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Abstract—The conflict between cooperation in distributed state
estimation and the resulting leakage of private state information
(competitive privacy) is studied for a system composed of two
interconnected agents. The distributed state estimation problem
is studied using an information theoretic rate-distortion-leakage
tradeoff model and a repeated non-cooperative game framework.
The objective is to investigate the conditions under which the
repetition of the agents’ interaction enables data sharing among
the agents beyond the minimum requirement. In the finite horizon
case, similarly to the one-shot interaction, data sharing beyond
the minimum requirement is not a credible commitment for
either of the agents. However, non-trivial mutual data sharing is
sustainable in the long term, i.e., in the infinite horizon case.

Index Terms—Competitive privacy, rate-distortion-leakage
tradeoff, subgame perfect equilibrium

I. INTRODUCTION

Classical state estimation requires a central coordinator that
estimates the state using measurements from all the nodes in
the network. Several distributed approaches to this problem
have been considered [1] [2]. However, these approaches are
essentially based on two-tier hierarchical models in which each
local node estimates independently, and then, at a higher level,
a central coordinator receives the estimation results from the
individual areas and coordinates them to obtain a system-wide
solution. However, this model does not scale with increas-
ing measurement rates due to communication and reliability
challenges inherent in systems with one coordination center.
This requirement of estimating the state precisely and often is
driving the need for a fully distributed approach wherein the
local control centers interactively estimate the system state as
a whole.

In the context of the electrical power-grid and the state-
estimation problem at the regional transmission organisation
(RTO) level, the authors of [3] introduce a competitive pri-
vacy notion to capture the conflict between sharing data
for distributed estimation (utility/benefit to all RTOs) and
withholding data for economic and end-user privacy reasons.
Assuming that the RTOs are willing to cooperate, they present
an information-theoretic rate-distortion-leakage framework for
a two-RTO network and show that each RTO has to tolerate
a level of information leakage proportional to the fidelity
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(distortion) required at the other RTO. These concepts are very
general and can be applied to any interconnected system com-
posed of several autonomous and possibly competing agents.
A natural question that arises is whether such a cooperation
can be achieved via incentives.

In [4], the authors address this question by introducing
a pricing-based objective function. This objective function
is essentially a linear combination between the leakage of
information caused by sharing data and a pricing function that
awards the agent proportionally to the fidelity improvement at
the other agent’s side. We show that strictly non-zero pricing
incentives are required to achieve non-trivial target distortions.
Furthermore, all distortion levels in the rate-distortion-leakage
achievable tradeoff region can be achieved by appropriate pric-
ing offered to balance out the negative effect of information
leakage.

However, in several scenarios, this pricing technique may
appear artificial and not realistic (e.g., in the absence of a
centralized regulator that pays the agents in exchange for their
sharing of data, in a self-regulatory market, etc.). In this paper,
we investigate whether better distortion levels can be achieved
as a result of repeated interactions among selfish agents using
a non-cooperative repeated games framework. Two different
cases are investigated: finite and infinite horizon repeated
games. If the agents know exactly when the last stage of their
interaction takes place, non-trivial data exchange cannot be
sustained and the same distortion pair as the one-stage game
is achieved. If the agents are unsure of the ending of their
interaction, non-trivial data exchange can be sustainable in
the long term. However, it turns out that not all the achievable
distortion levels can be achieved as a result of the long-term
interaction. More specifically, we have observed that very
asymmetric distortion pairs cannot be sustainable. This means
that, in the long term interaction, one agent has incentive to
share data beyond the minimum requirement if and only if the
other agent is doing the same thing.

