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Abstract - The effect of high frequency vibration on the flow and temperature fields is studied
numerically for two configurations: a two-dimensional square cavity and an axisymmetrical liquid
zone, subjected to an external temperature gradient. The mean fields of velocity and temperature
are determined by means of a finite-element method and a finite-difference method, respectively.
The characteristics of the flow and heat transfer are found to be strongly dependent on the vibra-

tional parameters.

1 INTRODUCTION

High frequency vibrations have an influence to control the flow regimes and internal temperature
fields in fluids subjected to an external temperature gradient (see, for example [1}). These vibra-
tions play different role depending whether the cavity is totally filled with the fluid or whether the
fluid has a free surface. In the present paper we study the effect of high frequency vibrations on

heat transfer for two configurations.

The first one is a two-dimensional square cavity completely filled with a fluid. All the boundaries
are rigid. The vertical walls are isothermal and maintained at different fixed temperatures; while
the horizontal walls are thermally insulated. The axis of the high frequency vibration is oriented
at an arbitrary angle # with respect to the external temperature gradient. Here, a static gravita-
tional field is taken into account, driving a thermogravitational convection. Then, it is interesting
to consider the control of this thermogravitational convection by another mechanism of excitation

(the thermovibrational one).

The second configuration is an axisymmetrical liquid bridge with a free surface heated by a radiating
ring heater. Here, there is a substantial difference from the previous case due to the existence of a

free surface. This system is described by utilizing the new approach developed in [2]. In this case



three mechanisms of mean flow generation by vibrations are active. Two of them are isothermal
ones which are related to the existence of dynamical skin-layers near the rigid and free boundaries.
The third one is the volumetric thermovibrational mechanism of the first order with respect to
the Boussinesq parameter. We study the coupled effect of all these vibrational mechanisms in the
absence of any non-vibrational flows (i.e., assuming zero gravity conditions and no thermocapillary
effect). Vibration-driven surface streaming flow in a liquid bridge was studied experimentally in
[3]. The role of isothermal vibrational mechanisms of the steady streaming related to the existence

of the boundary layers near the rigid and free surfaces was investigated theoretically in 4].

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

2.1 Governing Equations

Let us consider vibrational convective flows under the following assumptions:
a) the vibration frequencies are so high that the dynamical skin-layer thickness § is small in com-

parison with the characteristic length I:
b=/ <L

b) on the other hand, the frequencies are non-acoustic so isothermal compressibility effects are not
important:
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where (A is the acoustic wave length, ¢ is the sound velocity)

1

c) the characteristic amplitude of the vibrations is sufficiently small,

Under the above conditions the flow induced by vibrations can be decomposed into a pulsating
component and a component averaged over a time scale large in comparison with the vibrational
period. Then, the averaging method can be effectively applied. In the general case the isothermal
pulsating velocity field is non-uniform and the accelerations of liquid elements are large in any ref-
erence frame. Then, as it was shown in [5], the temperature dependence of density should be taken
into account not only in the body forces as in the conventional Boussinesq approximation but also
in the inertia terms of the fluid motion equation: pd%/dt + p(TV)¥. The governing equations for

mean and pulsating fields obtained in this way for weak non-isothermal conditions (60 <« 1) are [5]:
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En + uVT = xAT, divd=0. (2.2)



curl W =0, divW=0 (2.3)

Here % is the time-averaged velocity, W is the non-dimensional complex amplitude of the pulsating

velocity field related to the pulsating velocity in the laboratory reference frame vy, by the expression:

%, = bo(Wezp(iwt) + W exp(—iwt));

the other notation is conventional.

In some particular cases the isothermal pulsating velocity field is spatially uniform. This is, for
instance, the case of a container with rigid walls completely filled with fluid and sub ject to the
oscillations without change of container orientation. As it is shown in [5], in these cases we need
to take into account quantities of the first order with respect to the parameter (#® in the pulsating

field; then the equations for vibrational convection take the following form:

0t 1
% + (AV)E — %bzwwVHVT = —;Vp + AL+ gpTY (2.4)
0
curl V = 87 x VT, divV =0 (2.6)

where 7 is the unit vector along vibrations axis, V is non-dimensional pulsating velocity amplitude

in the reference frame connected with the vibrating container.

