulteau, Guillaume Fertin, Anthony Labarre, Romeo Rizzi, Irena Rusu. Decomposing Cubic
Graphs into Connected Subgraphs of Size Three. The 22nd International Computing and Combina-
torics Conference (COCOON), Aug 2016, Ho Chi Minh City, Vietnam. 10.1007/978-3-319-42634-
1_32. hal-01309152

HAL Id: hal-01309152
https://hal.science/hal-01309152
Submitted on 28 Apr 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01309152
https://hal.archives-ouvertes.fr

Decomposing Cubic Graphs into Connected
Subgraphs of Size Three

Laurent Bulteau!, Guillaume Fertin?, Anthony Labarre!, Romeo Rizzi®, and
Irena Rusu?

! Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
F-77454, Marne-la-Vallée, France
2 Laboratoire d’Informatique de Nantes-Atlantique, UMR CNRS 6241, Université de
Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3, France
3 Department of Computer Science, University of Verona, Italy

Abstract. Let S = {K 3, K3, P4} be the set of connected graphs of size
3. We study the problem of partitioning the edge set of a graph G into
graphs taken from any non-empty S’ C S. The problem is known to be
NP-complete for any possible choice of S’ in general graphs. In this paper,
we assume that the input graph is cubic, and study the computational
complexity of the problem of partitioning its edge set for any choice
of S’. We identify all polynomial and NP-complete problems in that
setting, and give graph-theoretic characterisations of S’-decomposable
cubic graphs in some cases.

1 Introduction

General context. Given a connected graph G and a set S of graphs, the S-
DECOMPOSITION problem asks whether G can be represented as an edge-disjoint
union of subgraphs, each of which is isomorphic to a graph in S. The problem has
a long history that can be traced back to Kirkman [7] and has been intensively
studied ever since, both from pure mathematical and algorithmic point of views.
One of the most notable results in the area is the proof by Dor and Tarsi [3] of the
long-standing “Holyer conjecture” [6], which stated that the S-DECOMPOSITION
problem is NP-complete when .S contains a single graph with at least three edges.

Many variants of the S-DECOMPOSITION problem have been studied while
attempting to prove Holyer’s conjecture or to obtain polynomial-time algorithms
in restricted cases [12], and applications arise in such diverse fields as traffic
grooming [10] and graph drawing [5]. In particular, Dyer and Frieze [4] studied
a variant where S is the set of connected graphs with k edges for some natural
k, and proved the NP-completeness of the S-DECOMPOSITION problem for any
k > 3, even under the assumption that the input graph is planar and bipartite
(see Theorem 3.1 in [4]). They further claimed that the problem remains NP-
complete under the additional constraint that all vertices of the input graph
have degree either 2 or 3. Interestingly, if one looks at the special case where
k =3 and G is a bipartite cubic graph (i.e., each vertex has degree 3), then G
can clearly be decomposed in polynomial time, using K 3’s only, by selecting

either part of the bipartition and making each vertex in that set the center of a
K, 3. This shows that focusing on the case k = 3 and on cubic graphs can lead
to tractable results — as opposed to general graphs, for which when k£ = 3, and
for any non empty S’ C S, the S’-DECOMPOSITION problems all turn out to be
NP-complete [4, 6].

In this paper, we study the S-DECOMPOSITION problem on cubic graphs in
the case k =3 — i.e., S = {K1 3, K3, P4}. For any non-empty S’ C S, we settle
the computational complexity of the S’-DECOMPOSITION problem by showing
that the problem is NP-complete when S' = {K; 3, P;} and S’ = S, while all
the other cases are in P. Table 1 summarises the state of knowledge regard-
ing the complexity of decomposing cubic and arbitrary graphs using connected
subgraphs of size three, and puts our results into perspective.

Allowed subgraphs Complexity according to graph class
Ki3 [Kg [Py cubic [arbitrary
v in P (Proposition 3) NP-complete [4, Theorem 3.5]
v O(1) (impossible) NP-complete [6]
v in P [8] NP-complete [4, Theorem 3.4]
v Y in P (Proposition 6) [NP-complete [4, Theorem 3.5]
v v NP-complete (Theorem 2)| NP-complete [4, Theorem 3.1]
v v in P (Proposition 2) NP-complete [4, Theorem 3.4]
Vs v NP-complete (Theorem 3)| NP-complete [4, Theorem 3.1]

Table 1. Known complexity results on decomposing graphs using subsets of
{K1,37K37P4}~

Terminology. We follow Brandstidt et al. [2] for notation and terminology. All
graphs we consider are simple, connected and nontrivial (i.e. |[V(G)| > 2 and
|E(G)| > 1). Given a set S of graphs, a graph G admits an S-decomposition, or
is S-decomposable, if E(G) can be partitioned into subgraphs, each of which is
isomorphic to a graph in S. Throughout the paper, S denotes the set of connected
graphs of size 3, i.e. S = {K3, K1 3, P1}. We study the following problem:

S’-DECOMPOSITION

Input: a cubic graph G = (V, E), a non-empty set S’ C S.
Question: does G admit a S’-decomposition?