II. SYSTEM MODEL

The system under investigation is basically the one given in
[3], i.e., we assume a linearized noisy Gaussian measurement



model at the agents’ level given as follows:

Y1 = X1 + αX2 + Z1

Y2 = βX1 +X2 + Z2,
(1)

where α > 0 and β > 0. The states, X1 and X2, are assumed
to be independent standard (zero-mean unit-variance) Gaussian
random variables and the additive zero-mean Gaussian noises,
Z1 and Z2, are assumed to be independent each other and of
the agent states and to have fixed variances σ2

1 and σ2
2 . Agent

j, j ∈ {1, 2}, encodes (quantizes) its measurement vector at a
rate (in bits per measurement) Rj . The encoding is subject to
the satisfaction of two constraints: a distortion requirement on
the state estimate at the other agent (cooperation) and a leakage
requirement (privacy) on the information leaked about its state
to the other agent. Let Dj and Lj denote respectively the
fidelity (distortion) and leakage requirements of the estimate
at agent j where Dj is the mean square error between the
original and reconstructed state vectors and Lj is the average
mutual information between the state vector at agent j and the
revealed data and measurement vector at the other agent.

We summarize the resulting rate-distortion-leakage (RDL)
achievable region in the following theorem.

Theorem 1: [3] The rate-distortion-leakage tradeoff is the
set of all (R1, R2, D1, D2, L1, L2) tuples that satisfy the
following: for agent j, j ∈ {1, 2}, and i ∈ {1, 2} \ {j},

• Di < Dmax,i:

Rj ≥
1

2
log

(
cjm

2
j

Di −Dmin,i

)
, and (2)

Lj ≥
1

2
log

(
m2

j

m2
jDmin,j + n2

j (Di −Dmin,i)

)
; (3)

• Di ≥ Dmax,i: Rj = 0 and Lj = log (Vi/(Vi − qj)) /2,
where q1 = β, q2 = α, V1 = 1+ α2 + σ2

1 , V2 = 1+ β2 + σ2
2 ,

E = α + β, cj = V1V2−E2

Vi
, n1 = V2−βE

V1V2−E2 , n2 = V1−αE
V1V2−E2 ,

m1 = αV2−E
V1V2−E2 , m2 = βV1−E

V1V2−E2 and

Dmin,1 = 1− (β2V1 + V2 − 2βE)

(V1V2 − E2)
, (4a)

Dmin,2 = 1− (V1 + α2V2 − 2αE)

(V1V2 − E2)
, (4b)

Dmax,j = 1− 1

Vj
. (4c)

In what follows, we focus on the lower-bound of this
achievable region where only the minimal encoding rate Rj

required to achieve the distortion level Di is considered, i.e.
the inequalities in (2) and (3) are satisfied with equality.

In [4], the authors consider the different encoding rates
in the RDL tradeoff region as the actions that agents can
take. Here, we will use a formulation that makes the analysis
clearer and easier. Given that the encoding rate Rj is a
bijection with respect to (w.r.t.) the distortion at the other
agent Di, we assume that the action agent j can take is
aj ≡ Di ∈ Aj , (Dmin,i;Di]. This simply means that the
decision of agent j on how much information to divulge to

the other agent directly tunes the state estimation fidelity of
the other agent i. The term Di denotes the maximum allowed
distortion level of the state estimate of agent i, which can be
equal to or less than Dmax,i in Theorem 1.

Remark: It is an abuse of notation not to distinguish
between the limits aj −→ Dmin,i and aj = Dmin,i. This
is not rigorous, but makes the analysis simpler and clearer. To
be rigorous, one must carefully consider that full-cooperation
regimes between the agents are achievable only asymptotically,
when the encoding rates go to infinity.

The objective function of each agent is composed of two
opposing quantities: the leakage and the distortion functions.
Therefore we consider the objective function of agent j, uj :
Aj × Ai → R, as the weighted sum of these two opposing
quantities:

uj(aj , ai) = −w̃jLj(aj) + ŵj log

(
Dj

ai

)
(5)

where Lj(aj) represents the leakage of information at agent j
as a function of aj , i.e., the distortion at agent i, and ai is the
distortion at agent j. The two weighting factors, i.e., w̃j > 0
and ŵj > 0 capture the emphasis of each agent on its leakage
of information versus its fidelity of the state estimation.

