
HAL Id: hal-01308991
https://hal.science/hal-01308991v1

Submitted on 28 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composition at the frontend : the user centric approach
Nassim Laga, Emmanuel Bertin, Noel Crespi

To cite this version:
Nassim Laga, Emmanuel Bertin, Noel Crespi. Composition at the frontend : the user centric approach.
ICIN 2010 : 14th International Conference on Intelligence in Next Generation Networks, Oct 2010,
Berlin, Germany. pp.1 - 6, �10.1109/ICIN.2010.5640926�. �hal-01308991�

https://hal.science/hal-01308991v1
https://hal.archives-ouvertes.fr

Composition at the Frontend: the User Centric

Approach

Nassim Laga, Emmanuel Bertin

Orange Labs

France Telecom R&D, 42, rue des Coutures,

14000 Caen France

{nassim.laga, emmanuel.bertin}@orange-ftgroup.com

Noel Crespi

Institut Telecom, Telecom SudParis,

9 rue Charles Fourier, 91011, Evry Cedex, France

noel.crespi@it-sudparis.eu

Abstract—User generated content (UGC) is the main

characteristic of current Web 2.0. This paper summarizes our

experience in applying such philosophy (user generated) in the

service creation field. We summarize why current SOA did not

succeed in enabling end-users to create services, and propose our

approach based on frontend service composition.

Keywords-Web 2.0; SOA; service composition; user-centric

design

I. INTRODUCTION

Web 2.0 paradigm has really revolutionized the Web.
Software features are no longer packaged as a single
application; instead, they are split into and published as
services in order to promote cross-network and cross-
organizations sharing, collaboration, reusability, and
integration. This is known as Service-Oriented Computing
(SOC) [1]; developers create services, and make them available
for optional reuse by other developers. In order to facilitate the
publication and the discovery of such services over the Web,
Service-Oriented Architecture (SOA) has emerged as a
solution. Providers publish their services into a common
registry, and third party developers discover and reuse these
services. However, while current SOA technologies have
definitely succeeded in enabling developers to discover and
reuse services, the end-users can not combine themselves these
services according to their needs. This is essentially due to the
fact that SOA is initially conceived for a machine-to-machine
communication and not for human-to machine-communication.

On the other hand, user devices and networks are
respectively more sophisticated and reliable. The devices
embed more and more hardware and software capabilities, and
the operators have succeeded to significantly enhance the
quality of service of their networks (bandwidth, response-
time…etc). These advances in networking and devices fostered
the adoption of the XaaS paradigm (Everything as a Service).
As end-users do no longer care about the connectivity,
applications can be hosted on the Web and accessed only on
demand. Thus, the user interface of the service is displayed on
the device, but its logic is running on a remote server.

In this paper we claim that technology advances provide
also the opportunity of investigating a new service composition
approach based on the end-user device (frontend). This is
characterized by composing the services by composing their
UIs. This enables us to easily interact with the end-user and

enhance the intuitiveness of the composition process. This
paper summarizes our experience regarding this new service
composition field. We first explain it and position it regarding
traditional service composition in SOA. We also provide an
insight of the existing technologies. Second, we summarize our
vision and the new opportunities provided by frontend
composition. Third, we illustrate the frameworks we have
defined and implemented. Finally, we conclude the paper with
a summary of our experience.

II. SERVICE COMPOSITION BACKGROUND

As we illustrate in Figure 1, we classify existing service
composition tools into a backend and a frontend service
composition category. In the following subsections, we define
and review existing technologies in each category.

Figure 1. Backend and frontend composition approaches.