We let G[U] denote the subgraph of G induced by U C V(G). Given a graph
G = (V,E), removing a subgraph H = (V' C V,E' C FE) of G consists in
removing edges E’ from G as well as the possibly resulting isolated vertices.
Finally, let G and G’ be two graphs. Then:

— subdividing an edge {u,v} € E(G) consists in inserting a new vertex w into
that edge, so that V(G) becomes V(G) U {w} and E(G) is replaced with
E(G)\ {u, v} U {w, w} U {w, v};

— attaching G’ to a vertex u € V(G) means building a new graph H by iden-
tifying u and some v € V(G');

— attaching G' to an edge e € E(G) consists in subdividing e using a new
vertex w, then attaching G’ to w.

Figure 1 illustrates the process of attaching an edge to an edge of the cube
graph, and shows other small graphs that we will occasionally use in this paper.

Jdeo
H - 7 > A
(a) (b) (c) (d)

Fig.1. (a) Attaching a new edge to {u,v}; (b) the diamond graph; (c) the co-fish
graph; (d) the net graph.

2 Decompositions Without a K 3

In this section, we study decompositions of cubic graphs that use only P,’s or
K3’s. Note that no cubic graph is { K3 }-decomposable, since all its vertices have
odd degree. According to Bouchet and Fouquet [1], Kotzig [8] proved that a cubic
graph admits a {P,}-decomposition iff it has a perfect matching. However, the
proof of the forward direction as presented in [1] is incomplete, as it requires the
use of Proposition 1.(b) below, which is missing from their paper. Therefore, we
provide the following proposition for completeness, together with another result
which will also be useful for the case where S' = {K3, P4}.

Proposition 1. Let G be a cubic graph that admits a {Ks, Py}-decomposition
D. Then, in D, (a) no Ks is used, and (b) no three Py’s are incident to the
same vertez.

Proof. Partition V(G) into three sets Vi, Vo and Vi, where V; (resp. Va, V3) is
the set of vertices that are incident to exactly one P, (resp. two, three P4’s) in
D. Note that V; is exactly the set of vertices involved in K3’s in D. Let n; = |V;],
1 <4 < 3. Our goal is to show that n; = n3 =0, i.e. V3 = V3 = (). For this, note
that (1) each vertex in V3 is the extremity of three different P,’s, (2) each vertex
in V5 is simultaneously the extremity of one P4 and an inner vertex of another
Py, while (3) each vertex in V; is the extremity of one Pj. Since each Py has two
extremities and two inner vertices, if p is the number of Py’s in D, we have:

o p= 3”3‘“‘% (by (1), (2) and (3) above, counting extremities);
e p= "2 (by (2) above, counting inner vertices).

Putting together the above two equalities yields n; = ng = 0, which completes
the proof. O

Since K3’s cannot be used in cubic graphs for {K3, Py }-decompositions by
Proposition 1 above, we directly obtain the following result, which implies that
{K3, Py}-decomposition is in P.

Proposition 2. A cubic graph admits a {Ks3, Py}-decomposition iff it has a
perfect matching.

3 Decompositions Without a Py

In this section, we study decompositions of cubic graphs that use only K; 3’s or
Kg’S.

Proposition 3. A cubic graph G admits a { K 3}-decomposition iff it is bipar-
tite.

Proof. For the reverse direction, select either set of the bipartition, and make
each vertex in that set the center of a K 3. For the forward direction, let D be
a {K; 3}-decomposition of G, and let C' and L be the sets of vertices containing,
respectively, all the centers and all the leaves of K 3’s in D. We show that this
is a bipartition of V(G). First, CUL = V since D covers all edges and therefore
all vertices. Second, C'N L = () since a vertex in C'N L would have degree at least
4. Finally, each edge in D connects the center of a K; 3 and a leaf of another
K 3 in D, which belong respectively to C and L. Therefore, G is bipartite. O

We now prove that {K; 3, K3}-decompositions can be computed in poly-
nomial time. Recall that a graph is H-free if it does not contain an induced
subgraph isomorphic to a given graph H. Since bipartite graphs admit a {K; 3}-
decomposition (by Proposition 3), we can restrict our attention to non-bipartite
graphs that contain K3’s (indeed, if they were Ks-free, then only K 3’s would be
allowed and Proposition 3 would imply that they admit no decomposition). Our
strategy consists in iteratively removing subgraphs from G and adding them to
an initially empty {K; 3, K3}-decomposition until G is empty, in which case we
have an actual decomposition, or no further removal operations are possible, in
which case no decomposition exists. Our analysis relies on the following notion:
a K3 induced by vertices {u,v,w} in a graph G is isolated if V(G) contains no
vertex z such that {u,v,z}, {u,z,w} or {z,v,w} induces a K.