The equations (2.4}-(2.6) are exactly equivalent to the conventional equations of thermovibrational
convection (see, [6,1]). The difference is in the normalization of the pressure,

The main difference in the new equations {2.1)-(2.3) from the conventional equations (2.4)-(2.6) is
the quadratic dependence of the "vibrational force” on Boussinesq parameter: € = §0. Indeed, the
vibrational term in (2.1) is proportional to €, and proportional to W2 which is independent of «.
The vibrational term in (2.4) is proportional to €, and to Vi which in turn is proportional to ¢ due

to (2.6); giving rise to the quadratic dependence on «.
2.2 Boundary conditions

Let us discuss the boundary conditions for mean and pulsating components on rigid and free bound-
arles. On rigid boundaries the normal components of the mean and the pulsating velocities should
vanish. We should not impose any conditions for the tangential components of the pulsating ve-

locity because of the lowering of order of the equations order for the pulsations.



In the general case, it is shown in [5] that when the pulsating velocity field is non-uniform, the
generation of the time-averaged vorticity in the dynamical skin-layers near the rigid surfaces be-
comes important. This can be described with the help of an effective boundary condition of the
Schlichting’s type. If the tangential component of the pulsating velocity Upt in the proper reference

frame of the considered boundary domain is represented in the form:

Upt = Vi coswt + Vasinwt;

then the condition for the tangential components of the time-averaged velocity on the rigid surface

iy is formulated in the form [7]:
T _%(2171653'1;‘[71 + 2VadivVy + (VW)W + (?zvjvz + 3V, div ¥, — 3171653'@172) (2.7)
W
where all the derivatives are taken along the boundary.

In the particular cases mentioned above, when the isothermal pulsating velocity field is uniform,

the no-slip condition should be accepted for the time-averaged velocity on the rigid boundaries.

The boundary conditions for the mean and pulsating fields on a free surface will be discussed in
detail in the Section 4 which is devoted to the investigation of vibrational effects on an axisymmet-

rical liquid bridge.

3 DIFFERENTIALLY HEATED SQUARE CAVITY

3.1 Problem definition

We consider first the case of a square cavity with rigid walls completely filled with the fluid. The
cavity is subjected to a linear high frequency vibration. We consider different orientations of the
vibration which are characterized by the angle § between vibration axis and horizontal direction:
(the case # = 0 corresponds to horizontal axis of vibration, the case § = 7/2 - to vertical direction
of vibration axis). The schematic description of the problem, including the boundary conditions
and the coordinate system are given in Fig.1. The condition @ = 0 corresponds to the no-slip
condition for the mean flow velocity; while the condition f = 01is applied to the streamfunction f

associated with the pulsating velocity V which satisfies diz V = 0.

The two vertical walls of the cavity are maintained at different fixed temperatures: 77 and 7.

The horizontal walls are adiabatic. Under such conditions thermogravitational convection develops



for any value of the temperature difference ® = Ty — Ty; the thermogravitational flow intensity
depends on the Grashof number G'r = g80L%/v? and the Prandtl number Pr = v/y. We also use
the Rayleigh number, Ra = GrPr,

In the situation discussed above the thermovibrational convection of the second order with respect
to the Boussinesq parameter S0 is the only vibrational mechanism of mean flow generation. Then,
the equations (2.4)-(2.6) can be applied with ﬁo—slip conditions for the mean velocity on rigid
boundaries. Here the intensity of the vibrational convection depends on the vibrational Rayleigh

number Ra,y = (§0bwL)?/2vx, where L is the dimension of the square cavity.

3.2 Results and discussion

Numerical computations have been performed with a finite element method using quadrilateral
elements (9 nodes for velocity, temperature and amplitude of pulsating velocity; and 4 nodes for
pressure}. An implicit Euler scheme was used to solve the non-steady equations (transient prob-
lem); an iterative Newton-Raphson method was used to solve the non-linear system at each step

of time.