A. Backend Level

Independently of the adopted technologies (WSDL/SOAP
or REST), SOA is the architecture model that enables SOC [2].
It provides the publication and discovery facilities through the
usage of a common registry. Thus, developers create services,
describe them (e.g. using Web Service Description Language
(WSDL) [3]), and publish them into a common registry (e.g.
UDDI [3]). Third party developers can then use the discovery
facilities provided by the registry to discover the services they
need. Finally, they invoke these services (e.g. by creating
SOAP messages and sending them over HTTP requests). SOA
and the enabling technologies have been successfully adopted
by developers, as currently major development platforms,
provide service reuse capability through WSDL and SOAP
libraries (J2EE, Microsoft Visual Studio). However, ordinary
end-users, without development skills, are currently left apart.
Indeed, as ordinary end-users do not understand XML based
files such WSDL and SOAP, it is hardly conceivable for them
to compose services. Figure 2 shows this technology gap.

Figure 2. Limitations of backend service composition.

To tackle this limitation, and enable end-users to compose
services, several composition tools have emerged on the top of
SOA; we refer to them as backend composition. The goal is to
facilitate and speed up as much as possible the service
composition process; the process of discovering and reusing
services. The adopted approach is characterized by adding
semantic and semantic reasoning component the architecture.
Thus, according to an end-user need, expressed for example in
his natural language, an end-to-end composite service is
created automatically. This composition approach provides
definitely the easiest way for end-users to compose services.
But, it is still limited. It requires a high expressive semantic
description of services, usually performed using ontologies.
Consequently, in practice, the modeling of a wide domain of
knowledge is not only hard, but it also requires a continuous
update. In addition, composite services that are created by this
composition approach are very simple and usually based on the
definition of a flowchart between request-response based
services, without considering events and sessions.

Another approach for enabling end-users to compose
services is characterized by providing a UI in which they can
specify themselves the flow between services through a
flowchart diagram. An example of such composition approach
is Yahoo Pipes [4]. Yahoo Pipes introduces two interesting
features. First, it uses UIs as building blocs in the flowchart
definition process. Second, it does not require a high level of
expressiveness in the semantic description as the composition
is performed manually, by humans. However, it still has three
limitations. First, it is still based on flowchart definition, which
is not obvious for ordinary end-users to master, though it
facilitates considerably the composition process. Second, the
considered services are data oriented and request-response
based. Consequently, session and event based services such as
Instant Messaging and Telephoning are not considered. This
limitation is due to the need of simplifying the flowchart to be
accessible by ordinary end-users. Other flowchart based
frameworks [5 and 6] enable session and event based
composition, but this feature complicates the composition tool,
and makes it addressed for developers such as Business
Process Execution Language (BPEL) [7]. Third, the building
blocs (UIs) are actually UIs that enable the end-users to enter
the inputs required by the corresponding services. In other
words, the service in itself is not natively integrated in the UI;
the outputs for instance are XML-based. Nevertheless, Yahoo
Pipes provide some basic UI patterns for the display (List,
Map, and Images). But, services those outputs do not match the
basic UI patterns defined by Yahoo Pipes can not be
considered (e.g. Telephony, IM, and Video Player).

B. Frontend Composition

We define the frontend service composition as the process
of combining services at the end-user device level; the

composition logic is defined and executed at the end-user
device. This approach is fostered by the computing capabilities
made available at the frontend level. Here, we categorize
frontend service composition into two main categories:
programming language based composition, and Widgets based
composition.

1) Programming Language Based Composition
The most basic approach, addressed for developers, to

compose services at the frontend level is to use a programming
language such as Java and C++. The only requirement is to be
able to construct a SOAP message and send it through HTTP
requests. Major programming languages even provide ready-
to-use libraries to facilitate the reading of WSDL files and the
construction of SOAP messages. There are even JavaScript and
AJAX libraries that provide such facilities (e.g. jQuery SOAP
client). As a consequence, developers can easily orchestrate
services at the browser level (frontend). This composition type
still remains developer-centric.

Another approach for composing services at the frontend is
to use facilities provided by the device Operating System (OS).
In Microsoft Windows for instance, developers of applications
can dynamically (at the runtime) discover and use other
application capabilities installed in the end-user machine. They
use the OLE (Object Linking and Embedding) automation.
Google Android OS also embeds such type of mechanism
(Intent). It provides developers with the capability of invoking
the functionalities that are loaded on the end-user device. For
example, a contact list application can use the functionalities
provided by a mailing application loaded by the end-user.