Lemma 1. If a cubic graph G admits a {K 3, K3}-decomposition D, then every
isolated K3 in G belongs to D.

Proof (contradiction). If an isolated K3 were not part of the decomposition,
then exactly one vertex of that K3 would be the center of a K 3, leaving the
remaining edge uncovered and uncoverable. a

Cs is a minimal example of a cubic non-bipartite graph with K3’s that ad-
mits no {K7 3, K3}-decomposition: both K3’s in that graph must belong to the
decomposition (by Lemma 1), but their removal yields a perfect matching.

Observation 1. Let G be a connected cubic graph. Then no sequence of at least
one edge or vertex removal from G yields a cubic graph.

Proof (contradiction). If after applying at least one removal from G we obtain a
cubic graph G’, then the graph that precedes G’ in this removal sequence must
have had a vertex of degree at least four, since G is connected. ad

Proposition 4. For any non-bipartite cubic graph G whose K3’s are all iso-
lated, one can decide in polynomial time whether G is {K 3, K3}-decomposable.

Proof. We build a {K; 3, K3}-decomposition by iteratively removing K 3’s and
K3’s from G, which we add as we go to an initially empty set D. By Lemma 1,
all isolated K3’s must belong to D, so we start by adding them all to D and
removing them from G; therefore, G admits a {K; 3, K3}-decomposition iff the
resulting subcubic graph G’ admits a {K; 3}-decomposition. Observe that G’
contains vertices of degree 1 and 2; we note that:

1. each vertex of degree 1 must be the leaf of some K; 3 in D;
2. each vertex of degree 2 must be the meeting point of two K 3’s in D.

The only ambiguity arises for vertices of degree 3, which may either be the center
of a Ky 3 in D or the meeting point of three K 3’s in D; however, there will
always exist at least one other vertex of degree 1 or 2 until the graph is empty
(by Observation 1.). Therefore, we can safely remove K 3’s from our graph and
add them to D by following the above rules in the stated order; if we succeed in
deleting the whole graph in this way, then D is a {K7 3, K3}-decomposition of
G, otherwise no such decomposition exists. a

We conclude with the case where the graph may contain non-isolated K3’s.

Proposition 5. If a cubic graph G contains a diamond, then one can decide in
polynomial time whether G is {K1 3, K3}-decomposable.

Proof. The only cubic graph on 4 vertices is K4, which is diamond-free and
{K1,3, K3}-decomposable, so we assume |V(G)| > 6. Let D be a diamond in
G induced by vertices {u,v,w,z} and such that {u,z} ¢ E(G), as shown in
Figure 2(a). D is connected to two other vertices ' and z’ of G, which are
respectively adjacent to u and x, and there are only two ways to use the edges
of D in a {K 3, K3}-decomposition, as shown in Figure 2(b) and (c). If v’ = 2/,
regardless of the decomposition we choose for D, v’ and its neighbourhood induce
a P3 in the graph obtained from G by removing the parts added to D. But
then that P3; cannot be covered, so no {Kj 3, K3}-decomposition exists for G.
Therefore, we assume that u’ # z’.

As Figure 2(b) and (c) show, either {u,v,w} or {v,w,z} must form a K3 in
D, thereby forcing either {v, w,z,2'} or {v/, u,v,w} to form a K; 3 in D. In both
cases, removing the K3 and the K 3 yields a graph G’ which contains vertices
of degree 1, 2 or 3. As in the proof of Proposition 4, Observation 1 allows us to
make the following helpful observations:

1. every leaf in G’ must be the leaf of some K4 3 in D;
2. every vertex y of degree two in G’ must either belong to a K3 or be a leaf

of two distinct K 3’s in D, which can be decided as follows:
(a) if y belongs to a K3 in G’, then it must also belong to a K3 in D;

otherwise, it would be the leaf of a K; 3 and the graph obtained by
removing that K 3 would contain a Pz, which we cannot cover;
(b) otherwise, y must be a leaf of two K7 3’s in D.

We therefore iteratively remove subgraphs from our graph and add them to
D according to the above rules, which we follow in the stated order; if we succeed
in deleting the whole graph in this way using either decomposition in Figure 2(b)
or (c) as a starting point, then D is a {K7 3, K3}-decomposition of G, otherwise

no such decomposition exists. a
v v v
U T U :T T U T
u/ x/ u/ / o x/ u/ fo m/
w 1,“() w
(a) (0) (c)

Fig. 2. (a) A diamond in a cubic graph, and (b), (¢) the only two ways to decompose
it in a {K1,3, K3}-decomposition.

All the arguments developed in this section lead to the following result.

Proposition 6. The {K; 3, K3}-DECOMPOSITION problem on cubic graphs is
in P.

