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ON THE MAXWELL-STEFAN DIFFUSION LIMIT FOR A MIXTURE OF MONATOMIC GASES

Multi-species Boltzmann equations for gaseous mixtures, with analytic cross sections and under Grad's angular cutoff assumption, are considered under diffusive scaling. In the limit, we formally obtain an explicit expression for the binary diffusion coefficients in the Maxwell-Stefan equations.

Introduction

The macroscopic description of diffusive phenomena in mixtures goes back to the 19th Century, thanks to the work of Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF] and Stefan [START_REF] Stefan | Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen[END_REF], who introduced a coupled system of cross-diffusion equations, nowadays known as the Maxwell-Stefan system. Since then, a wide literature about multicomponent diffusive phenomena has been published by the Chemical Engineering community (we refer to [START_REF] Krishna | The Maxwell-Stefan approach to mass transfer[END_REF] for a review on the state-of-the-art on the subject), since multicomponent diffusion in fluids plays a crucial role in many (bio)chemical processes.

However, the mathematical and numerical study of the Maxwell-Stefan system is relatively new, and solid results on the subject appeared only very recently (see, for example, [START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF][START_REF] Ern | Projected iterative algorithms with application to multicomponent transport[END_REF][START_REF] Ern | Multicomponent transport algorithms[END_REF][START_REF] Giovangigli | Multicomponent flow modeling[END_REF][START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF][START_REF] Boudin | Diffusive models for the air in the acinus[END_REF][START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF][START_REF] Mcleod | Mixed finite element methods for addressing multi-species diffusion using the Maxwell-Stefan equations[END_REF][START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Chen | Analysis of an Incompressible Navier-Stokes-Maxwell-Stefan System[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections[END_REF]).

In particular, [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] is devoted to the formal derivation, under the standard diffusive scaling, of the Maxwell-Stefan diffusion equations from the non-reactive elastic Boltzmann system for monatomic gaseous mixtures, in the vanishing Mach and Knudsen numbers limit. The approach follows the research line introduced in [START_REF] Bardos | Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF] and allows to deduce asymptotically a compressible dynamics and to obtain, in the limit, an explicit expression of the binary diffusion coefficients in the Maxwell-Stefan system, depending on the reduced mass of the species, on the temperature and on the cross sections of the kinetic model. A peculiar feature of this approach is the possibility of obtaining explicit coefficients which could be compared with experimental results and contribute to a better understanding of the quantitative behaviour of gaseous mixtures.

The main assumptions of [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] are the following:

• the initial conditions are well prepared, and are given by local Maxwellians, all with the same temperature;

• the process is supposed to be isothermal;

• the cross sections of the Boltzmann system are of Maxwellian type.

The first two assumptions are very natural, since the presence of temperature gradients may introduce transport phenomena which could hinder the diffusion process, as shown in [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF]. On the other hand, the third one is not completely satisfactory. Indeed, even if the hypothesis of Maxwellian cross-sections has been very popular as it could lead to many explicit calculations (Maxwell and Boltzmann themselves used them very often [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF]), it has been subsequently noticed that the influence of the collision kernel (or equivalently, of the cross-section) on the solutions to the Boltzmann equation is far from being negligible [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF].

For this reason, it is important to recover the Maxwell-Stefan diffusion equations from the non-reactive elastic Boltzmann equations for mixtures with more realistic cross sections. In this article, we introduce a new strategy which allows us to handle at the formal level general factorized cross sections, in which the kinetic collision kernel is an analytic function of its argument and the angular collision kernel is even and satisfies Grad's cutoff assumption [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]. By considering these more physical cross sections, we are able to obtain explicit quantitative expressions of the binary diffusion coefficients, whose structure exhibits some nonlinearities which were absent in the case of Maxwellian cross sections.

This study is also interesting from a physical point of view. Indeed, even though many results are available in the case of binary mixtures (see, for example, [START_REF] Van Heijningen | Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration[END_REF]), many attempts have been made to experimentally determine the binary diffusion coefficients in the Maxwell-Stefan equations, but with a limited success [START_REF] Leahy-Dios | Measurements of molecular and thermal diffusion coefficients in ternary mixtures[END_REF]. We hope that our computation will give a contribution for encouraging the experimental activity and be useful for comparison with experimental data.