III. REPEATED NON-COOPERATIVE GAMES

The non-cooperative game we wish to analyze is described
by the tuple G = (P, {Ak}k∈P , {uk}k∈P), where P , {1, 2}
is the set of players (the two agents); Ak is the set of actions
that agent k can take and uk is the payoff function which
measures the satisfaction of agent k for any strategy profile.
The game is simply a decoupled optimization problem and
the optimal solution corresponds to the system state where
the amount of the data exchange between the two agents is
minimal, i.e., (a∗1, a

∗
2) = (D2, D1) as discussed in [4].

In this work, we are interested in the repeated games
framework that might incentivize the agents to cooperate
by exchanging data beyond the minimum imposed level of
cooperation, naturally, without any pricing incentives [4]. We
assume that the agents interact more than once under the
same conditions, i.e. they play the same game repeatedly.
Two scenarios are considered: i) finite-horizon repeated games
in which the agents know in advance when their repeated
interaction ends; and ii) infinite-horizon repeated games in
which the agents do not know for sure when the game will
end. In both cases, we study the possibility of sustaining
cooperation by allowing the agents to make only credible
commitments, i.e., commitments on which they have incentive
to follow through. The equilibrium concept we investigate here
is the subgame perfect equilibrium.

We assume that the game G is played several times, i.e.,
in T > 1 rounds where T can be either finite or infinite.
In this scenario, players wish to maximize their averaged
utilities over time. The particularity of repeated games as
compared with the one-shot games is that players can observe
the history of the game and condition their current play on past
actions. The history at the end of stage t ≥ 1 is denoted by



h(t+1) = (a(1), . . . , a(t)), where a(τ) = (a
(τ)
1 , a

(τ)
2 ) represents

the agents’ play or strategy profile at stage τ . The set of all
possible histories at the end of stage t is denoted by H(t+1)

and considering H(1) as the void set.
A pure strategy for a player is a contingent plan of how to

play in each stage t for any history h(t).
Definition 1: A pure strategy for player j, sj , is a sequence

of causal functions
{
s
(t)
j

}
1≤t≤T

such that stj : H(t) −→

(Dmin,i,Di] and s
(t)
j (h(t)) = a

(t)
j ∈ (Dmin,i, Di].

The set of strategies for agent j is denoted by Sj and the
set of strategy profiles is denoted by S.

We assume that agents discount future payoffs. This means
that present payoffs are more important to an agent than future
ones.

Definition 2: The discounted payoff for player j for a joint
strategy s = (s1, s2) is given by

vj(s) = (1− ρ)
T∑

t=1

ρt−1uj(a
(t)), (6)

where a(t) is the action profile induced by the joint strategy
s, uj(·) is the payoff function in (5), ρ ∈ (0, 1) is the discount
factor which is known to all players.

The Nash equilibrium concept is defined in a way similar to
that in one-shot games. However, some of the Nash equilibria
in repeated games may rely on empty threats [5] of suboptimal
play at histories that are not expected to occur. Thus, we focus
our attention on a subset of Nash equilibria that are predictable
in the sense that they allow players to make commitments
only on which they have incentive to follow through: the
subgame perfect equilibria. Before defining this concept, we
first discuss subgames. Given any history h(t) ∈ H(t), known
by the agents, the game from stage t onwards, with history
h(t), is a subgame denoted by GR(h

(t)). The final history
is, for this subgame, h(T+1) = (h(t), at, . . . , aT ) and the
strategies and payoffs are functions of the possible histories
that are consistent with h(t). Any strategy profile s of the
whole game induces a strategy s|h(t) on any subgame GR(h

(t))
such that for all j, sj |h(t) is the restriction of sj to the histories
consistent with h(t).