4 Decompositions That Use Both K; 3’s and Py,’s

In this section, we show that problems {K 3, P4}-DECOMPOSITION and {K 3,
K3, P4}-DECOMPOSITION are NP-complete. Our hardness proof relies on two
intermediate problems that we define below and is structured as follows:

CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY
<p DEGREE-2,3 {K1 3, K3, P;}-DECOMPOSITION WITH MARKED EDGES (Theorem 1 page 10)
<p {K1,3, K3, P4}-DECOMPOSITION WITH MARKED EDGES (Lemma 4 page 9)
<p {K13, P,}-DECOMPOSITION (Lemma 3 page 7)

We start by introducing the following intermediate problem:

{K13, K3, P4}-DECOMPOSITION WITH MARKED EDGES

Input: a cubic graph G = (V| E) and a subset M C F of edges.

Question: does G admit a {K;j 3, K3, Ps}-decomposition D such that no
edge in M is the middle edge of a P, in D and such that every
K3 in D has either one or two edges in M?

The drawings that illustrate our proofs in this section show marked edges as
dotted edges. The proof of Lemma 3 uses the following result.

Lemma 2. Let e be a bridge in a cubic graph G which admits a {K; 3, K3, Py}-
decomposition D. Then e must be the middle edge of a Py in D.

Proof (contradiction). First note that e cannot belong to a K3 in D. Now sup-
pose e is part of a K3 3 in D. The situation is as shown below (without loss of
generality):

bank A bank B

If we remove from G the K; 3 in D that contains e, then summing the terms of
the degree sequence of G[V(B)] yields 2+3(|V(B)|—1) = 2|E(B)|, which means
that 2|E(B)| = 2 (mod 3), so |E(B)| # 0 (mod 3) and therefore B admits no
decomposition into components of size three. The very same argument shows
that if e belongs to a P, in D, then it must be its middle edge, which completes
the proof. a

Lemma 3. Let (G, M) be an instance of {K1,3, K3, Py }-DECOMPOSITION WITH
MARKED EDGES, and G’ be the graph obtained by attaching a co-fish to every
edge in M. Then G can be decomposed iff G’ admits a {K1 3, Ps}-decomposition.

Proof. We prove each direction separately.

=: we show how to transform a decomposition D of (G, M) into a decomposition
D’ of G’. The subgraphs in D that have no edge in M are not modified. For
the other subgraphs, we distinguish between four cases:
(a) if an edge of M belongs to a K 3 in D, then attaching a co-fish does not
prevent us from adapting the decomposition of G in G:

N N

(b) if an edge of M belongs to a Py in D, then it is an extremity of that Py
and attaching a co-fish does not prevent us from adapting that part of
the decomposition:

P

(c) if a K3 in D has one edge in M, we can adapt the partition as follows:

(d) if a K5 in D has two edges in M, we can adapt the partition as follows:

Q

O——0

<: we now show how to transform any {K 3, P }-decomposition D’ of G’ into a
decomposition of (G, M). Again, the only parts of D’ that will need adapting
are those connected to the co-fishes that we inserted when transforming G
into G’. Since the leaf u of the co-fish we inserted has a neighbour x such that
{u,z} is a bridge in G’, {u,z} is the middle edge of a P, in D’ (Lemma 2)
and we may therefore assume without loss of generality that our starting
point in G’ is as follows:

v
Q
x v
G — G
UNW
(o]
w

with {v,w} € E(G’) since G is simple; therefore {u,w} cannot belong to a

K3 in G’, and we have two cases to consider:

(a) if {u,w} belongs to a K7 3 in D', that K 3 can be mapped onto a K 3
in D by replacing {u,w} with {v,w};

(b) otherwise, {u,w} is an extremal edge of a Py in D’; since {u,w} ¢ E(G),
either that edge will remain in a P, when removing the co-fish and
replacing {u, w} with {v,w}, or it will end up in a K3 with either one or
two marked edges. Either way, the part can be added as such to D. O

We now show that we can restrict our attention to the following variant
of {K;3, K3, P;}-DECOMPOSITION WITH MARKED EDGES. We say a graph is
degree-2,3 if its vertices have degree only 2 or 3.

DEGREE-2,3 {K3 3, K3, P;}-DECOMPOSITION WITH MARKED EDGES

Input: a degree-2,3 graph G = (V, E) and a subset M C FE of edges.

Question: does G admit a {K7 3, K3, Ps}-decomposition D such that no
edge in M is the middle edge of a P, in D and such that every
K3 in D has either one or two edges in M?

The following observation will help.

Observation 2. Let G be a degree-2,3 graph with |Va| degree-2 vertices. If G is
{K1,3, K3, Py }-decomposable, then |Va] =0 (mod 3).

tl tl
0

/ Ugl /\
lo; 0.

o V2 v3 o o Vg V3 o
t2 t3 t2 t3

(a) (0)

Fig. 3. Adding a net (a) to a graph with degree-2 vertices t1, t2, t3 (dotted edges belong
to M), and (b) its only possible decomposition (up to symmetry).