We finally point out that the results obtained in this article are valid for monatomic ideal gases only. The extension of our computations to polyatomic gases should be possible by starting from kinetic systems taking into account the internal energy of the molecules (such as the model proposed in [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF]). We will consider this extension in a near future.

The structure of the article is the following: after describing the kinetic model for non-reactive monatomic gaseous mixtures in Section 2 and the Maxwell-Stefan system in Section 3, in Section 4 we compute the diffusion limit and obtain an explicit expression of the binary diffusion coefficients in the case of analytical cross sections under Grad's cutoff assumption. Finally, we give an appendix where we explicitly compute the Gaussian integrals in the expression for the binary diffusion coefficients.

The kinetic model

The mathematical form of the Boltzmann system for non-reactive monatomic gas mixtures is classical, and has been the starting point of many extensions (such as, for example, [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF][START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF]). However, in order to make this article self-consistent, we briefly describe its form.

The model considers a mixture of ideal monatomic inert gases Ai, i = 1, . . . , I with I ≥ 2. Each of them is described by a distribution function fi, which depends on t ∈ R * + (time), x ∈ R 3 (space position) and v ∈ R 3 (velocity). By supposing that no chemical reactions occur and no external forces act on the mixture, its time evolution is a consequence of the mechanical collisions between molecules, which are supposed here to be elastic.

Let us consider two particles belonging to the species Ai and Aj , 1 ≤ i, j ≤ I, with masses mi, mj, and pre-collisional velocities v ′ , v ′ * . A microscopic collision is an instantaneous phenomenon which modifies the velocities of the particles, which become v and v * , obtained by imposing the conservation of both momentum and kinetic energy:

(1)

miv ′ + mj v ′ * = miv + mjv * , 1 2 mi |v ′ | 2 + 1 2 mj |v ′ * | 2 = 1 2 mi |v| 2 + 1 2 mj |v * | 2 .
The previous equations allow to write v ′ and v ′ * with respect to v and v * :

(2)

v ′ = 1 mi + mj (miv + mj v * + mj|v -v * | σ), v ′ * = 1 mi + mj (miv + mjv * -mi|v -v * | σ),
where σ ∈ S 2 describes the two degrees of freedom in [START_REF] Bardos | Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles[END_REF].

If f and g are nonnegative functions, the operator describing the collisions of molecules of species Ai with molecules of species Aj is defined by

(3) Qij (f, g)(v) := R 3 S 2 Bij (v, v * , σ) f (v ′ )g(v ′ * ) -f (v)g(v * ) dσ dv * ,
where v ′ and v ′ * , are given by (2), and the cross section Bij satisfies the microreversibility assumptions

Bij (v, v * , σ) = Bji(v * , v, σ) and Bij (v, v * , σ) = Bij (v ′ , v ′ * , σ).
It is clear that, when i = j, the previous expressions reduce to the standard Boltzmann kernel in the mono-species case:

(4) Qii(f, f )(v) = R 3 S 2 Bii(v, v * , σ) f (v ′ )f (v ′ * ) -f (v)f (v * ) dσ dv * .
The operators Qij can be written in weak form. For example, by using the changes of variables

(v, v * ) → (v * , v) and (v, v * ) → (v ′ , v ′ * ), we have (5) R 3 Qij(f, g)(v) ψ(v) dv = - 1 2 R 6 S 2 Bij(v, v * , σ) f (v ′ )g(v ′ * ) -f (v)g(v * ) ψ(v ′ ) -ψ(v) dσ dv dv * = R 6 S 2 Bij (v, v * , σ) f (v)g(v * ) ψ(v ′ ) -ψ(v) dσ dv dv * , or (6) 
R 3 Qij(f, g)(v) ψ(v) dv + R 3 Qji(g, f )(v) φ(v) dv = - 1 2 R 6 S 2 Bij (v, v * , σ) f (v ′ )g(v ′ * ) -f (v)g(v * ) ψ(v ′ ) + φ(v ′ * ) -ψ(v) -φ(v * ) dσ dv dv * ,
for any ψ, φ : R 3 → R such that the first integrals in ( 5)-( 6) are well defined. When ψ(v) = 1 in (5) we deduce the conservation of the total number of molecules of species Ai. Moreover, if ψ(v) = mi v and φ(v * ) = mj v * , and then if ψ(v) = mi |v| 2 /2 and φ(v) = mj |v * | 2 /2, we recover the conservation of the total momentum and of the total kinetic energy during the collision between a particle of species Ai and a particle of species Aj :