The OS-based composition mechanisms provide an
interesting feature. They are more user-centric then those based
on programming languages. They provide basic personalization
for end-users as the composition happens only between
services that are installed by the end-user on his device. For
example, in the Intent based composition of Google Android, if
a contact list service is composed with a mailing service (e.g.
Gmail), the end-user can change the mailing service (e.g. to
Yahoo mail) and the composition remains valid. Nevertheless,
the end-user can not change the composition logic; the fact that
the contact list service is composed with a mailing service and
not with a Map service for example. This is the main limitation
of this composition approach; only developers can change the
composition logic.

2) Widgets Composition

Widgets aggregators [8] such as iGoogle
1
 provide to end-

users the capability of constructuting their own Web page

from existing services. They use Widgets [9] as a basic and

reusable element in the construction of the Web page.

However, the integration between these Widgets is not widely

considered as there is no standardized approach for doing so.

Nevertheless, some emerging Widget aggregators (EzWeb

[10] and IBM Mashup Center [11]) do provide such

capabilities. These tools provide to end-users the capability of

defining “wires” between two Widgets. A wire is a definition

of a mapping between an output of a Widget with the input of

1 iGoogle, http://www.google.com/ig, accessed on June 21, 2010

http://www.google.com/ig

another. As a consequence, each time the source Widget

generates a new output, the destination Widget is launched

automatically, with that output as an input parameter. This

Widget composition, however, is still based on a flowchart

definition. It requires from the end-user to understand the

concept of input, output, and the mapping between them;

concepts which are not accessible for ordinary end-users.

III. FRONTEND COMPOSITION BASED ON WEB WIDGETS

In this paper we deeply investigate the potential of the
Widget based composition. Our main target is to enhance the
intuitiveness and the richness of this composition category. Our
approach is summarized in Figure 3. Basically, we use Widgets
as basic elements in the composition process. A Widget is a UI
that provides access to a business logic implementation
exposed as a Web service or using any other technology. These
Widgets are then composed with each other to form a more
innovative service and enhance the end-user experience. The
UI invokes the server side part (the business logic) using AJAX
requests. In order to enhance the intuitiveness the Widget based
composition, we first detect semantic matching between inputs
and outputs of the Widgets that are loaded on the same
environment. Second, we accordingly create wires between
these Widgets. Finally, we enable the end-users to modify or
delete a created wire. This process enables the end-users to
compose services, without having to understand the concept of
input/output mapping. In addition, when compared to SOA-
based composition, this approach is not only user-centric, but it
also does not require a high level of semantic expressiveness as
we harness the intelligence of the end-user in the composition
process (since the end-user can delete wires that he considers
not pertinent). Thus, the only requirement is to detect if two
services could be composed, and the end-user is in charge of
checking the semantic validity of the composition.

Figure 3. Widget-based Composition approach.

In order to enhance the richness of the Widget based
composition, we first enable the composition based on events,
and second, we introduce two innovative mechanisms: the
unstructured data based composition and the cross device based
composition. The former aims to enable the definition of
composite services based on unstructured data. Unstructured
data are data that are not formatted nor declared by the
developer of the corresponding Widget. This is especially
useful when considering communication services such as IM,
email, and telephony, where end-users could exchange data
(e.g. addresses, phone numbers, dates) that could be useful to
compose with other services (e.g. Map, Contact List, Agenda).
The second innovative mechanism aims to take into account
the proliferation of end-user devices. It enables end-users to
create composite services distributed over their devices.
Basically, in addition of defining themselves composite

services, end-users assign each basic element within the
composite service to a preferred device. Consequently, the end-
user can easily create a mashup of a mailing service and video
player service, where the mailing service runs on a mobile
device and the video player runs on a TV; this enables him to
read emails on a mobile and attached movies on a TV.