Proof. It G = (V,E) admits a {K; 3, K3, Ps}-decomposition, then |E| = 0
(mod 3). Let V5 and V3 be the subsets of vertices of degree 2 and 3 in G. Then
2|Va| + 3|V5| = 2|E], so 2|Va2| =0 (mod 3). O

We prove that allowing degree-2 vertices does not make the problem substantially
more difficult, by adding the following gadgets until all vertices have degree 3. Let
(G, M) be an instance of DEGREE-2,3 {K7 3, K3, P;}-DECOMPOSITION WITH
MARKED EDGES, where G has at least three degree-2 vertices t1, t2, t3; by adding
a net over {t1,ts,t3}, we mean attaching a net by its leaves to vy, vo and vs and
adding the edges incident to the net’s leaves to M (see Figure 3(a)).

Proposition 7. Let (G, M) be an instance of DEGREE-2,3 {K1 3, K3, P4}-DE-
COMPOSITION WITH MARKED EDGES, where G has at least three degree-2 vertices
t1,ta,t3, and let (G',M') be the instance obtained by adding a net to (G, M).
Then (G',M’) has three degree-2 vertices less than (G, M), and (G, M) can be
decomposed iff (G', M) can be decomposed.

Proof. By construction, G’ has fewer degree-2 vertices, since t1, t2, t3 now have
degree 3 instead of 2, other vertices of G are unchanged, and new vertices
{v1, v2,v3} have degree 3. We now prove the equivalence.

= given a decomposition D for (G, M), we only need to add the K 3 induced

by {v1,t1,v2,v3} and the Py induced by {to,v9,v3,t3} to cover the edges

of the added net in order to obtain a decomposition D’ for (G', M’) (see
Figure 3(b)).

<: we show that the only valid decompositions must include the choice we made

in the proof of the forward direction. Indeed, the marked edges cannot be

middle edges in a P4, and the K3 induced by v, v2 and v3 cannot appear as a

K3 in a decomposition. Moreover, no marked edge can be the extremity of a

P4 with two edges lying in the K3, since this would force another marked edge

to be the middle edge of a P;. Therefore the only possible decomposition of

the net is the one defined above (up to symmetry), and we can safely remove

the Py and the K 3 from D’ while preserving the rest of the decomposition.

O

Lemma 4. DEGREE-2,3 {K; 3, K3, P;}-DECOMPOSITION WITH MARKED EDGES
<p {K1,3, K3, P,}-DECOMPOSITION WITH MARKED EDGES.

Proof. Given an instance (G, M) of DEGREE-2,3 {K3 3, K3, P;}-DECOMPOSI-
TION WITH MARKED EDGES, create an instance (G’, M') by successively adding
a net to any triple of degree-2 vertices, until no such triple remains. By Propo-
sition 7, (G, M) is decomposable iff (G', M") is decomposable. Moreover, either
G’ is cubic (hence (G',M’) is an instance of {K7 3, K3, P4}-DECOMPOSITION
WITH MARKED EDGES), or G is trivially a no-instance by Observation 2. ad

Finally, we show that DEGREE-2,3 {K; 3, K3, P;}-DECOMPOSITION WITH
MARKED EDGES is NP-complete. Our reduction relies on the CUBIC PLANAR
MONOTONE 1-IN-3 SATISFIABILITY problem [9]:

CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY

Input: a Boolean formula ¢ = C; ACy A - -+ A C, without negations over
aset X = {x1,29,...,2,}, with exactly three distinct variables
per clause and where each literal appears in exactly three clauses;
moreover, the graph with clauses and variables as vertices and
edges joining clauses and the variables they contain is planar.

Question: does there exist an assignment of truth values f : X — {TRUE,
FALSE} such that exactly one literal is TRUE in every clause of ¢?

Theorem 1. DEGREE-2,3 {K3 3, K3, P;}-DECOMPOSITION WITH MARKED ED-
GES is NP-complete.

Proof. We first show how to transform an instance ¢ = C;1 ACo A --- AN C),
of CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY into an instance (G, M)
of DEGREE-2,3 {K; 3, K3, P;}-DECOMPOSITION WITH MARKED EDGES. The
transformation proceeds by:

1. mapping each variable x; onto a K 3 denoted by K (x;) and whose edges all
belong to M;

2. mapping each clause C = {x;, z;, xx} onto a cycle with five vertices in such
a way that K(z;), K(x;) and K(xz)) each have a leaf that coincides with a
vertex of the cycle and exactly two such leaves are adjacent in the cycle.

Figure 4 illustrates the construction, which yields a degree-2,3 graph. We now
show that ¢ is satisfiable iff (G, M) admits a decomposition.

=-: we apply the following rules for transforming a satisfying assignment for ¢
into a decomposition D for (G, M):

— if variable x; is set to FALSE, then the corresponding K (z;) is added as
such to D;

— otherwise, the three edges of K(x;) will be the meeting points of three
different K, 3’s in the decomposition, one of which will have two edges
in the current clause gadget.