(7) R 3 Qij (f, g)(v) mi v mi |v| 2 /2 dv + R 3 Qji(g, f )(v) mj v mj |v| 2 /2 dv = 0.
The system of equations satisfied by the set of distribution functions (fi) 1≤i≤I is hence

(8) ∂tfi + v • ∇xfi = I j=1 Qij (fi, fj ) on R+ × R 3 × R 3 .

The Maxwell-Stefan model

The Maxwell-Stefan model is suitable to describe an ideal gaseous mixture of I ≥ 2 species, with molecular masses mi, in which no convective phenomena take place and the system is driven to equilibrium by pure diffusion.

For each species of the mixture Ai, 1 ≤ i ≤ I, we consider its concentration ci and its flux Fi -which depend on the macroscopic variables t ∈ R + (time) and x ∈ R 3 (position).

These quantities, which are the unknowns of the system, satisfy the continuity equation

(9) ∂tci + ∇x • Fi = 0 on R+ × R 3 ,
for all 1 ≤ i ≤ I.

Let c = ci be the total concentration of the mixture and let ni = ci/c the mole fraction of species Ai. The Maxwell-Stefan equations can be written in the following form: [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] -

c ∇xni = 1 c j =i cj Fi -ciFj Ðij on R+ × R 3 , for all 1 ≤ i ≤ I.
The quantities Ðij are the binary diffusion coefficients between the species Ai and Aj . They are symmetric with respect to the particles exchange, in such a way that Ðij = Ðji.

Note that the Maxwell-Stefan equations ( 10) are linearly dependent. Indeed, by summing [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] with respect to i, we obtain an identity. Hence, a supplementary equation is necessary for assuring the closure of the Maxwell-Sterfan system ( 9)- [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF].

By assuming that the system is closed and under constant and uniform temperature and pressure, it is usual to assume that the total diffusive flux satisfies (11)

I i=1 Fi = 0 on R * + × R 3 ,
which physically means that the diffusive fluxes do not create any mass [START_REF] Giovangigli | Multicomponent flow modeling[END_REF]. By summing [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] with respect to i, we note that c is uniform in time. Hence, if we suppose that the molecules of the mixture are initially uniformly distributed, the quantity c is a pure constant.

The Maxwell-Stefan asymptotics

In this section we apply the strategy proposed in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF], with more general cross sections, satisfying the hypotheses defined in Subsection 4.1.

We work in the standard diffusive scaling, by supposing that the mean free path (or, equivalently, the Knudsen number) tends to zero. Since temperature gradients can induce transport phenomena, we will suppose that the temperature T of the mixture is a constant. Moreover, we assume that the bulk velocity of the mixture is of the same order of magnitude as the Knudsen and Mach numbers.

Collision kernels.

In this article, we suppose that the collision kernels Bij depend only on the modulus of the relative velocity, i.e. |v -v * | and on the cosine of the deviation angle θ, where

cos θ = v -v * |v -v * | • σ.
More specifically, we work with collision kernels of the form:

Bij(v, v * , σ) = Φ(|v -v * |)bij (cos θ), (12) 
where we assume that the angular collision kernels bij ∈ L 1 (-1, +1) and are even. Observe that, because of the microreversibility assumption on the collision kernels, we have

Bij (v, v * , σ) = Bji(v * , v, σ) =⇒ bij v -v * |v -v * | • σ = bji v * -v |v -v * | • σ ,
and that, by parity, bij (cos θ) = bji(cos θ).