From the technical perspectives, our solution is based on
Web technologies, and is not limited to a specific application
store. This is fostered by the existing Web standards (Widget,
HTML, JavaScript, and CSS) from one hand, and the evolution
made within mobile Web browsers fields from another hand.
Services are thus created ones and executed on heterogeneous
devices. The only requirement is to access these services
through the Widget aggregator, which is a Web application.

IV. FRONTEND COMPOSITION MECHANISMS

This section details the Widget based composition
mechanisms that we introduce to show the pertinence of
frontend composition. In the first mechanism, we firstly use
semantic matching to detect compatible Widgets and compose
them by creating wires between outputs of some Widgets with
inputs of others, and secondly, we enable the end-user to delete
undesired wires or modify their types. This mechanism
facilitates significantly the composition process for end-users
as we detail in the next subsection. The second mechanisms we
introduce enables end-users to define composite services based
on unstructured data. Finally, the fourth mechanism aims to
define composite services distributed over multiple devices.

A. Semantic-based composition of Widgets

1) Mechanism Goal

The goal of the semantic-based composition of Widgets is

to provide an intuitive approach for ordinary end-users,

without computing skills, to compose services. Our approach

is characterized by composing automatically Widgets that are

loaded to the same environment, according to semantic

matching between them. Secondly, we provide to the end-user

the capability of personalizing the composition. By deleting

for example undesired wires, or modify the type of others.

2) Mechanism Design and illustration
To enable an automatic composition of Widgets loaded on

the same environment, it is important to describe their
capabilities. Each Widget may have one or several
functionalities. Each functionality is described by its name,
URL, the type of inputs it expects, and the type of outputs it
may generate. The input type and the output type are described
using Microformats [12] semantic dictionary. Microformats
initiative is characterized by the definition of a set of formats to
represent information used in Web applications. Examples of
such information are: addresses, phone numbers, contact cards,
and calendar events. We believe that Microformats based
semantic model is a practical approach for adding semantic to
Widgets. It represents a good tradeoff between expressiveness
and scalability. The model, associated to the intelligence of the
end-user, is expressive enough to detect if two Widgets could
be composed, and it is scalable as it is not very expressive (The
expressiveness is compensated by the end-user involvement in
the composition).

When two Widgets are loaded on the same environment,
the Widget aggregator detects the semantic matchings between
outputs of each Widget and the inputs of others. As illustrated
in Table I, there are three types of semantic matching [13]:
exact matching, inclusion, and reverse inclusion.

TABLE I. SEMANTIC MATCHING VARIANTS.

Semantic

Matching
Description

Exact
The output type (of the source Widget) is exactly the same as
the input type (of the destination Widget)

Inclusion
The output type (of the source Widget) is a sub-element of

the input type (of the destination Widget)

Reverse

inclusion

The input type (of the destination Widget) is a sub-element

of the output type (of the source Widget)

If such semantic matching is detected, a wire is created
between the two Widgets. Each wire is represented to the end-
user through a UI element (e.g. icon, text button). This UI
element is actually a representation of the destination
functionality, included in the source Widget; when the user
clicks on it, the corresponding functionality is invoked using
data generated by the source Widget as input parameters. When
the semantic matching is not Exact (Inclusion, or Reverse
inclusion), some modifications are performed on the generated
data before the invocation of the functionality.

Figure 4 shows a composite service created using this
mechanism. It illustrates a directory Widget composed with a
telephony Widget. Thus, when the end-user searches a contact
on the directory Widget, the Widget aggregator propose
automatically to call that contact; and when an incoming call
occurs on the telephony Widget, the framework propose
automatically to search the caller on the directory Widget to
have more information (e.g. name, address, email…etc).

Figure 4. Semantic-based composition of Widgets.