Definition 3: A subgame perfect equilibrium, s∗, is a strat-
egy profile (in a multi-stage game with observed actions) such
that for all h(t) ∈ H(t), the restriction s∗|h(t) is a Nash
equilibrium for the subgame GR(h

(t)).
We notice that this equilibrium concept is a refinement

of the Nash equilibrium since it is required to be a Nash
equilibrium not only in the entire history game but in every
possible subgame. The main difference is that this concept
allows the agents to make only credible commitments on
which they have incentives to follow through.

A. Finite-horizon repeated game

Here, we assume that T is finite and that the agents know
in advance its value and when the game ends precisely.
Under these conditions, we show that cooperation beyond the
minimum requirement cannot be enabled.

Theorem 2: In the finite-horizon repeated game G(T )
R =

(P, {Sj}j∈P , {vj}j∈P , T ), the unique subgame perfect equi-
librium is “not to share any information above the minimum
requirement” at each stage of the game and for both agents:

s
(t),∗
j = Di, ∀t ∈ {1, . . . , T}, ∀j ∈ P. (7)

The proof follows using tools similar to those used for the
repeated prisoners’ dilemma, by using an extension of the
backward induction principle to dominance solvable games
[5].

Being based on strict dominance, this result remains valid by
replacing the discounted payoffs with simple averaged payoffs
such as ṽj =

1
T

∑T
t=1 uj(a

(t)).

B. Infinite-horizon repeated game

Here, we consider the situation in which the agents are
unsure of the ending of the game or in which the game
has infinite horizon. In this case, the set of subgame perfect
equilibria cannot be determined by backward induction from
the final stage since there is no precise information about the
end of the game.

Theorem 3: In the infinite-horizon repeated game G(∞)
R =

(P, {Sj}j∈P , {vj}j∈P), if Dmin,j > 0 for all j ∈ P , then the
strategy “not to share any information above the minimum
requirement” at each stage of the game and for both agents
is a subgame perfect equilibrium:

s
(t),∗
j = Di, ∀t ≥ 1, ∀j ∈ P. (8)

The proof follows by applying the one-stage-deviation prin-
ciple for infinite-horizon games with discounted payoffs that
are uniformly bounded in each stage [5]. As opposed to the
finite-horizon repeated game, the discounted payoffs play a
crucial role in the one-stage-deviation principle and, thus, this
proof is not readily applicable in the case in which a uniform
average of the stage-payoffs is considered. As discussed in
[6] and references therein, the discount factor can be seen as
the probability that the game does not stop, at each stage of
the game. Thus, the probability that the game stops at stage
t is (1− ρ)ρt−1 and the discounted payoff corresponds to an
expected utility.

Inspired by the infinite-horizon repeated prisoners’
dilemma, our objective is to prove that, depending on the
discount factor and system parameters, non-trivial exchange
of information can be sustainable in the long term and that
the strategy given in Theorem 3 is not the only subgame
perfect equilibrium. We focus on the sub-set of action profiles
(D∗

2 , D
∗
1) ∈ (Dmin,2, D2) × (Dmin,1, D1) that satisfy the

following conditions:{
u1(D

∗
2 , D

∗
1) > u1(D2,D1)

u2(D
∗
1 , D

∗
2) > u2(D1,D2).

(9)

The intuition is that, distortion pairs that are better than the
one-shot Nash equilibrium D∗

j < Dj and which achieve
strictly better utilities than this threat point for both agents
(9) may be expected to be sustainable agreements between the
two agents in the long term. These profiles are not sustainable



in the one-shot or the finite-horizon repeated game scenario,
because each agent cannot rely on or trust on the other agent
to play a strictly dominant strategy at one stage in the finite
interaction framework. However, we will see that, when the
agents are unsure of the end of the game, the commitment
of playing any pair (D∗

2 , D
∗
1) is sustainable under sufficient

conditions on the discount factor. In other words, if the
probability of the game stopping is small enough, then the
commitment of playing (D∗

2 , D
∗
1) is a credible commitment

in the infinite-horizon repeated game.
Theorem 4: In the infinite-horizon repeated game G(∞)