For ℓ ∈ {1, 2, 3}, we denote by w (ℓ) the ℓ-th component of any vector w ∈ R 3 .

If we introduce the polar variable ϕ ∈ [0, 2π], we can find the relationships between the Euclidean coordinates of σ and the spherical ones, namely σ (1) = sin θ cos ϕ, σ (2) = sin θ sin ϕ, σ (3) = cos θ.

The kinetic collision kernel Φ(|v -v * |) is assumed to be analytic in the following sense: there exists a family {an} n∈N * ⊂ R such that Φ can be written as a uniformly converging even power series:

Φ(|v -v * |) = n∈N * an|v -v * | 2n . (13)
4.2. Scaled equation. In order to arrive at the diffusive limit, we introduce a scaling parameter 0 < ε ≪ 1 which represents the mean free path. We denote the corresponding unknown distribution functions as (f ε i ) 1≤i≤I . Each distribution function f ε i solves the following scaled version of ( 8): ( 14)

ε ∂tf ε i + v • ∇xf ε i = 1 ε I j=1 Qij(f ε i , f ε j ), on R+ × R 3 × R 3 .
Finally, we define the corresponding concentrations (c ε i ) 1≤i≤I as the zero-th order moment of the distribution functions f ε i (t, x, v):

c ε i (t, x) = R 3 f ε i (t, x, v) dv, for (t, x) ∈ R+ × R 3 ;
this relationship is a fundamental link between the kinetic equations and the Maxwell-Stefan description.

4.3.

Ansatz. As we are interested in pure diffusion dynamics, we suppose that the initial data f in (x, v) for the multi-species Boltzmann equations ( 14) are such that

R 3 f in i (x, v) dv = c in i (x), R 3 
vf in i (x, v) dv = O(ε),
where c in i : R 3 → R+ are ε-independent. We moreover suppose that

I i=1 c in i = 1 on R 3 ,
which of course implies that each c in i lies in [0, 1]. As in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF], we assume that the evolution following ( 14) keeps the distribution functions f ε i (t, x, v) in the local Maxwellian state, with a homogeneous temperature T . We hence suppose that there exist

c ε i : R+ × R 3 → R+, u ε i : R+ × R 3 → R 3 , 1 ≤ i ≤ I, such that (15) f ε i (t, x, v) = c ε i (t, x) mi 2πk T 3/2 e -m i |v-εu ε i (t,x)| 2 /2kT , for (t, x, v) ∈ R+ × R 3 × R 3 .
The starting point of our analysis is the following result, proved in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF]: Proposition 1. Under the assumption (15) on the distribution functions f ε i (t, x, v), we have the following mass balance equations for all 1 ≤ i ≤ I:

(16) ∂tc ε i + ∇x • (c ε i u ε i ) = 0 on R+ × R 3 .
We further have the following momentum balance for all 1 ≤ i ≤ I:

(17) ε 2 [∂t (c ε i u ε i ) + ∇x • (c ε i u ε i ⊗ u ε i )] + kT mi ∇xc ε i = Θ ε i on R+ × R 3 ,
where the ℓ-th component of Θ ε i is given by

(18) (Θ ε i ) (ℓ) = 1 ε j =i mj mi + mj R 6 S 2 Bij (v, v * , σ)f ε i (v)f ε j (v * ) v * (ℓ) -v (ℓ) + |v -v * |σ (ℓ) dσ dv * dv.
Remark. In Equation (17), we have stressed the actual order in ε of various terms. In particular, as shown in the next lemma, the quantities Θ ε i are of order O(1). This is of the same order as ∇xc ε i in [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]. On the other hand, the first two terms on the left hand side of (17) are of order O(ε 2 ). This clarifies how the diffusive scaling acts on various macroscopic quantities associated with the solutions to the Boltzmann system [START_REF] Ern | Projected iterative algorithms with application to multicomponent transport[END_REF].