From the technical perspectives, the Widget aggregator first
creates a composite service which connects all connectable
Widgets. This process is scalable as it is limited to Widgets that
are loaded into the user environment. However, this may lead
to the creation of wires which are not semantically valid or
undesired by the end-user. Therefore, it is important to provide
to end-user the capability of modifying or deleting the wires,
while maintaining the mechanism as simple as possible. Hence,
we propose to add two visual components to each created wire;
one for deleting the wire, and one for automating the wire. An

automated wire is executed each time the source Widget
generates the needed output. In Figure 4 for instance, when the
user choose to automate the wire from the telephony Widget to
the directory, each time there will be a call in the telephony
Widget, the directory Widget searches the caller.

B. Unstructured Data based composition

1) Mechanism Goal
SOA-based composition tools are all based on mapping

outputs of services with inputs of others; inputs and outputs
which are declared in the service description by developers
when publishing their services. However, additional, and
unstructured data, which are hardly expectable by developers,
might be generated at runtime. This is especially true when
considering end-user generated content and communication
services. For example, two IM communicating end-users are
likely to exchange data such as phone numbers, email
addresses, and postal addresses during an IM session. These
data can not be expected by the developer of the IM service. As
a consequence, it is currently almost impossible to consider
them in a composite service definition. Therefore, we propose
in this section to enable end-users to define a composite service
based on unstructured data. By relying on the frontend, we also
make use of the end-user intelligence in the unstructured data
extraction process. Firstly, only data related to the Widgets that
are loaded on the environment are extracted, and secondly, the
end-user can check whether the correctness of the extraction.

2) Mechanism Design and illustration
The mechanism we propose is an enhancement to the

semantic-based composition of Widgets. This enhancement is
characterized by three items. First, we introduce a repository of
data extraction modules. These modules, when invoked, are in
charge of extracting unstructured data (of a specific type) from
a specified Widget. Second, we create one-to-one associations
between data types present in the semantic dictionary with the
data extraction modules. Finally, we define a new service
composition pattern that enables the end-user to capture and
reuse unstructured data. Figure 5 illustrates a composite service
created using this new pattern. It illustrates an IM service
composed with the telephony, Map, and agenda service,
although the inputs (phone number, postal address, and date) of
these services are not legacy outputs of the IM service. The
creation of this composite service is performed through the
Widget aggregator. First, the end-user loads the different
Widgets (IM, telephony, Map, and agenda) into his
environment, and second, he/she adds a data extraction module
to a Widget (IM) as illustrated in Figure 6.

Figure 6 illustrates also the execution of the composite
service. For each wire, in which the input data type of the
destination Widget is not a legacy output of a source Widget,
the Widget aggregator creates a listener, which is in charge of
extracting the data needed by the destination Widget of the
wire. It uses for this purpose the data extraction module that
corresponds to the input data type of the destination Widget.
Thus, each time the listener detects the corresponding data type
within the source Widget of the wire, it extracts that data and
adds an HTML element to the source Widget through which
the end-user can execute the wire (send the extracted data to
the destination Widget and launch the corresponding

functionality). For example, in Figure 6, each time a date is
detected on the IM service, the Widget aggregator proposes to
the end-user to check his availability on the agenda service.

Figure 5. Unstructured data based composition.

Different unstructured data

extractors that can be added

Call

Check availability

Locate address

Figure 6. Illustration of an unstructured data based composition.

Current SOA based service composition tools do not enable
end-users (ordinary or advanced) to make such composition of
services. This is due to the fact that the composition, when
addressed for ordinary end-users, creates a request-response
based composite service. The composite service is executed
end-to-end without interacting with the end-user. This is due to
the lack of presentation layer (faces) within SOA.

C. Cross-device composition

1) Mechanism Goal
With the proliferation of end-user devices (laptops, cell

phones, TV, tablets, PCs, book readers,…etc.), end-users may
need to compose two Widgets loaded on two different devices.
For instance, it is likely to want to play a movie attached on a
web mail (running on a mobile phone), on a TV video player.
Therefore, we propose in this section a distributed mechanism,
running on the end-user devices, to combine the Widgets
loaded on the same or different devices. We use the Web as a
transport media.