The results of the calculations correspond to stationary solutions. They are shown for one set of
values of Ra and Pr {Ra = 10* and Pr = 0.71). First, the calculations were done in the absence of
vibrations (Ra,; = 0); the corresponding isotherms are shown in F 1g.2(a). Then, the calculations
were done for Ray,, = 10° and for different directions of the vibration axis. F' igs.2(b — €) compare
the form of the isotherms for four values of the vibration angle: § = 0,80 =n/4,8 = 7/2 and
§ = 3w /4. We can see that vibrating the system tends to cause the isotherms to be oriented in the
direction perpendicular to the axis of vibration. This effect for thermovibrational convection was
pointed out for the first time in our previous paper [8]. Thus, the global effect of vibrations depends
strongly on the direction of these vibrations with respect to the external temperature gradient. For
¢ = 0, when both directions (vibration axis and external temperature gradient) are horizontal,
vibration tends to promote vertical isotherms (i-e., a pure conduction regime) and so, tends to
damp the convective flow. On the contrary, for § = # /2 when the vibration axis is perpendicular
to the external temperature gradient, the deviation of isotherms from the vertical is increased and

the kinetic energy of the flow is stronger {see Table 1).

Table 1 presents the values of the Nusselt number and the kinetic energy for the four different
angles of vibrations. It is noteworthy that for horizontal vibrations (6 = 0) the Nusselt number is

very close to one and the kinetic energy to zero.
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This result car be compared to that of [1] where it is shown that when the direction of vibration is
parallel to the direction of temperature gradient the system is unconditionally stable in a weight-
lessness condition, i.e., zero gravity. So it is possible to suppress the effect of thermogravitational

convection, when the vibrational force is sufficiently large.

without with vibrations
vibrations || 6 =0 |8=x/4[d=n/2]0= 3x/4
Nu 2.244 1.041 2.144 2.493 1.318
Ec 64.82 1.26 50.02 122.07 8.95

Table 1: Values of Nusselt number and kinetic energy for different angles of vibrations (Ra = 104,
Pr =0.71 and Ra,, = 10%).

4 HEATED LIQUID BRIDGE WITH AXIAL VIBRATIONS

Different approaches with increasing complexity have been proposed during the last two years for
solving the problem of vibrational convection inside a radially heated liquid bridge subjected to
axial vibrations. Previously we studied vibrational convection in a cylindrical liquid bridge with
a non-deformable free-suface by using a conventional approach (egs. (2.4)-(2.6), [8]); in this case
the effect of vibrations on the thermocapillary flow was also considered. More recently, the same
problem was considered in the framework of the new approach developed in [5] (eqs.(2.1)-(2.3), [9]);
the volumetric thermovibrational convective effect of the first order with respect to the Boussinesq
parameter was studied as well as the time-averaged vibrational flow of Schlichting origin, i.e., due
to the generation of the time-averaged vorticity in the skin-layers near the rigid surfaces. The
influence of vibrations on the free surface shape and the effect of the free surface deformation on
the mean flow structure was investigated in [10]. In the present paper, vibrational flows in a liquid
bridge are studied taking into account the generation of the time-averaged vorticity near both the

rigid and the free surface.

4.1 Problem definition

Let us consider an axisymmetric liquid bridge between two rigid rods separated by a distance 2h
(Fig.3). The wetting lines coincide with the rods edges. The entire system oscillates in the axial
direction with the displacement amplitude b and angular frequency w,

The rods at z = 44 are assumed to be isothermal:

T=1, (4.1)
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but the liquid bridge is heated by a ring heater. The thermal boundary condition on the free surface
corresponds to heat exchange with the ring heater:
oT
—— = —¢(T =T, 4.2
=TT, (42)
were ¢ 1s the effective heat exchange coefficient, T;, is the ambient temperature. The dependence of

the latter on the axial coordinate contains the effect of the presence of the ring heater:
To(z) = Tn + O exp(—z2/d%). (4.3)

Gravitational and thermocapillary effects are not considered.

4.2 Governing equations and boundary conditions

For weak non-isothermal conditions, the case being considered, the system of equations {2.1)-(2.3)

are appropriate to study the vibrational flows,

We are interested in axisymmetrical solutions for which the non-zero components of the pulsating
and mean velocities are the radial (Wy,u,) and the axial (W,, %) ones. In this case it is convenient

to introduce a cylindrical coordinate system (r,z) with the origin at the symmetry center of the

bridge.