Our next task is to analyze the right hand side Θ ε i of the momentum balance [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]. Observe that Θ ε i depends on the independent variables (t, x). Lemma 1. The Θ ε i (t, x) term in the momentum balance (17) can be asymptotically approximated as follows:

(Θ ε i ) (ℓ) (t, x) = j =i ∆ij c ε i c ε j (uj ) ε (ℓ) -c ε i c ε j (u ε i ) (ℓ) + O(ε), (19) 
where ∆ij are given by

(20) ∆ij = a0 2πmj bij L 1 (mi + mj) + a1 10πkT bij L 1 mi + n≥2 an mj(mimj) 3/2 bij L 1 4π 2 (mi + mj )(k T ) 3 R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! × 1≤r≤3 α+β=2nr (2nr)! α!β! [v (r) ] α [-v * (r) ] β e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv.

Proof

For readers' convenience, let us rewrite the expression [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] for (Θ ε i ) (ℓ) :

(Θ ε i ) (ℓ) = 1 ε j =i mj mi + mj R 6 S 2 Bij (v, v * , σ)f ε i (v)f ε j (v * ) v * (ℓ) -v (ℓ) + |v -v * |σ (ℓ) dσ dv * dv.
The term containing σ (ℓ) in ( 18) vanishes. Indeed, both terms for ℓ = 1 or 2 are zero because and for ℓ = 3, because bij is even, one has

S 2 bij v -v * |v -v * | • σ σ (3) dσ = 2π π 0 sin θ cos θ bij (cos θ) dθ = 2π 1 -1 η bij (η) dη = 0.
Gathering the remaining part of the expression for (Θ ε i ) (ℓ) , we have:

(Θ ε i ) (ℓ) = 1 ε j =i 2πmj bij L 1 mi + mj R 6 Φ(|v -v * |)f ε i (v)f ε j (v * ) v * (ℓ) -v (ℓ) dv * dv. ( 21 
)
We now substitute the ansatz [START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF] for f ε i (v) and f ε j (v * ) in [START_REF] Maxwell | On the dynamical theory of gases[END_REF]. By writing the power series expansion [START_REF] Ern | Multicomponent transport algorithms[END_REF] for the kinetic collision kernel we obtain:

(Θ ε i ) (ℓ) = j =i c ε i c ε j a0 2πmj bij L 1 (mi + mj ) + a1 10πkT bij L 1 mi (uj ) ε (ℓ) -(ui) ε (ℓ) + n≥2 an mj (mimj) 3/2 bij L 1 4π 2 ε(mi + mj)(k T ) 3 R 6 |v -v * | 2n v * (ℓ) -v (ℓ) e -m i |v-εu ε i | 2 /2kT e -m j |v * -εu ε j | 2 /2kT dv * dv .
The computations that lead to the coefficients of a0 can be found in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF]. The coefficients of the other terms ai are evaluated by performing the change of variables: (v, v * ) → (v + εu ε i , v * + εu ε j ) and then computing various Gaussian integrals (whose explicit expressions can be found in the Appendix).

Making a change of variables:

(v, v * ) → (v + εu ε i , v * + εu ε j )
in the integral term of the expression written above yields:

(Θ ε i ) (ℓ) = j =i c ε i c ε j a0 2πmj bij L 1 (mi + mj ) + a1 10πkT bij L 1 mi (uj ) ε (ℓ) -(ui) ε (ℓ) + n≥2 an mj(mimj) 3/2 bij L 1 4π 2 ε(mi + mj )(k T ) 3 R 6 |v + εu ε i -v * -εu ε j | 2n v * (ℓ) + ε(uj) ε (ℓ) -v (ℓ) -ε(u ε i ) (ℓ) e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv .
We employ the multinomial theorem:

(b1 + b2 + • • • + b k ) n = j 1 , j 2 ,..., j k 0≤j i ≤n for each i and j 1 +...+j k =n n j1, j2, . . . , j k b j 1 1 b j 2 2 • • • b j k k
where the multinomial coefficients are n j1, j2, . . . , j k = n! j1!j2! . . . j k ! .