Two cases can be distinguished based on whether or not a leaf of K(x;) is
adjacent to a leaf of K(x;) or K(x), but in both cases the rest of the clause
gadget yields a P, that we add as such to the decomposition (see Figure 4(b)
and (c)).

10

<: we

now show how to convert a decomposition D for (G, M) into a satisfying

truth assignment for ¢. First, we observe that D must satisfy the following
crucial structural property:

For each clause C = (z; V z; V x1), exactly two subgraphs out of

K(z;), K(z;) and K(z}) appear as K; 3’s in D.

Indeed, G is K3-free by construction, and:

(a)
(b)

if all of them appear as K 3’s in D, then the remaining five edges of the
clause gadget cannot be decomposed;

if only K (x;) appear as a Ky 3 in D, then x; — without loss of generality
— must be a leaf either of a K 3 in D with a center in the clause gadget
or of a Py in D with two edges in the clause gadget (the P, cannot connect
xj and xy, otherwise the rest of the gadget cannot be decomposed); in
both cases, the remaining three edges of the clause gadget must form a
Py, thereby causing K () to appear as a Kj 3 in D, a contradiction (a
similar argument allows us to handle K (z;) and K (zx));

finally, if none of them appear as K 3’s in D, then z; must be the leaf
either of a K; 3 in D with a center in the clause gadget, or of a Py
with two edges in the clause gadget; in both cases, the remaining three
edges of the clause gadget must form a P, in D, which in turn makes it
impossible to decompose the rest of the graph.

Therefore, D yields a satisfying assignment for ¢ in the following simple way:
if K(x;) appears as a K1 3 in D, set it to FALSE, otherwise set it to TRUE. O

Theorem 2. {K; 3, P;}-DECOMPOSITION is NP-complete.

Proof. Immediate from Lemmas 3 and 4 and Theorem 1. a
o. i .0 o. Ti .0 0. Ti .0
(SR 00 o o"‘:»» “v""o o (o R Q0
T Tk T Tk Zj Tk
o o o o o o
(a) (b) (c)
Fig. 4. (a) Connecting clause and variable gadgets in the proof of Theorem 1; dotted

edges belong to M. (b),(c¢) Converting truth assignments into decompositions in the
proof of Theorem 1; the only variable set to TRUE is mapped onto a K3 in the
decomposition; (b) shows the case where the only variable set to TRUE — namely, x;
— is such that K (z;) has no leaf adjacent to a leaf of K(z;) nor K(zx); (c) shows the
other case, where z; is set to TRUE and K (z;) and K (zx) have leaves made adjacent

by the

clause gadget.

11

A like-minded reduction® allows us to prove the hardness of {K; 3, K3, Py}~
DECOMPOSITION.

Theorem 3. {K 3, K3, P4}-DECOMPOSITION is NP-complete, even on Ks-free
graphs.

5 Conclusions and Future Work

We provided in this paper a complete complexity landscape of {K1 3, K3, Py}-
DECOMPOSITION for cubic graphs. A natural generalisation, already studied by
other authors, is to study decompositions of k-regular graphs into connected
components with £ edges for k¥ > 3. We would like to determine whether our
positive results generalise in any way in that setting. It would also be interesting
to identify tractable classes of graphs in the cases where those decomposition
problems are hard, and to refine our characterisation of hard instances; for in-
stance, does there exist a planarity-preserving reduction for Theorem 37 Finally,
we note that some applications relax the size constraint by allowing the use of
graphs with at most &k edges in the decomposition [10]; we would like to know
how that impacts the complexity of the problems we study in this paper.

References

[1] A. BOUCHET AND J.-L. FOUQUET, Trois types de décompositions d’un
graphe en chaines, in Combinatorial Mathematics: Proceedings of the In-
ternational Colloquium on Graph Theory and Combinatorics, C. Berge,
D. Bresson, P. Camion, J. F. Maurras, and F. Sterboul, eds., vol. 75 of
North-Holland Mathematics Studies, North-Holland, 1983, pp. 131-141.

[2] A. BRANDSTADT, V. B. LE, AND J. P. SPINRAD, Graph classes: a survey,
SIAM Monographs on Discrete Mathematics and Applications, Society for
Industrial Mathematics, 1987.

[3] D. DOR AND M. TARSI, Graph decomposition is NP-complete: A complete
proof of Holyer’s conjecture, SIAM J. Comput., 26 (1997), pp. 1166-1187.

[4] M. E. DYER AND A. M. FRIEZE, On the complexity of partitioning graphs
into connected subgraphs, Discrete Appl. Math., 10 (1985), pp. 139-153.

[5] E. Fusy, Transversal structures on triangulations: A combinatorial study
and straight-line drawings, Discrete Math., 309 (2009), pp. 1870-1894.