For studying axisymmetric solutions it is convenient to introduce the stream-function and vorticity

for the mean flow:

Aal s Py b .2’1
_ley 1y 19 1dy o

Hr = rdz’ S rar T T r\ar2 T8T+(9zz)

(4.4)

The equations (2.1)-{2.2) are rewritten for the considered configuration in terms of 4 and ¢ and

take the form:

9% 1L 0vds 9vdp  $8%.  Rawm BEIT OQEIT, 8¢ 19 ¢ 0%

0t T e TG o w0 T P 9 s @ror @ Trar 2 tgm (49
or | 1,999T 0yoT, 1 . 2 _
i e = AT vith E=W o)

The equation (2.3) for the pulsating velocity can be rewritten by introducing the potential of the



pulsating field connected with W by the relation W = V&;ie.:

AD =0 (4.7)

Let us discuss the boundary conditions. On the rigid boundaries at z = +H the normal compo-
nents of the mean and pulsating velocities should satisfy the conditions of impermeability:

Taking into account the generation of mean vorticity in the dynamical skin-layers near the rigid
surfaces we accept the condition of Schlichting’s type on these surfaces. For the considered config-

uration this condition can be formulated in the form:

2

de ot d* 2
) (4.9)

1 . )
= ZSC(3R6((1 + E)E 52 T

oo

s 02
dr

gz

where * denotes the complex conjugate guantity.

We do not impose any condition for the tangential components of the pulsating velocity on the

rigid surfaces because of the lowering of the order of the equations for the pulsations.

The generation of the time-averaged vorticity takes place not only near the rigid surfaces but also
near the free surface where capillary waves propagate from the vibrating rods. The dissipation of
the surface wave energy is accompanied by the decrease of the waves momentum. Since the waves
momentum is concentrated in a layer near the free surface, the momentum loss is balanced by the
time-averaged viscous stress. Due to that, under this layer (near the free surface), vorticity should
be generated which is of second order with respect to the waves amplitude. This phenomenon
was investigated for the first time by Longuet-Higgins in [11]. We found that this effect can result
in a strong mean flow near the free surface in the Crochralsky configuration [12]. This phenom-
ena can be described with the help of an effective boundary condition for the mean shear rate on

the free surface. We use the boundary conditions in the form given in [2,13],1e., at r = 1 we accept:

. _ oCO*P* 9P 93¢
v=0, ¢=se Im((’?s 922 9z 339) (4.10)
¢ . 99
= T hen (411)
DD &*
P = -—235-@ - E(C + _a"z—g), (412)



where ¢ is the amplitude of the pulsations of the free surface (we do not take into account the effect

of non-zero normal component of the mean velocity).

The thermal boundary conditions are:

T=0 a z=4H, g—f =—Bi(T-T.) at r=1, T,(z)=exp(—22/D?). (4.13)

The equations and boundary conditions are written in non-dimensional form; the value T, is taken
as the reference temperature. The values B, R?*/v, v, ® are the scale factors for length, time,

stream function and temperature respectively, where R is the mean radius of the liquid bridge.
Here, ® = T,(0) — T,,.

The problem is characterized by the following non-dimensional parameters: vibrational Rayleigh
rumber Ray; = S0Ob0%w?RE/4vy, pulsating Reynolds number (or Schlichting parameter) Se¢ =
b%w/v, Prandtl number Pr = »/x, Biot number Bi = deo « T3 Ro/x, parameters ¥ = a/w?R® and
§ = v/wR*® which are responsible for capillary effects and viscous damping respectively, D = d /R

characterizing the heater length, and the aspect ratio H = h/R. ¥ is the inverse of Weber number:
T = (We)l.

4.2 Numerical Results

The problem for the determination of the pulsating field is separated from the determination of
the mean components of hydrodymamical fields. For the solution of the problem for ¢ and @ the
potential was represented as a sum of a linear function of z and axisymmetric eigenfunctions for an
infinite liquid column. For this approximation of the potential the deviation of the free surface from
1ts equilibrium position was found from the dynamical boundary condition taking into account the
"stuck edge conditions” (i.e., the fluid sticks on the edges). This deviation was substituted into
the kinematic condition, then the orthogonality relations on a free surface were employed. So, one
obtains a non-homogeneous system of linear algebraic equations which can be solved by an iterative
method. For the solution of the equations for the mean components, a finite difference method was

applied.

The calculations were carried out at fixed values of Prandt] number, Biot number, aspect ratio and

parameter D: Pr=0.02, Bi =2, H =1, D = 0.5. Parameters Loy, Sc, T and § were varied.