This yields

(Θ ε i ) (ℓ) = j =i c ε i c ε j a0 2πmj bij L 1 (mi + mj) + a1 10πkT bij L 1 mi (uj) ε (ℓ) -(ui) ε (ℓ) + n≥2 an mj(mimj ) 3/2 bij L 1 4π 2 ε(mi + mj )(k T ) 3 R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! 1≤r≤3 v (r) + ε(u ε i ) (r) -v * (r) -ε(uj) ε (r) 2nr × v * (ℓ) + ε(uj ) ε (ℓ) -v (ℓ) -ε(u ε i ) (ℓ) e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv .
Another application of the multinomial theorem in the previous expression yields:

(Θ ε i ) (ℓ) = j =i c ε i c ε j a0 2πmj bij L 1 (mi + mj ) + a1 10πkT bij L 1 mi (uj ) ε (ℓ) -(ui) ε (ℓ) + n≥2 an mj(mimj ) 3/2 bij L 1 4π 2 ε(mi + mj )(k T ) 3 R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! × 1≤r≤3 α+β+γ+λ=2nr (2nr)! α!β!γ!λ! [v (r) ] α [-v * (r) ] β [ε(u ε i ) (r) ] γ [-ε(uj) ε (r) ] λ × v * (ℓ) + ε(uj) ε (ℓ) -v (ℓ) -ε(u ε i ) (ℓ) e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv . The terms of O(ε -1 ) in (Θ ε i ) (ℓ)
are the following:

j =i c ε i c ε j n≥2 an mj(mimj) 3/2 bij L 1 4π 2 (mi + mj)(k T ) 3 R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! × 1≤r≤3   α+β=2nr (2nr)! α!β! [v (r) ] α [-v * (r) ] β   v * (ℓ) -v (ℓ) e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv .
Observe that all the terms in the above sum vanish since the integrands are odd with respect to the variables v or v * . Hence there is no contribution of the terms of O(ε -1 ) to (Θ ε i ) (ℓ) . Now, we move on to consider the terms of order O(1) in (Θ ε i ) (ℓ) , which have the form:

j =i c ε i c ε j a0 2πmj bij L 1 (mi + mj) + a1 10πkT bij L 1 mi (uj) ε (ℓ) -(u ε i ) (ℓ) + n≥2 an mj(mimj) 3/2 bij L 1 4π 2 (mi + mj)(k T ) 3 R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! 1≤r≤3 α+β=2nr (2nr)! α!β! × [v (r) ] α [-v * (r) ] β (uj ) ε (ℓ) -(u ε i ) (ℓ) e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv .
Hence, we indeed have the asymptotic behaviour of (Θ ε i ) (ℓ) as in [START_REF] Krishna | The Maxwell-Stefan approach to mass transfer[END_REF] with the coefficients ∆ij given by [START_REF] Leahy-Dios | Measurements of molecular and thermal diffusion coefficients in ternary mixtures[END_REF].

Remark. The kinetic collision kernel for the three dimensional hard spheres, i.e. Φ(|v

-v * |) = |v -v * | is not an analytic function of v -v * .
Hence our approach cannot be directly applied to this case. However, one could approximate the hard sphere kernel by an analytic expression of the type (13) and then perform the computations on the approximate series. This would yield an approximation on the binary diffusion coefficients for the hard sphere case.

4.4.

Limiting behavior of the system. Now, we are equipped to state the main result of this article. Putting together the results of Proposition 1 and Lemma 1, we have indeed proved at the formal level the following theorem.

Theorem 2. The local Maxwellian states [START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF] are solution of the initial value problem for the system of scaled Boltzmann equations

(14) if (c ε i , u ε i ) solves ∂tc ε i + ∇x • (c ε i u ε i ) = 0, ( 22 
)
∇xc ε i = j =i ∆ij c ε i c ε j (uj) ε (ℓ) -c ε i c ε j (u ε i ) (ℓ) + O(ε), (23) 
with the coefficients ∆ij given by

(24) ∆ij = a0 2πmimj bij L 1 (mi + mj)kT + a110π bij L 1 + n≥2 an 2 π bij L 1 k T (mimj) (mi + mj) n 1 +n 2 +n 3 =n n! n1!n2!n3! α,β,γ,δ,ρ,η∈2N * α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3 (2n1)! α!β! (2n2)! γ!δ! (2n3)! ρ!η! × E (α, β, γ, δ, ρ, η) kT m i (α+γ+ρ)/2 kT m j (β+δ+η)/2
, where