2) Mechanism Design and illustration
To enable the end-user to combine Widgets loaded on

different devices, while maintaining the composition process as
simple as possible, we propose in this section a protocol
implemented on the Widget aggregator level to enable different
instances of different aggregators to exchange the capabilities
of the different Widgets (see Figure 7). Figure 7 shows also
that each application, complying with this protocol, may use
the capabilities of the Widgets loaded on different aggregators
and vice-versa. The design of this protocol is detailed in [14],
and summarized here through six items:

 First, each time the user instantiates a Widget aggregator,
the user is authenticated. Then, using the user identifier,
the Widget aggregator creates a communication channel
named “/userId” (if the instance is the first one), or joins
the channel “/userId” if it is already created by another
instance. The communication channel enables different
aggregator instances of the same user to exchange data.

 Second, each Widget capability is defined through a
quintuplet C (Widget Name, Widget Instance Id,
Functionality URL, Input Type, Device Id). The Widget
Instance Id and Device Id fields are initialized only when
the Widget is instantiated (loaded on a Widget aggregator).

 Third, each time a Widget is loaded on an aggregator
instance, the corresponding capabilities are published to
other instances through the communication channel
“/userId”. These capabilities are tagged “available”.

 Fourth, each time an aggregator instance receives a
capability of a Widget loaded on a different device, it
checks if there are any semantic matching (based on
microformats) between the input type of the capability and
the outputs of the Widgets loaded on this instance. If such
semantic matching is detected, the Widget aggregator adds
an HTML element to the corresponding Widget; an HTML
element which enables the user to launch the destination
Widget loaded on another device.

 Fifth, when the user clicks on an HTML element of a wire,
the corresponding data are sent to the corresponding
destination Widget through the communication channel
“userId”. The sent data are tagged “remote_call”. When
the destination aggregator instance receives such data, it
calls the specified functionality.

 Sixth, each time a Widget is unloaded from an aggregator
instance, the corresponding capabilities are published to
other instances through the communication channel
“/userId”. These capabilities are tagged “unavailable”.
When aggregator instances receive such information, they
delete the wires that refer to the received capabilities
(which are no longer available).

From the end-user perspective, when using Widget
aggregators compliant with the protocol we define, it is very
easy to create a composite service distributed over different
devices. The only action needed from the end-user is to
instantiate the Widgets (load the Widgets into his aggregator
instances). Figure 8 shows an example of a composite service.

Figure 7. Cross device Widget composition basis.

Figure 8. Illustration of the cross device composition.

This composition mechanism enhances the richness and the
user centricity of the Widget composition. It enhances the
richness of the Widget composition as now end-users can
create composite services distributed over multiple devices,
and it enhances the user centricity as the composition takes into
account the proliferation of the devices. Two characteristics
that do not exist today in SOA-based composition technologies
addressed for end-users.

V. FRONTEND VS BACKEND COMPOSITION

The frontend composition is a new service composition
approach fostered by the technology advances in devices,
networks, and frontend computing capabilities. After a deep
investigation of this approach, supported by the definition and
implementation of several prototypes illustrated in this paper,
we conclude that frontend service composition and backend
service composition are complementary in some aspects and
concurrent in others. Table I summarizes our comparison.

Table II: Backend vs frontend composition.

Backend Frontend

Program

ming

language

Flowc

hart

Automati

c

Program

ming

language

Widge

t

based

Richness of
composite

services

Yes No No Yes
Mediu

m

Richness of
composite

service UI

Yes No No Yes Yes

Developer

centricity

Yes No No Yes No

User

centricity
No Yes Yes

Yes

(basic)
Yes

Semantic

heavyness

No

semantic

Not

heavy

Yes
(heavy

Semantic)

No

semantic

Not

heavy

Events

Considerati
on

Yes No No Yes Yes

Compositio

n during
sessions

Yes No No Yes Yes

Service creation by end-users is part of Web 2.0 paradigm
as concluded by Tim Oreilly in [15] (“Trusting users as co-
developers”, “Leveraging the long tail through customer self-
service”). In addition, allowing end-users to compose services
has a positive impact on business process management as we
detailed in [16]. Obviously, the end-user may create composite
services that are not guaranteed to work. Nevertheless, the
approach we have proposed in this paper relies on the
reusability of composite services based on UI. This means that
the errors that could happen when composing services are the
same as those that could happen when the end-user manually
compose them (using manual keyboarding, or copy and paste).
This type of errors is usually controlled by the used basic
services through an additional step to check the validity of the
provided inputs.