[6] I. HOLYER, The NP-completeness of some edge-partition problems, SITAM
J. Comput., 10 (1981), pp. 713-717.

[7] T. P. KIRKMAN, On a problem in combinatorics, Cambridge Dublin Math-
ematical Journal, 2 (1847), pp. 191-204.

[8] A. KoTzIGg, Z teorie koneénych pravidelnijch grafov treticho a Stvrtého
stupria, Casopis pro péstovani matematiky, (1957), pp. 76-92.

[9] C. MOORE AND J. M. ROBSON, Hard tiling problems with simple tiles,
Discrete Comput. Geom., 26 (2001), pp. 573-590.

1 See Appendix for details.

12

[10] X. MuNoOz, Z. L1, AND 1. SAU, Edge-partitioning regular graphs for ring
traffic grooming with a priori placement of the ADMs, SIAM J. Discrete
Math., 25 (2011), pp. 1490-1505.

[11] T. J. SCHAEFER, The complexity of satisfiability problems, in Proc. 10th
STOC, San Diego, California, USA, May 1978, ACM, pp. 216-226.

[12] R. YUSTER, Combinatorial and computational aspects of graph packing and
graph decomposition, Computer Science Review, 1 (2007), pp. 12-26.

13

A Appendix: Omitted Proofs

Our hardness proof uses ideas similar to those used for {K; 3, Ps}-decomposi-
tion, and is based on a slightly different intermediate problem. The structure is
as follows:

MONOTONE NOT-ALL-EQUAL 3-SATISFIABILITY
<p K3-FREE {K; 3, P4}-DECOMPOSITION WITH MARKED EDGES (Theorem 4 page 14)
<p {K3, K3, P;}-DECOMPOSITION (Lemma 5 page 14)

We use the following intermediate problem.

Ks5-FREE {K; 3, P4}-DECOMPOSITION WITH MARKED EDGES

Input: a cubic, K3-free graph G = (V, E) and a subset M C E of edges.
Question: does G admit a {K; 3, Ps}-decomposition D such that no edge
in M is the middle edge of a P4 in D?

Lemma 5. Let (G, M) be an instance of K3-FREE {K1 3, P;}-DECOMPOSITION
WITH MARKED EDGES, and G’ be the graph obtained by attaching a co-fish to
every edge in M. Then G can be decomposed iff G' admits a {K1 3, K3, Py}-de-
composition.

Proof. The proof of the forward direction is exactly the same as that of the
forward direction of Lemma 3. For the reverse direction, let D’ be a {Kj s,
K3, Py}-decomposition of G'. The only K3’s in G are those that belong to the
co-fishes we inserted, so we only need to show that removing those co-fishes
does not prevent us from adapting the decomposition of G’ in order to obtain
a {K13, Py}-decomposition D of G. The proof is similar to that of the reverse
direction of Lemma 3, with the following modification: since G is K3-free, we
have Ng(u) N Ng(w) = 0, so if {u,w} is the extremal edge of a P, in D', then
it will map onto {v,w} in G, where it will become the extremal edge of a Py in
D (as opposed to, possibly, a K3 in the proof of Lemma 3). O

We give a reduction from the following NP-complete variant of SAT [11]:

MONOTONE NOT-ALL-EQUAL 3-SATISFIABILITY

Input: a Boolean formula ¢ = C; ACy A - -+ A C, without negations over
aset X = {x1,29,...,2,}, with exactly three distinct variables
per clause.

Question: does there exist an assignment of truth values f : ¥ — {TRUE,
FALSE} such that exactly one or two literals are TRUE in every
clause of ¢?

Theorem 4. K3-FREE {K7 3, P;}-DECOMPOSITION WITH MARKED EDGES is
NP-complete.

14

Proof. Given an instance ¢ of MONOTONE NOT-ALL-EQUAL 3-SATISFIABILITY,
we build an instance (G, M) of K3-FREE {K;3, P;}-DECOMPOSITION WITH
MARKED EDGES as follows:

1. For each variable z; with k occurrences (we can assume k > 2), we create a
tree T'(x;) with 3k leaves, called a variable tree, whose edges are all marked
(see Figure 5(a)). Edges incident to a leaf are called border edges, the others
are called internal edges.

2. For each clause z; V z; V i, we create a Py (v1,v,...,v7), called a clause
path, with marked edges {vs,v3} and {vs, v}, to which we join three border
edges of each variable tree as follows (see Figure 6):

e one leaf of T'(z1) is joined to v1, another to vs, and another to vr;
e one leaf of T'(x2) is joined to vy, another to vs, and another to vr;
e one leaf of T'(x2) is joined to vy, another to vy, and another to vg.

Note that the resulting graph is indeed cubic: each inner vertex of a variable
tree has degree 3, and each leaf is also part of a clause path. Furthermore, the
inner vertices of a clause path are adjacent to two other vertices in the path and
one other vertex in a variable tree, and each endpoint of a clause path is adjacent
to another vertex in the path and two vertices in different variable trees.