E (α, β, γ, δ, ρ, η) := ((α -1)(α -3) • • • 1) ((β -1)(β -3) • • • 1) ((γ -1)(γ -3) • • • 1) × ((δ -1)(δ -3) • • • 1) ((ρ -1)(ρ -3) • • • 1) ((η -1)(η -3) • • • 1) . (25) 
Proof From ( 17) and ( 19), we have:

∇xc ε i = j =i mi kT ∆ij c ε i c ε j (uj) ε (ℓ) -c ε i c ε j (u ε i ) (ℓ) + O(ε).
As the coefficients ∆ij involve Gaussian integrals, by using the expressions from the Appendix, we first compute the integral terms in (20):

R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! × 1≤r≤3 α+β=2nr (2nr)! α!β! [v (r) ] α [-v * (r) ] β × e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv = R 6 n 1 +n 2 +n 3 =n n! n1!n2!n3! α,β,γ,δ,ρ,η∈2N * α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3 (2n1)! α!β! (2n2)! γ!δ! (2n3)! ρ!η! [v (1) ] α [v * (1) ] β [v (2) ] γ [v * (2) ] δ [v (3) ] ρ [v * (3) ] η × e -m i |v| 2 /2kT e -m j |v * | 2 /2kT dv * dv
Proceeding as in the Appendix (see ( 27)), the above expression can be computed and equals:

n 1 +n 2 +n 3 =n n! n1!n2!n3! α,β,γ,δ,ρ,η∈2N * α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3 (2n1)! α!β! (2n2)! γ!δ! (2n3)! ρ!η! E (α, β, γ, δ, ρ, η)× kT mi (α+γ+ρ)/2
kT mj

(β+δ+η)/2 2πkT mi 3/2 2πkT mj 3/2
, where E is given by [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF]. Substituting the above expression for the integrals in ∆ij would yield an explicit expression for ∆ij = mi∆ij/kT :

∆ij =a0 2πmimj bij L 1 (mi + mj)kT + a110π bij L 1 + n≥2 an bij L 1 4π 2 (mi + mj) (mimj) 5/2 (kT ) 4 n 1 +n 2 +n 3 =n n! n1!n2!n3! α,β,γ,δ,ρ,η∈2N * α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3 (2n1)! α!β! (2n2)! γ!δ! (2n3)! ρ!η! × E (α, β, γ, δ, ρ, η) kT mi (α+γ+ρ)/2 kT mj (β+δ+η)/2 2πkT mi 3/2 2πkT mj 3/2 =a0 2πmimj bij L 1 (mi + mj)kT + a110π bij L 1 + n≥2 an 2 π bij L 1 k T (mimj) (mi + mj) n 1 +n 2 +n 3 =n n! n1!n2!n3! α,β,γ,δ,ρ,η∈2N * α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3 (2n1)! α!β! (2n2)! γ!δ! (2n3)! ρ!η! × E (α, β, γ, δ, ρ, η) kT mi (α+γ+ρ)/2 kT mj (β+δ+η)/2
.

Note that the coefficients ∆ij are symmetric with respect to each pair of species since bij = bji and that the structure is much more intricate than the corresponding binary diffusion coefficients computed with Maxwellian cross section in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF].

Remark. Observe that the first term in the expression for ∆ij is nothing but the expression obtained in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF]. Note also that ∆ij in [START_REF] Van Heijningen | Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration[END_REF] is given in terms of the reduced masses of the species and the temperature T except for the term involving a1 in the analytic expression [START_REF] Ern | Multicomponent transport algorithms[END_REF]. In particular, if the kinetic collision kernel has the form Φ(|v -v * |) = |v -v * | 2 , then the preceding computations in the paper yield the following expression for (Θ ε i ) (ℓ) :

(Θ ε i ) (ℓ) = j =i 2πmj bij L 1 (mi + mj) 5kT mi + 5kT mj c ε i c ε j (uj ) ε (ℓ) -c ε i c ε j (u ε i ) (ℓ) + O(ε),
thus giving the following expression for ∆ij : ∆ij = a110π bij L 1 .