REFERENCES

[1] M.P. Papazoglou, P. Traverso, P. Dustdar, and F. Leymann, Service-
Oriented Computing Research Roadmap, technical report/vision paper
on Service oriented computing European Union Information Society
Technologies (IST), 2006.

[2] H. Luthria, F. Rabhi, Service oriented computing in practice: an agenda
for research into the factors influencing the organizational adoption of
service oriented architectures, Journal of Theoretical and Applied
Electronic Commerce Research, v.4 n.1, p.39-56, April 2009.

[3] E. Newcomer, “Understanding Web Services: XML, Wsdl, Soap, and
UDDI” Addison, Wesley, Boston, Mass., May 2002.

[4] Yahoo Pipes, http://pipes.yahoo.com/pipes/, accessed on June 25, 2010.

[5] J.C. Yelmo, J.M. del Alamo, R. Trapero, P. Falcarm, Y. Jian, B. Cairo,
C. Baladron, “A user-centric service creation approach for Next
Generation Networks,” In Innovations in NGN: Future Network and
Services, 2008. K-INGN 2008.

[6] B. Bhushan, et al. “Spice unified architecture,” SPICE FP6 project,
Architecture Delivrable, http://www.ist-
spice.org/documents/SPICE_WP1_unified_architecture_Phase%202.pdf
, accessed on June 25, 2010.

[7] A. Tony, et al. “Business Process Execution Language for Web
Services”
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

[8] N. Laga, E. Bertin, N. Crespi, “A unique interface for web and telecom
services: From feeds aggregator to services aggregator,” In ICIN 2008,
Bordeaux, France, 20-23 October 2008.

[9] M. Caceres, Widgets 1.0 Requirements, W3C Working Draft, 2007.

[10] J. Soriano, “Fostering Innovation in a Mashup-oriented Enterprise 2.0
Collaboration Environment,” UK, sai: sisn.2007.07.024, Vol 1, No 1,
Jul 2007, pp 62-68.

[11] IBM Mashup Center, http://www-01.ibm.com/software/info/mashup-
center/, accessed on June 25, 2010.

[12] Microformats initiative, http://microformats.org/, accessed on June 25,
2010.

[13] F. Lécué, A. Léger, “Semantic Web Service Composition Based on a
Closed World Assumption,” Web Services, 2006. ECOWS '06. 4th
European Conference, pp.233-242, Dec. 2006.

[14] N. Laga, E. Bertin, N. Crespi, “Widgets to facilitate service integration
in a pervasive environment,” In Proceedings of Internation Conference
on Communications (ICC) 2010, Cape Town, South Africa, May 23-27.

[15] Tim O'Reilly, "What Is Web 2.0, Design Patterns and Business Models
for the Next Generation of Software" September 30, 2005. Available
from: http://www.oreillynet.com/lpt/a/6228 (accessed on June 25, 2010).

[16] N. Laga, E. Bertin, N. Crespi, “Business process personalization through
Web widgets”, to appear in International Conference on Web Services,
ICWS 2010, July 2010.

http://pipes.yahoo.com/pipes/
http://www.ist-spice.org/documents/SPICE_WP1_unified_architecture_Phase%202.pdf
http://www.ist-spice.org/documents/SPICE_WP1_unified_architecture_Phase%202.pdf
http://www.ist-spice.org/documents/SPICE_WP1_unified_architecture_Phase%202.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www-01.ibm.com/software/info/mashup-center/
http://www-01.ibm.com/software/info/mashup-center/
http://microformats.org/
http://www.oreillynet.com/lpt/a/6228