R =
(P, {Sj}j∈P , {vj}j∈P) and for any agreement profile
(D∗

2 , D
∗
1) ∈ (Dmin,2, D2) × (Dmin,2, D2) satisfying the con-

dition in (9), if the discount factor is bounded as follows:

1 > ρ > max
j∈P, D̂i∈(D∗

i ,Di]

{
uj(D̂i, D

∗
j )− uj(D

∗
i , D

∗
j )

uj(D̂i, D∗
j )− uj(Di,Dj)

}
(10)

and Dmin,j > 0 for all j ∈ P , then the following strategy
is a subgame perfect equilibrium: “Any agent j: shares data
at the agreement point D∗

i in the first stage and continues
to share data at this agreement point so long as the other
player i shares data at the agreement point D∗

j . If any player
has ever defected from the agreement point, then the players
do not cooperate beyond the minimum requirement from this
stage on”.

The proof follows using the one-stage deviation principle
similarly to the proof of Theorem 3. This result shows that
the agents can achieve better distortion levels in a natural
way in a long-term interaction process and without the in-
tervention of a central authority that uses pricing techniques
or enforces an unfair sum-utility objective upon the agents.
All the distortion levels (D∗

i , D
∗
j ) that satisfy the conditions

in (10) are achievable. Any other distortion pair (Di, Dj)
for which uj(Di, Dj) < uj(Di, Dj) for some j, cannot be
sustainable in the long term repeated game because agent j
will have an incentive to deviate at any stage. In other words,
such an agreement point is not credible in the long term.

IV. NUMERICAL RESULTS

Let r1 , ŵ1/w̃1 and r2 , ŵ2/w̃2. We consider the
following scenario: α = 0.9, β = 0.5, σ2

1 = σ2
2 = 0.1, Dj =

Dmin,j + 0.5(Dmax,j −Dmin,j) for j ∈ P , Dmin,1 = 0.3088,
D1 = 0.3926, Dmin,2 = 0.2183 and D2 = 0.2388. For the
cases in which the leakage term is important (e.g., r1 = r2 = 1
or r1 = 1, r2 = 2) there is no distortion pair (D∗

2 , D
∗
1)

that strictly improves both players’ payoffs w.r.t (D2, D1).
This means that the improvement in an agent’s estimation
fidelity resulting from the other player cooperating above the
minimum requirement is not good enough to justify the loss
in privacy incurred by the agreement point. However, if these
ratios increase, then the sustainable region of pairs (D∗

2 , D
∗
1)

that satisfy jointly the conditions in (9) and (10) is not trivial.
This fact is illustrated in Fig. 1 for the cases: i) r1 = 1, r2 = 5;
and ii) r1 = 5, r2 = 5. The white region represents all the
possible agreements that are credible commitments, whereas

Fig. 1. The subset of all possible (D∗
2 , D

∗
1 ) that are credible commitments in the

infinite-horizon repeated game when α = 0.9, β = 0.5, σ2
1 = σ2

2 = 0.1: i) r1 =
1, r2 = 5; ii) r1 = r2 = 5.

the dark region represent the distortion points that cannot
be achieved. The upper-right corner represents the minimum
cooperation requirement (D2, D1). We observe that the very
asymmetric points are not generally achievable. This is simply
because one player will not share a lot of information while
expecting little in return. We observe also that the higher the
impact of the fidelity w.r.t the leakage term, the larger the
sustainable region is and the lower the distortion levels that
are achievable.

V. CONCLUSIONS

A repeated non-cooperative game has been investigated as
a possibility to enable data sharing among autonomous inter-
connected agents to improve the fidelity of their own state
estimates. In the finite horizon case, it is not possible to
sustain data sharing beyond the minimum requirement. If the
interaction of the agents is repeated infinitely many times,
non-trivial solutions exist for which the impact of estimation
fidelity is larger than that of the leakage of information. As
opposed to the situation with pricing techniques [4], not all



the distortion pairs are achievable: the data-sharing must be
mutual to be credible.
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