Consider the results of the numerical study for the mean flows. In Figs.4{a-c) the streamlines of the



mean flows are presented for an isothermal situation (i.e., Ra,y = 0) at S¢ =40, § = 5 x 10~* and
for three different values of the parameter £ (¢~ = 0.5x 1072, b—3X =102, ¢c— ¥ = 3.5 x 1079).
For such isothermal conditions the mean flow is generated by the coupled effect of the Schlichting
and surface wave mechanisms. Ag one can see, the flow has a form of four vortices. The vortices
located near free surface are induced by surface waves propagating along the free surface. The

circulation in these vortices is such that the fluid moves along the free surface from the rigid rods.

Two symmetrical vortices located near the rigid rods are of Schlichting origin. In these vortices
the fluid moves along the rigid surfaces in the direction opposite to that of the pulsating energy

gradient; thus, in the lower part of the zone the circulation is clock-wise.

The vortices induced by the two previously discussed isothermal vibrational mechanisms have dif-
ferent directions of circulation and different locations; due to that they are well separated each from
other. As one can see from Figs.4(a-c), the relative sizes and intensities of these vortices change

with the change of parameter T.

The flow of pure thermovibrational origin (i.e., for Sc¢ = 0) is shown in Fig.5) for Ra, = 10%);
it has the structure of two vortices with the same direction of circulation as that of the vortices
induced by surface waves mechanism (and opposite to the direction of the Schlichting flow); i.e. in

the lower part of bridge the circulation is counter-clock-wise.

In Fg.6 the structure of the flow caused by all the discussed vibrational mechanisms is presented
for Ra,y = 10%, Se =40, X = 3.5x 1072 and S = 5 x 10~%. As one can see, the flow structure
is close to the pure thermovibrational case (at these values of the parameters the intensity of the
Schlichting flow is relatively small and the structure of mean flow generated by surface waves is

nearly the same as that of thermovibrational flow).

An increase of the vibrational parameters leads to an increase of the mean flow intensity; the flow

structure remains nearly the same.

Thus, there is a range of the parameters where the resuiting flow has a form of two vortices with
the directions of circulation opposite to that of the thermocapillary flow (in the case of normal
thermocapillary effect). The location of these vortices coincides with that of thermocapillary vor-
tices. This makes it possible to conclude that the vibrational mechanism can be effectively used

for the suppression of thermocapillary flow. A detailed study is planned for the near future.

Vibrational flows of high enough intensity have a marked influence on the heat transfer. Our calca-

10



lations show that the deformdtion of the temperature field by the vibrational flow is such that the
lines of constant density are perpendicular to the vibration axis (Figs.7(a —b)). Thus, the effecf of
high frequency vibrations on the heat transfer in a liquid bridge is similar to that observed in the
case of a square cavity (see, Fig.2{(b)). In Figs.8(a —b), for sake of comparison, we display some
previous results given in [8] for pure thermocapillary flows, for two values of Marangoni number
(Ma =10 and Ma = 500) where Ma = %@ . As one can see by comparing Figs.7(a—b) and
Figs.8(a—0b) the vibration effect is opposite to the thermocapillary one. Thus, in real technological

experiments the effect of vibrations can result in the flattening of crystallization front.

5 CONCLUSIONS

The influence of high frequency vibrations on heat transfer has been studied for two different comn-

figurations.

In the case of a differentially heated cavity subjected to an horizontal temperature gradient, we
have shown that the thermogravitational convection can be controlled by vibrations exerted in a
selected direction. Vibration exerted in the direction® parallel to the external temperature gradient

will damp thermogravitational convection.

In the case of a liquid bridge with a free surface maintained between two rods sub jected to a radia-
tive heat flux from a ring heater, three different vibrational mechanisms of mean flow generation
are observed. Two of these mechanisms are isothermal ones, they are related to the dynamical skin-
layers near the rigid and free surfaces; the third mechanism, non-isothermal one, is a volumetric
thermovibrational mechanism. The latter is governed by the vibrational Rayleigh number linear
with respect to the Boussinesq parameter. In the range of the parameters considered, coupling
effect of the three vibrational mechanisms leads to a mean flow with a direction opposite to that

of the thermocapillary one, thus providing a means of suppressing thermocapiliary flow by high

frequency vibrations.

For a more realistic description of a real floating zone system, it will be necessary to take into
account convective flows of non-vibrational origin, like a thermogravitational flow (g # 0) and/or

a thermocapillary flow. These extensions will be presented in a near future.
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