We further observe that G is Ks-free. First, any cycle included only in variable
trees has length at least 4 (since it must be included in at least 2 such tree, and
in each tree the path between any pair of leaves has length at least 2). Therefore,
a K3 would have to use 1 or 2 edges in a clause path. If it uses only one edge
{vi,vi41}, then both v; and v;; must be joined to leaves of the same variable
tree, which is impossible since each clause consists of three different variables. If
two edges are used, then the last edge of the K3 would be joining two leaves in
some variable tree, which is also impossible. Therefore, G is K3-free.

We now prove that ¢ is satisfiable iff (G, M) admits a decomposition.

=: From a satisfying truth assignment, we create a {K; 3, Ps}-decomposition
of (G, M) as described in Figures 5(b — ¢) and 6(b — e). Specifically, for each
variable x; with k occurrences, if x; = TRUE, then we cover all edges of T'(z;)
with 2k — 1 K; 3’s (Figure 5(b)). If 2; = FALSE, then we cover all internal
edges of T'(x;) with k — 1 K 3’s(Figure 5(c)).
Now for any clause x; V x; V xj, at least 1 and at most 2 variables among
{zi,xj,z1} are set to FALSE. For these two variables and the corresponding
variable trees, the border edges are still uncovered (for variables assigned
TRUE, border edges are covered with the rest of the variable tree). Each tree
has 3 border edges coming to the clause path, so there are either 9 or 12
edges to cover (6 in the clause path and 3 or 6 in border variable trees). As
shown in Figures 5(b — e), there always exist a decomposition of these edges
into K1 3’s and Py’s (with the constraint that no marked edge is the middle
of a Py).
Overall, all edges in all variable trees and clause paths are covered by a K; 3
or a Py, therefore (G, M) admits a {K7 3, P, }-decomposition.

15

Fig. 5. (a) A variable tree T'(z;) for a variable z; with k occurrences: all its edges are
marked, and it has 3k leaves. Internal vertices are partitioned into two sets A and B.
(b) A decomposition of T'(z;), corresponding to z; = TRUE. (¢) A decomposition of the
internal edges of T'(x;), corresponding to x; = FALSE.

«<: We first consider any variable tree, and show that the decompositions used
for TRUE and FALSE assignments above are in fact the only two possible
decompositions of the internal edges of this tree. Indeed, consider internal
vertices and their partition into A and B (see Figure 5(a)): because of marked
edges, all edges between any two internal vertices must be part of a K 3,
linking a leaf to a center. Since internal vertices form a path, they must
alternate along this path between leaves and centers of Kj 3’s, so either all
vertices of B are centers, or all vertices of A are centers. Each case yields
only one possible decomposition of adjacent edges, as described respectively
in Figures 5(b) and 5(c). Naturally, we assign TRUE to any variable whose
tree is decomposed as in the first case, and FALSE to other variables. We
further make the following observation for the FALSE case: consider any leaf
x of the tree, and its parent y. Due to marked edges, x can only be the center
of a K 3, or a middle node of a Py, of which y is an endpoint.

We now consider a clause z; Vx;Vxy, and show that its variables can neither
be all set to TRUE nor all set to FALSE. Aiming at a contradiction, assume
first that all variables are set to TRUE. Then all border edges of their trees
are already covered, and the K 3’s and Py’s covering the clause path may
only use the 6 edges of the path. The only possibility to decompose the path
in such a way is to use two Pj’s, however, such P,;’s would have marked

16

V1 3 V5" v7

V2 V4 Ve

T(ax) T(ay)

(b) x; = TRUE, z; = TRUE, T} = FALSE (¢) x; = TRUE, ; = FALSE,), = TRUE

T(z;)

T(z))

(d) x; = FALSE, x; = TRUE, x) = FALSE (e) x; = FALSE, x; = FALSE,) = TRUE

Fig.6. (a) A clause path and its connections to the variable trees. (b — e) For each
truth assignment of z;, z;, zx (up to symmetry), a decomposition of the path edges
and the neighboring uncovered edges of variable trees for false variables.

17

edges as middle edges, which is forbidden. We now assume that all variables
of a clause are set to FALSE, i.e. it remains to cover the clause path and all
border edges of the variable trees. Thanks to the observation made on leaves
of the tree in the FALSE case, vertices v; and vy are either centers of K 3’s,
or middle nodes in P,’s. They cannot both be centers of K 3’s, and due to
marked edges, they must both be middle nodes of the same P,. However,
as noted above, the parents of v1 in both trees T'(x;) and T'(z;) should be
endpoints of this P,, which is impossible.
Finally, each variable has been assigned a truth value, and for each clause
there must be at least one TRUE and one FALSE variable: therefore, we have
a satisfying assignment for our instance of MONOTONE NOT-ALL-EQUAL 3-
SATISFIABILITY.

O

18