The rest of the terms in the expression [START_REF] Van Heijningen | Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration[END_REF], however, do depend on the temperature T and the dependence is non-trivial.

In the following, let us set

F ε i (t, x) = 1 ε R 3 v f ε i (t, x, v) dv = c ε i (t, x)u ε i (t, x), for (t, x) ∈ R+ × R 3 ,
and denote, for any t ≥ 0 and

x ∈ R 3 , ci(t, x) = lim ε→0 + c ε i (t, x), Fi(t, x) = lim ε→0 + F ε i (t, x).
In the limit, Equations ( 22)-(23) give a system of equations, which has the following form for the density-flux set of unknown (ci, Fi):

∂tci

+ ∇x • Fi = 0, ∇xci = - j =i ∆ij (cj Fi -ciFj). (26) 
An argument similar to the ones in [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF], which consists in writing the approximation of the conservation of the kinetic energy at the leading order in ε for the Boltzmann system, allows to deduce that

c = ci = c in i = 1.
We can hence obtain, in the limit, the Maxwell-Stefan system in the case of analytic cross-section and Grad's cutoff assumption: .

       ∂tci + ∇x • Fi = 0 on R+ × R 3 , -c ∇xni = 1 c j =i cj Fi -ciFj Ðij on R * + × R 3 ,

Appendix

The objective of this appendix is the explicit computation of the Gaussian integrals appearing in the expression for ∆ij given by (20) leading to the expression of ∆ij given by [START_REF] Van Heijningen | Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration[END_REF]. We have the following normalization: Performing integration by parts with respect to v (1) variable we arrive at mi 2πkT Performing an integration by parts in the v (1) variable again yields:

mi 2πkT 3/2 R 3 kT mi 2 (α -1)(α -3)[v (1) ] α-4 e -m i |v| 2 /2kT [v (2) ] β [v (3) ] γ dv (1) dv (2) dv (3)
Continuing in a similar fashion with respect to all the variables, i.e. v (1) , v (2) , v (3) , we arrive at the following expression:

(27) mi 2πkT 3/2 R 3 [v (1) ] α [v (2) ] β [v (3) ] γ e -m i |v| 2 /2kT dv (1) dv (2) dv (3) = ((α -1)(α -3) • • • 1) ((β -1)(β -3) • • • 1) ((γ -1)(γ -3) • • • 1)
kT mi

(α+β+γ)/2
.

e 3 [v ( 1 )( 1 )

 311 -m i |v| 2 /2kT dv = 1. ] α [v (2) ] β [v (3) ] γ e -m i |v| 2 /2kT dv (1) dv (2) dv (3) ] α-1 ∂v (1) e -m i |v| 2 /2kT [v (2) ] β [v (3) ] γ dv (1) dv (2) dv (3) .

2 (

 2 1)[v (1) ] α-2 e -m i |v| 2 /2kT [v (2) ] β [v (3) ] γ dv (1) dv (2) dv (3) α -1)[v (1) ] α-3 ∂v (1) e -m i |v| 2 /2kT [v (2) ] β [v (3) ] γ dv (1) dv (2) dv (3) .

  mj) n 1 +n 2 +n 3 =n

	where the binary diffusion coefficient have the form			
	Ðij =	1 c	a0	2πmimj bij L 1 (mi + mj)kT	+ a110π bij L 1 +	n≥2	an	2 π bij L 1 k T	(mimj) (mi + n! n1!n2!n3!	×
				α,β,γ,δ,ρ,η∈2N *	(2n1)! α!β!	(2n2)! γ!δ!	(2n3)! ρ!η!	E (α, β, γ, δ, ρ, η)	mi kT	(α+γ+ρ)/2	mj kT	(β+δ+η)/2	-1
				α+β=2n 1 γ+δ=2n 2 ρ+η=2n 3						
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